

 UNIVERSITY OF NIŠ

FACULTY OF SCIENCES AND MATHEMATICS

Ivan S. Živković

RECURRENT NEURAL NETWORKS

FOR SOLVING

MATRIX ALGEBRA PROBLEMS

DOCTORAL DISSERTATION

Niš, 2018.

УНИВЕРЗИТЕТ У НИШУ

ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ

Иван С. Живковић

РЕКУРЕНТНЕ НЕУРОНСКЕ МРЕЖЕ

ЗА РЕШАВАЊЕ ПРОБЛЕМА

ЛИНЕАРНЕ АЛГЕБРЕ

ДОКТОРСКА ДИСЕРТАЦИЈА

Ниш, 2018.

 Data on Doctoral Dissertation

Doctoral

Supervisor:

PhD, Predrag S. Stanimirović, Full professor, Faculty of Science and

Mathematics, University of Niš

Title:

Recurrent neural networks for solving matrix algebra problems

Abstract:

The aim of this dissertation is the application of recurrent neural

networks (RNNs) to solving some problems from a matrix algebra

with particular reference to the computations of the generalized

inverses as well as solving the matrix equations of constant (time-

invariant) matrices. We examine the ability to exploit the correlation

between the dynamic state equations of recurrent neural networks for

computing generalized inverses and integral representations of these

generalized inverses. Recurrent neural networks are composed of

independent parts (sub-networks). These sub-networks can work

simultaneously, so parallel and distributed processing can be

accomplished. In this way, the computational advantages over the

existing sequential algorithms can be attained in real-time

applications. We investigate and exploit an analogy between the

scaled hyperpower family (SHPI family) of iterative methods for

computing the matrix inverse and the discretization of Zhang Neural

Network (ZNN) models. A class of ZNN models corresponding to the

family of hyperpower iterative methods for computing the generalized

inverses on the basis of the discovered analogy is defined. The Matlab

Simulink implementation of the introduced ZNN models is described

in the case of scaled hyperpower methods of the order 2 and 3. We

present the Matlab Simulink model of a hybrid recursive neural

implicit dynamics and give a simulation and comparison to the

existing Zhang dynamics for real-time matrix inversion. Simulation

results confirm a superior convergence of the hybrid model compared

to Zhang model.

Scientific

Field:
Computer science

Scientific

Discipline:
Artificial neural networks, dynamical systems, control systems

Key Words: Artificial neural networks, dynamical systems, generalized inverses

UDC: 004.832:[512.64+517.98+519.857

CERIF

Classification:
 P170: Computer science, numerical analysis, systems, control

Creative

Commons

License Type:
CC BY-NC-ND

 Подаци о докторској дисертацији

Ментор:

Др Предраг С. Станимировић, редовни професор, Природно-

математички факултет, Универзитет у Нишу

Наслов:

Рекурентне неуронске мреже за решавање проблема линеарне

алгебре

Резиме:

Предмет ове дисертације јесте проучавање примена рекурентних

неуронских мрежа на неке проблеме матричне алгебре, са

посебним освртом на проблем израчунавања генералисаних

инверза и матричних једначина. Испитује се могућност употребе

корелације између једначина динамичког стања рекурентних

неуронских мрежа за израчунавање уопштених инверза и

интегралних репрезентација уопштених инверза. Дефинисане

рекурентне неуронске мреже састављене су од независних делова

(подмрежа). Ове подмреже могу радити истовремено, па се тиме

може постићи паралелна и дистрибуирана обрада. На овај начин

може се остварити предност у брзини израчунавања над

постојећим секвенцијалним алгоритмима. Истражује се и

аналогија између итеративних метода за израчунавање

регуларних инверза и дискретизације модела Жангових

неуронских мрежа. На основу откривене аналогије, одређује се

класа Жангових неуронских мрежа која одговара породици

итеративних метода за израчунавање уопштених инверза.

Описана је Matlab Simulink имплементација уведених модела

скалираних итеративних метода реда 2 и 3. Представљен је

Matlab Simulink модел хибридне рекурентне имплицитне

динамике, и дата је симулација и компарација са постојећом

Жанговом динамиком за одређивање матричне инверзије у

реалном времену. Резултати симулације потврђују супериорну

конвергенцију хибридног модела у поређењу са Жанговим

моделом.

Научна област: Рачунарске науке

Научна

дисциплина:

Вештачке неуронске мреже, динамички системи, системи

управљања

Кључне речи:

Вештачке неуронске мреже, динамички системи, уопштени

инверзи

УДК: 004.832:[512.64+517.98+519.857

CERIF

класификација:
 P170: Computer science, numerical analysis, systems, control

Тип лиценце

Креативне

заједнице:
CC BY-NC-ND

Прилог 4/1

ПРИРОДНО - МАТЕМАТИЧКИ ФАКУЛТЕТ

НИШ

КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА

Редни број, РБР:

Идентификациони број, ИБР:

Тип документације, ТД: монографска

Тип записа, ТЗ: текстуални / графички

Врста рада, ВР: докторска дисертација

Аутор, АУ: Иван С. Живковић

Ментор, МН: Предраг. С. Станимировић

Наслов рада, НР:
РЕКУРЕНТНЕ НЕУРОНСКЕ МРЕЖЕ ЗА РЕШАВАЊЕ
ПРОБЛЕМА ЛИНЕАРНЕ АЛГЕБРЕ

Језик публикације, ЈП: енглески

Језик извода, ЈИ: енглески

Земља публиковања, ЗП: Србија

Уже географско подручје, УГП: Србија

Година, ГО: 2018.

Издавач, ИЗ: ауторски репринт

Место и адреса, МА: Ниш, Вишеградска 33.

Физички опис рада, ФО:
(поглавља/страна/ цитата/табела/слика/графика/прилога)

172 стр., граф. прикази

Научна област, НО: рачунарске науке

Научна дисциплина, НД: вештачке неуронске мреже, динамички системи, системи
управљања

Предметна одредница/Кључне речи, ПО: вештачке неуронске мреже, динамички системи, уопштени
инверзи

УДК 004.832:[512.64+517.98+519.857

Чува се, ЧУ: библиотека

Важна напомена, ВН:

Извод, ИЗ: Предмет ове дисертације јесте проучавање примена
рекурентних неуронских мрежа на неке проблеме матричне
алгебре, са посебним освртом на проблем израчунавања
генералисаних инверза и матричних једначина. Испитује се
могућност употребе корелације између једначина
динамичког стања рекурентних неуронских мрежа за
израчунавање уопштених инверза и интегралних
репрезентација уопштених инверза.

Датум прихватања теме, ДП: 08. 05. 2017.
Датум одбране, ДО:

 Чланови комисије, КО: Председник:

 Члан:
 Члан, ментор:

Образац Q4.09.13 - Издање 1

Прилог 4/2

ПРИРОДНО - МАТЕМАТИЧКИ ФАКУЛТЕТ

НИШ

KEY WORDS DOCUMENTATION

Accession number, ANO:

Identification number, INO:

Document type, DT: monograph

Type of record, TR: textual / graphic

Contents code, CC: doctoral dissertation

Author, AU: Ivan S. Živković

Mentor, MN: Predrag S. Stanimirović

Title, TI:
RECURRENT NEURAL NETWORKS FOR SOLVING MATRIX
ALGEBRA PROBLEMS

Language of text, LT: English

Language of abstract, LA: English

Country of publication, CP: Serbia

Locality of publication, LP: Serbia

Publication year, PY: 2018

Publisher, PB: author’s reprint

Publication place, PP: Niš, Višegradska 33.

Physical description, PD:
(chapters/pages/ref./tables/pictures/graphs/appendixes)

172 p. ; graphic representations

Scientific field, SF: Computer science

Scientific discipline, SD: Artificial neural networks, dynamical systems, control systems

systems

Subject/Key words, S/KW: Artificial neural networks, dynamical systems, generalized inverses

UC 004.832:[512.64+517.98+519

Holding data, HD: library

Note, N:

Abstract, AB: The aim of this dissertation is the application of recurrent

neural networks (RNNs) to solving some problems from a

matrix algebra with particular reference to the computations of

the generalized inverses as well as solving the matrix equations

of constant (time-invariant) matrices. We examine the ability to

exploit the correlation between the dynamic state equations of

recurrent neural networks for computing generalized inverses

and integral representations of these generalized inverses.

Recurrent neural networks are composed of independent parts

(sub-networks). These sub-networks can work simultaneously,

so parallel and distributed processing can be accomplished. In

this way, the computational advantages over the existing

sequential algorithms can be attained in real-time applications.

We investigate and exploit an analogy between the scaled

hyperpower family (SHPI family) of iterative methods for

computing the matrix inverse and the discretization of Zhang

Neural

Network (ZNN) models. A class of ZNN models corresponding

to the family of hyperpower iterative methods for computing

Accepted by the Scientific Board on, ASB: 08.05.2017.

Defended on, DE:

Defended Board, DB: President:

 Member:

 Member, Mentor:

Образац Q4.09.13 - Издање 1

Acknowledgements

The research presented in this PhD thesis could not be performed without the assistance,
patience and support of many individuals. First and foremost, I would like to express the
deepest appreciation to my thesis advisor, Professor Predrag Stanimirović for mentoring me
during the course of my undergraduate and graduate studies. He helped me through extremely
difficult times over the course of the analysis and the writing of the thesis and I sincerely thank
him for his confidence in me.

I would additionally like to thank Professor Yimin Wei for his support in both the research
and especially the revision process of our joint papers. Further, I would like to thank Professor
Igor Stojanović, Dimitrios Gerontitis and Xue-Zhong Wang for the excellent cooperation.

I would also like to extend my appreciation to Professor Branimir Todorović for introducing
me to the field of the artificial neural networks and inspiring me to choose this area.

This research would not be completed without the assistance of my friend Alexandar Vuko-
jević who provided several illustrations that found their place in this dissertation. In particular,
I would like to thank Nina Milić for her work on the text. Her knowledge and understanding of
the written word has allowed me to fully express the concepts behind this research.

I would like to extend my deepest gratitude to all of my friends and to all colleagues from
Accordia Group, LLC.

Finally, special thanks goes to my parents, my mother Sladjana and my father Srbislav,
without whose love, support and understanding I could never have completed this doctoral
degree.

Contents

Contents i

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Basic notions from matrix theory . 2

1.1.1 Full rank and Jordan decomposition 3

1.1.2 Singular value decomposition . 4

1.1.3 Idempotent matrices and projectors 6

1.2 Main classes of generalized inverses . 7

1.2.1 The inverse of a nonsingular matrix 7

1.2.2 Solvability of linear systems . 7

1.2.3 Definitions and main properties of generalized inverses 8

1.3 Motivation and organization of the dissertation 19

1.3.1 GNN vs ZNN dynamics . 21

1.4 Review of known GNN models . 22

1.4.1 GNN for regular inverse . 23

1.4.2 GNN for computing the Moore-Penrose inverse 24

1.4.3 GNN for computing the weighted Moore-Penrose inverse 25

1.4.4 GNN dynamics for solving matrix equations 26

1.5 Review of known ZNN models . 30

1.5.1 ZNN for computing regular inverse 30

1.5.2 ZNN for computing Moore-Penrose inverse 31

1.5.3 ZNN for computing the Drazin inverse 31

1.5.4 ZNN for computing outer inverse . 31

1.6 Outline of the dissertation . 32

i

2 GNN for computing generalized inverses with restrictions on spectrum 35
2.1 GNN for computing the Drazin Inverse . 35

2.1.1 Preliminaries and motivation . 35

2.1.2 Neural network architecture for computing Drazin inverse 36

2.1.3 Illustrative examples for GNND model 48

2.1.4 Application of the GNND model . 57

2.2 GNN models for computing outer inverse . 60

2.2.1 Preliminaries and motivation . 60

2.2.2 Neural network architecture . 61

2.2.3 Particular cases of GNNGA and GNNAG model 66

2.2.4 Illustrative examples for GNNGA model 67

2.3 GNN for computing the W -weighted Drazin inverse 72

2.3.1 About W -weighted Drazin inverse . 72

2.3.2 Specific case for W-weighted Drazin inverse 73

3 GNN for computing generalized inverse without restriction on spectrum 79
3.1 Globally convergent GNN for computing Drazin inverse 79

3.1.1 Preliminaries and motivation . 79

3.1.2 Neural network architecture . 80

3.1.3 Illustrative examples . 86

3.2 Globally convergent GNN for computing outer inverse 96

3.2.1 Preliminaries and motivation . 96

3.2.2 Neural Network Architecture . 97

3.2.3 Illustrative Examples . 98

3.3 Globally convergent GNN for computing W-weighted Drazin inverse 102

3.3.1 Dynamic equation with global convergence 102

3.3.2 Convergence and stability analysis of GNNDW0 104

4 GNN for computing outer inverses based on the full rank representation 107
4.1 Preliminaries and motivation . 107

4.2 On the existence and representations of outer inverses 110

4.3 Neural networks based on full rank representation of outer inverses 112

4.3.1 Neural network RNN(4.2.4) based on (4.2.4) 112

4.3.2 Neural network RNN(4.2.3) based on (4.2.3) 115

4.3.3 Relationships between different RNNs 116

4.4 Numerical experiments on GNN based on full rank representation 117

5 ZNN for computing matrix inverse based on hyperpower iterative methods 125
5.1 Introduction to ZNN design and known ZNN models 125
5.2 Correlation between iterations and ZNN models 127
5.3 Scaled Hyperpower iterations as discretized ZNN models 128
5.4 Neural network architecture of ZNNCM model 131
5.5 Convergence of the ZNNCM model . 134
5.6 Simulation results and its comparison . 136

6 Matlab simulation of the hybrid neural dynamics for online matrix inversion 145
6.1 Preliminaries and motivation . 145
6.2 Model formulation . 146

6.2.1 Gradient-based dynamics . 146
6.2.2 Zhang dynamics . 147
6.2.3 Improved ZNN model for matrix inversion 147

6.3 Simulation results and its comparison . 148

7 Conclusion 155

A Biography 169

B Dissertation documentation 171

List of Figures

1.1 Behavior of the four basic types of activation functions 24

2.1 Architecture of the RNN for computing the Drazin inverse 47

2.2 Convergence behavior of the RNN in 10−6 seconds for Example 2.1.1 49

2.3 Convergence behavior of the RNN in 10−6 seconds for Example 2.1.2 51

2.4 Convergence behavior of the RNN in 10−6 seconds for Example 2.1.3 52

2.5 Convergence behavior of the RNN in 10−7 seconds for Example 2.1.4 54

2.6 Convergence behavior of the RNN in 10−6 seconds for Example 2.1.5 55

2.7 Convergence behavior of the RNN in 10−7 seconds for Example 2.1.9 59

2.8 Architecture of the RNN for computing outer inverse in case m ≥ n 66

2.9 Architecture of the RNN for computing outer inverse in case m < n 67

2.10 Convergence behavior of the RNN in 10−7 seconds for Example 2.2.1 69

2.11 Convergence behavior of the RNN in 10−7 seconds for Example 2.2.2 70

2.12 Convergence behavior of the RNN in 10−7 seconds for Example 2.2.3 71

3.1 Architecture of the RNN for computing the Drazin inverse 85

3.2 Convergence behavior of the RNN in 10−7 seconds for Example 3.1.1. 87

3.3 Convergence behavior of the RNN in 10−7 seconds for Example 3.1.2. 88

3.4 Convergence of ‖V (t)−AD‖ for three different values γ = γ. 89

3.5 Convergence behavior of the RNN in 10−7 seconds for Example 3.1.3. 91

3.6 Convergence behavior of the RNN in 10−7 seconds for Example 3.1.4. 92

3.7 Divergence of the RNN in 10−7 seconds for Example 3.2.1 99

4.1 Convergence behavior of the RNN [138] in 10−7 seconds for Example 4.4.1 . . 119

4.2 Convergence behavior of the RNN(4.2.4) in 10−7 seconds for Example 4.4.1 . . 120

5.1 Simulink implementation of the ZNNNM model. 132

5.2 Simulink implementation of the ZNNCM model. 133

5.3 Trajectories in 10−5 seconds under zero initial conditions in the ZNNCM model 138

5.4 Trajectories of the residual errors of the model ZNNCM. 138

5.5 Trajectories of the residual errors of the models ZNNNM and ZNNCM. 139

v

6.1 Simulink implementation of EZNNNM model. 149
6.2 Trajectories of the errors ‖A−1 − X(t)‖ of ZNNNM and EZNNNM in

Example 6.3.1. 150
6.3 Trajectories of the errors ‖A−1

1 − X(t)‖ of ZNNNM and EZNNNM in
Example 6.3.1. 151

6.4 Trajectories of X(t) of ZNNNM and EZNNNM in Example 6.3.2. 151
6.5 Trajectories of the errors ‖A−1

1 − X(t)‖ of ZNNNM and EZNNNM in
Example 6.3.4. 153

List of Tables

2.1 Numerical comparison test with FF[14] . 50
2.2 Numerical comparison test with [94] . 56
2.3 Numerical comparison test with [136] . 56
2.4 Comparison test with [57] in the case b = bCon 58
2.5 Comparison test with [57] in the case b = bGen 58

3.1 Numerical comparison test with [84] for Example 3.1.1 96
3.2 Numerical comparison test with [84] for Example 3.1.2 96

4.1 Results for three RNNs generated using on the set of randomly generated matrices123
4.2 Results for three RNN(4.2.4) generated using γ = 1013 on the set of randomly

generated matrices . 123

5.1 Comparison of the models ZNNNM, ZNNCM and GNN. 139
5.1 Comparison of the models ZNNNM, ZNNCM and GNN. 140
5.2 Comparison of the models ZNNNM, ZNNCM and ZNNHM. 140
5.2 Comparison of the models ZNNNM, ZNNCM and ZNNHM. 141
5.3 Comparison of the models ZNNNM, ZNNCM and ZNNHM with Power Sig-

moid activation functionH, defined by the parameter p = 3. 142
5.4 Comparison of the models ZNNNM, ZNNCM and ZNNHM with Power Sig-

moid activation function defined by the parameter p = 3. 142
5.4 Comparison of the models ZNNNM, ZNNCM and ZNNHM with Power Sig-

moid activation function defined by the parameter p = 3. 143
5.5 ZNNNM vs ZNNCM using the power sigmoid activation function. 143

6.1 Comparison of the models ZNNNM and EZNNNM 152

vii

Chapter 1

Introduction

The idea of an inverse of a singular matrix seems to have been first presented by Moore in
1920. But, no efficient investigation of the subject was made by the mid 1950s when the inves-
tigation of generalized inverses progressed. The study of generalized inverses has progressed
significantly since its rebirth in the early 1950s. Roger Penrose, unfamiliar with previous work,
reclassified the Moore "reciprocal inverse" in 1955. He concluded that Moore inverse could be
represented by four equations (known as Moore-Penrose equations). Another well known kind
of generalized inverses is the Drazin inverse, named after Michael P. Drazin (1958). A major
extension of this field came in the fifties, when C. R. Rao and J. Chipman exploited the relation
between generalized inverses, least squares, and statistics.

Various papers have arisen both in theory of generalized inverses and its applications. The
reason for developing a generalized inverse matrix is to get a matrix that can fill in as the
inverse in some sense for a more extensive class of matrices than invertible matrices. Now, it is
difficult to give even an approximate number of articles devoted to the theory, computation and
application of generalized inverses. It is justifiably to say that the theory of generalized inverses
extensively grows and becomes an important part of pure and computational mathematics as
well as important part of many applicable scientific areas, such as computer science, electrical
engineering, etc.

Now, generalized inverses cover an extensive variety of mathematical fields, for example,
matrix theory and operator theory. They show up in various applications such as linear esti-
mation, differential and difference equations, Markov chains, graphics, cryptography, coding
theory, incomplete data recovery, and robotics. A special case of the Drazin inverse, called
Group inverse, has found application in characterizing the sensitivity of the stationary proba-
bilities to perturbations in the underlying transition probabilities. Finally, the group inverse has
recently proven to be fundamental in the analysis of Google’s PageRank search engine.

1

Chapter 1. Introduction

1.1 Basic notions from matrix theory

According to the standard notation, C(R) denotes the field of complex (real) numbers.
Further, Cm×n(Rm×n) denote the vector-space of m × n complex (real) matrices over C(R),
Cm×n
r (Rm×n

r) the class ofm×n complex (real) matrices of rank r and Cn(Rn) the vector-space
of n-tuples of complex (real) numbers over C(R). The identity matrix of an appropriate order
is denoted by I . For any A ∈ Cm×n, the range of A is defined by R(A) = {y ∈ Cm : y = Ax

for some x ∈ Cn}, and N (A) = {x ∈ Cn : Ax = 0} represents the null space of A. The
transpose, conjugate transpose and the rank of A ∈ Cm×n are denoted by AT, A∗, rank(A)
respectively. A matrix A is Hermitian if its conjugate transpose, A∗, equals A. The maximal
number of linearly independent columns of a matrix A is called rank of A and denoted by
rank(A). The trace of a square matrix A ∈ Cn×n is denoted by Tr(A) and defined as the sum
of its diagonal entries: Tr(A) = a11 + · · ·+ ann.

Definition 1.1.1. A square matrix A ∈ Cn×n (A ∈ Rn×n) is said to be:

(a) Hermitian (self-adjoint) if A∗ = A (AT = A),

(b) normal, if A∗A = AA∗ (ATA = AAT),

(c) lower-triangular, if aij = 0 for i > j,

(d) upper-triangular, if aij = 0 for i < j,

(e) positive semi-definite, if Re (x∗Ax) ≥ 0 for all x ∈ Cn,

(f) positive definite, if Re (x∗Ax) > 0 for all x ∈ Cn \ {0}.

The notion Re (z) (resp. Im (z)) means the real (resp. imaginary) part of a complex number

z.

Definition 1.1.2. Let A ∈ Cm×n. A real or complex scalar λ which satisfies the equation

Ax = λx⇐⇒ (A− λI)x = 0,

is the eigenvalue of A, and x ∈ Cn is the eigenvector of A corresponding to λ.

Definition 1.1.3. Let A ∈ Cn×n and λ is an eigenvalue of A. A vector x ∈ Cn is called

generalized eigenvector of A of a grade p corresponding to λ, or λ-vector of A of a grade p if

it satisfies the equation

(A− λI)px = 0.

Matrix index is another important characteristics of matrices. This notion has been fre-
quently used in numerical linear algebra.

2

1.1. Basic notions from matrix theory

Proposition 1.1.1. For every A ∈ Cn×n there exists an integer k such that rank(Ak+1) =
rank(Ak).

Definition 1.1.4. Let A ∈ Cn×n be a given square matrix. The index of A is denoted by

ind(A) = k and defined as the smallest integer k satisfying rank(Ak+1) = rank(Ak).

Note that ind(A) = 0 if A is regular and otherwise ind(A) ≥ 1.

1.1.1 Full rank and Jordan decomposition

The simplest matrix decompositions are LU and Cholesky factorization (decomposition)
These notions are given in Proposition 1.1.2.

Proposition 1.1.2. (LU and Cholesky factorization) For every regular square matrixA ∈ Cn×n

there exists lower triangular matrix L and upper triangular matrix U such that A = LU and

lii = 1 for every i = 1, 2, . . . , n. This factorization is known as LU factorization. Moreover

if A is Hermitian and positive definite, it holds that U = L∗, and the implied factorization

A = LL∗ is called Cholesky factorization.

The full rank factorization is one of most important notions in the matrix theory.

Definition 1.1.5. (Full rank factorization) A full rank factorization of an arbitrary matrix A ∈
Cm×n is defined as the decomposition A = PQ, where the matrix P ∈ Cm×r is full column

rank matrix and Q ∈ Cr×n is full row rank matrix.

Proposition 1.1.3. Let A ∈ Cm×n such that A is of neither full column rank nor full row rank.

Then, there exists at least one full rank factorization A = PQ of the matrix A.

For each matrix there exists a basis of generalized eigenvectors with respect to which a ma-
trix can be represented in the Jordan form. The Jordan decomposition is stated in the following
proposition.

Proposition 1.1.4. (The Jordan decomposition) Let the matrixA ∈ Cn×n have p distinct eigen-

values {λ1, λ2, . . . , λp}. Then A is similar to a block diagonal matrix J with Jordan blocks on

its diagonal, i.e., there exists a nonsingular matrix P such that

A = PJP−1 = P


Jk1(λ1) 0 . . . 0

0 Jk2(λ2) . . . 0
...

...

0 0 . . . Jk(λp)

P
−1,

3

Chapter 1. Introduction

where the Jordan blocks Jki
(λi) are defined by

Jki
(λi) =



λi 1 0 . . . 0
0 λi 1 . . . 0
...

...

0 0 . . . λi 1
0 0 . . . 0 λi


and the matrix J is unique up to a rearrangement of its blocks.

The following definition and proposition give us an alternative way to obtain even simpler
decomposition than the Jordan decomposition, but with respect to different basis of Cn.

A square matrix T of the order n is symmetric and positive semidefinite (abbreviated SPSD
and denoted by Q � 0) if

vTTv ≥ 0 for all v ∈ Rn.

The matrix T is symmetric and positive definite (abbreviated SPD and denoted by Q � 0) if

vTTv > 0 for all v ∈ Rn, v 6= 0.

Recall that a symmetric matrix T is positive definite if and only if all its eigenvalues are non-
negative.

Proposition 1.1.5. If T ∈ Rn×n is symmetric PSD matrix, then the following statements are

equivalent:

(a) T = MMT, for an appropriate matrix M satisfying M ∈ Rn×k, k ≥ 1.

(b) vTTv ≥ 0 for all v ∈ Rn, v 6= 0.
(c) There exist vectors vi, i = 1, . . . , n ∈ Rk (for some k ≥ 1) such that Tij = vT

i vj for all

i, j = 1, . . . , n. The vectors vi, i = 1, . . . , n are called a Gram representation of T .

(d) All principal minors of T are non-negative.

Proposition 1.1.6. Let T ∈ Cn×n is symmetric. Then T � 0 and it is nonsingular if and only

if T � 0.

1.1.2 Singular value decomposition

Besides the Jordan decomposition, the Singular Value Decomposition (or SVD for shortly)
is another important decomposition which is based on the eigenvalues.

Definition 1.1.6. Let A ∈ Cm×n, u ∈ Cm, v ∈ Cn, σ ≥ 0 be such that

Av = σu, A∗u = σv. (1.1.1)

4

1.1. Basic notions from matrix theory

Then σ is called the singular value of A, and the vectors u and v are left and right singular

vectors of A respectively.

According to (1.1.1),
A∗Av = σ2v, AA∗u = σ2u

which implies that σ2 is the eigenvalue of A∗A and AA∗.

Proposition 1.1.7. LetA ∈ Cm×n and {λ1, λ2, . . . , λp} be the nonzero eigenvalues ofAA∗ (i.e.

A∗A). There are exactly p non-zero singular values of A, denoted by σi(A), i = 1, . . . , p, and

they are equal to:

σi(A) =
√
λi, i = 1, . . . , p.

Moreover, it can be shown that the singular values are positive stationary values 1 of the
(vector) function f(x) = ‖Ax‖/‖x‖.

Theorem 1.1.1. (Singular Value Decomposition) Let A ∈ Cm×n
r . Then there are unitary ma-

trices U ∈ Cm×m and V ∈ Cn×n such that

A = U

Σ O

O O

V ∗, (1.1.2)

where

Σ =


σ1

. . .

σr

 = diag(σ1, σ2, . . . , σr), σi =
√
λi

and λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are the nonzero eigenvalues of A∗A.

Proof. Since A∗A ∈ Cn×n
r is Hermitian positive semidefinite, its eigenvalues are nonnegative.

Let the eigenvalues of A∗A be σ2
1, σ

2
2, . . . , σ

2
n, where

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σn. Let v1, v2, . . . , vn be a set of orthonormal
eigenvectors for σ2

1, σ
2
2, . . . , σ

2
n, and let

V1 = [v1, v2, . . . , vr], V2 = [vr+1, vr+2, . . . , vn],

and
Σ = diag(σ1, σ2, . . . , σr).

Then
V ∗1 (A∗A)V1 = Σ2, V ∗2 = (A∗A)V2 = O

1Stationary point of the function f : Rn → R is every point x0 ∈ Rn which satisfies ∇f(x0) = 0, while
f(x0) is the corresponding stationary value.

5

Chapter 1. Introduction

and consequently
Σ−1V ∗1 A

∗AV1Σ−1 = I, AV2 = O.

Now let
U1 = AV1Σ−1.

Then U∗1U1 = I , that is the columns of U1 are orthonormal. Let U2 be chosen so that U =
[U1 U2] is unitary. Then

U∗AV =
U∗1AV1 U∗1AV2

U∗2AV1 U∗2AV2


=
(AV1Σ−1)∗AV1 O

U∗2 (U1Σ) O


=
Σ O

O O

 .
Thus (1.1.2) holds.

Remark 1.1.1. The quantities σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the nonzero singular value of A

and (1.1.2) is called the singular value decomposition of A.

Lemma 1.1.1. Let A and B = A + E ∈ Cm×n have singular values σ1(A) ≥ σ2(A) ≥ · · · ≥
σn(A) and σ1(B) ≥ σ2(B) ≥ · · · ≥ σn(B) respectively. Then

σi(A)− ‖E‖2 ≤ σi(B) ≤ σi(A) + ‖E‖2, i = 1, 2, . . . , n. (1.1.3)

1.1.3 Idempotent matrices and projectors

Idempotent matrices and projectors are very important notions and appear in numerous
problems concerning various generalized inverses.

Lemma 1.1.2. Let E ∈ Cn×n be idempotent. Then E possesses the following properties:

(a) E∗ and I − E are idempotent.

(b) The eigenvalues of E are 0 and 1. The multiplicity of the eigenvalue 1 is equal to rank(E).

(c) rank(E) = Tr(E).

(d) E(I − E) = (I − E)E = O.

(e) Ex = x if and only if x ∈ R(E).

(f) E ∈ E{1, 2}.
(g) N (E) = R(I − E).

The transformation denoted by PL,M carries any x ∈ Cn into its projection on L along

6

1.2. Main classes of generalized inverses

M . The transformation PL,M is called the projector on L along M , or, oblique projector. It is
known that the projector is a linear transformation.

Proposition 1.1.8. For every idempotent matrix E ∈ Cn×n, the subspaces R(E) and N (E)
are complementary and satisfy

E = PR(E),N (E).

1.2 Main classes of generalized inverses

1.2.1 The inverse of a nonsingular matrix

A matrix has an inverse only if it is square, and even then only if it is nonsingular, or, in
other words, if its columns (or rows) are linearly independent. It is well known that every
nonsingular matrix A has a unique inverse, denoted by A−1, such that

AA−1 = A−1A = I.

We mention a few of the numerous properties of the inverse matrix:

(A−1)−1 = A,

(AT)−1 = (A−1)T ,

(A∗)−1 = (A−1)∗,

(AB)−1 = B−1A−1,

It will be recalled that a real or complex number λ is called an eigenvalue of a square matrix
A, and a nonzero vector x is called an eigenvector of A corresponding to λ, if

Ax = λx.

Another property of the inverse A−1 is that its eigenvalues are the reciprocals of those of A.

1.2.2 Solvability of linear systems

One of the most familiar application of matrices is to the solution of systems of simultane-
ous linear equations. Let

Ax = b (1.2.1)

7

Chapter 1. Introduction

be such a system, where b is a given vector and x is an unknown vector. If A is nonsingular,
there is a unique solution for x given by

x = A−1b.

In the general case (when A may be singular or rectangular) there may sometimes be no solu-
tions or multiple solutions.

The consistent system of linear equations

Ax = b (A ∈ Cm×n, m < n, b ∈ R(A))

has many solutions. The inconsistent system of linear equations

Ax = b (A ∈ Cm×n, b /∈ R(A))

has no solution.
When (1.2.1) has many solutions, we may desire not just one solution but characterization

of all solutions. It has been shown [4, 62] ifX is any matrix satisfyingAXA = A, thenAx = b

has solution if and only if
AXb = b,

in which case the most general solution is

x = Xb+ (I −XA)y,

where y is arbitrary.

1.2.3 Definitions and main properties of generalized inverses

The problem of the generalized inverses computation is closely related with the following
four equations, called the Penrose equations:

(1) AXA = A (2) XAX = X (3) (AX)∗ = AX (4) (XA)∗ = XA.

For a subset S ⊆ {1, 2, 3, 4}, the set of all matrices obeying the conditions contained in S
is denoted by A{S}. Any matrix from A{S} is called an S-inverse of A and it is denoted by
A(S). By A{S}s we denote the set of all S-inverses of A with rank s.

In 1955 Penrose showed for every finite matrix A (square or rectangular) of real or complex
elements, there is a unique matrix X satisfying the all four equations.

Theorem 1.2.1. [62] For any matrix A ∈ Cm×n there exists a single element in the set

8

1.2. Main classes of generalized inverses

A{1, 2, 3, 4}, called the Moore-Penrose inverse of A and denoted by A†.

Proof. Let X, Y ∈ A{1, 2.3, 4}. Then

X = X(AX)∗ = XX∗A∗ = X(AX)∗(AY)∗

= XAY = (XA)∗(Y A)∗Y = A∗Y ∗Y

= (Y A)∗Y = Y,

which completes the proof.

If A is nonsingular, it is clear that X = A−1 satisfies the four Penrose equations. Since the
Moore–Penrose inverse is unique, it follows that the Moore-Penrose inverse of a nonsingular
matrix is the same as the ordinary inverse.

In this way, we come to the notion of {i, j, . . . , k}-inverses, where i, j, k∈S . For example,
for a given matrix A ∈ Cm×n, if there exists a matrix such that it satisfies only the first Penrose
equation, then this matrix is called an {1}-inverse of the matrix A and it is denoted by A(1).
Similarly, if the generalized inverse satisfies the first and the third Penrose equations, it is an
{1, 3}-inverse of A, denoted by A(1,3) while the corresponding set is denoted by A{1, 3}.

For a given subspaces T and S from Cn by PT,S we denote a projector from Cn on T along
S. If S = T⊥, i.e., if S is orthogonal complement of T , then PT is orthogonal projector from
Cn on T . The matrix which corresponds to a linear map which is a projector, is idempotent
matrix. The matrix which corresponds to a linear map which is an orthogonal projector is a
Hermitian idempotent matrix.

Properties and representations of {1}-inverses

Lemma 1.2.1. Let A ∈ Cm×n
r , and let E ∈ Cm×m

m and P ∈ Cn×n
n be matrices which transform

A into the form

EAP =
Ir K

O O

 .
Then the n×m matrix

X = P

Ir K

O L

E (1.2.2)

is an {1}-inverse (or inner inverse) of A, for arbitrary block L ∈ C(n−r)×(m−r)
m .

Lemma 1.2.2. For a given matrix A ∈ Cm×n
r the following statement are valid:

(a) (λA)(1) = λ†A(1), where λ ∈ C and λ† =


1
λ
, λ 6= 0

0, λ = 0
;

9

Chapter 1. Introduction

(b) AA(1) is a projection from Cm onR(A), i.e., AA(1) = PR(A),S where S ∈ Cm is such that

R(A) + S = Cm;

(c) I − A(1)A is a projection from Cn on N (A), i.e., I − A(1)A = PN (A),T where T ∈ Cn is

such that T +N (A) = Cn;

(d) rank(A(1)) ≥ rank(A);

(e) A(1)A = In if and only if r = n;

(f) AA(1) = Im if and only if r = m;

(g) If X ∈ A{1}, then X ∈ A{1, 2} if and only if rank(A) = rank(X);

(h) (A∗A)(1)A∗ ∈ A{1, 2, 3};

(i) A∗(AA∗)(1) ∈ A{1, 2, 4};

(j) A(1,4)AA(1,3) = A†.

The next results establish the extremely important relationship between {i, j, . . . , k}-inverses
and the solutions of a linear matrix equation [2, 89].

Lemma 1.2.3. Let A ∈ Cm×n, B ∈ Cp×q, D ∈ Cm×q. Then the matrix equation

AXB = D

is consistent if and only if it holds

AA(1)DB(1)B = D,

for some A(1), B(1). In this case, the general solution is

X = A(1)DB(1) + Y − A(1)AY BB(1)

for arbitrary Y ∈ Cn×p.

Corollary 1.2.1. Let A ∈ Cm×n and A(1) ∈ A{1}. Then

A{1} = {A(1) + Z − A(1)AZAA(1) | Z ∈ Cn×m}.

Corollary 1.2.2. Let A ∈ Cm×n and

Ax = b, (1.2.3)

10

1.2. Main classes of generalized inverses

where A ∈ Cm×n and b ∈ Cm. Then the system (1.2.3) is consistent if and only if for some A(1)

it holds

AA(1)b = b,

in which case the general solution of the system (1.2.3) is

x = A(1)b+ (I − A(1)A)y,

for arbitrary y ∈ Cn.

Lemma 1.2.4. The matrix equations

AX = B, XD = E

have a common solution if and only if each equation separately has a solution, i.e.,

AA(1)B = B, ED(1)D = E, (1.2.4)

and

AE = BD.

In this case,

X = A(1)B + ED(1) − A(1)AED(1)

is a common solution of both equations, for arbitrary A(1) and D(1).

Lemma 1.2.5. Let the equations given in (1.2.4) have a common solution X0 ∈ Cm×n. Then

the general solution of these equations is given by

X = X0 + (I − A(1)A)Y (I −DD(1)),

for arbitrary A(1) ∈ A{1}, D(1) ∈ D{1}, Y ∈ Cm×n.

Proposition 1.2.1. Let A ∈ Cm×n, X ∈ Cn×m. Then X ∈ A{1} if and only if, for all

b ∈ R(A), x = Xb is a solution of the system (1.2.3).

Proposition 1.2.2. The identity AB(AB)(1)A = A holds if and only if rank(AB) = rank(A).

Similarly, B(AB)(1)AB = B is valid if and only if rank(AB) = rank(B).

Proposition 1.2.3. Let A ∈ Cm×n and let A(1) be an arbitrary element of A{1}. Further,

denote byR(A) = L and N (A) = M . Then AA(1) and A(1)A are idempotent and

AA(1) = PL,S, A
(1)A = PT,M ,

11

Chapter 1. Introduction

where S is a subspace of Cm complementary to L, and T is a subspace of Cn complementary

to M .

Properties and representations of {1, 2}-inverses

It is known that the existence of a {1}-inverse of a matrix A implies the existence of its
{1, 2}-inverse. This fact is verified in Lemma 1.2.6.

Lemma 1.2.6. Let Y, Z ∈ A{1}. Then X = Y AZ ∈ A{1, 2}.

According to Lemma 1.2.6, for any L ∈ C(n−r)×(m−r), the n × m matrix X defined in
(1.2.2) belongs to A{1, 2} if and only if X is given in the form (1.2.2).

Lemma 1.2.7. (Bjerhammar 1958) [4] For a given A and X ∈ A{1}, it follows that X ∈
A{1, 2} if and only if rank(X) = rank(A).

Lemma 1.2.8. Any two of the following three statements imply the third:

X ∈ A{1},

X ∈ A{2},

rank(X) = rank(A).

Proposition 1.2.4. If A and X are {1, 2}-inverses of each other, then

AX = PR(A),N (X), XA = PR(X),N (A).

Basic properties of the Moore-Penrose inverse

The most important result related to the Penrose equations is the statement that there always
exists a unique matrix which satisfies the four Penrose equations. This result was shown by
Penrose [61] in 1955. This matrix is called the Moore-Penrose inverse and denoted by A†.

The concept of a generalized inverses of an arbitrary matrix A ∈ Cm×n is originally due
to Moore, in 1920, (called by him the "general reciprocal"). His definition was essentially as
follows.

Definition 1.2.1. If A ∈ Cm×n, then the generalized inverse of A is the matrix X ∈ Cn×m such

that

1. AX = PR(A); 2. XA = PR(X). (1.2.5)

Moore proved the existence and the uniqueness of the solution of such defined generalized
inverse by proving the following result.

12

1.2. Main classes of generalized inverses

Proposition 1.2.5. For every A ∈ Cm×n there exists a unique matrix X ∈ Cn×m satisfying

(1.2.5).

Rado proved the equivalence of Moore’s and Penrose’s definitions of the generalized in-
verse, and today this inverse is known as Moore-Penrose pseudoinverse (shortly M-P inverse
or pseudoinverse).

Although {1}-inverses and {1, 3}-inverses provide a solution of a given matrix equation,
the Moore-Penrose inverse most resemble to the ordinary inverse. This statement is justified by
its uniqueness and the properties listed in the following two lemmas. Also, since the Moore-
Penrose inverse is {1}-inverse, we should take into account that the properties from Lemma
1.2.2 are also valid for the Moore-Penrose inverse.

Proposition 1.2.6. (Penrose 1955) [61] LetA ∈ Cm×n and b ∈ Cm×1. The minimal-norm least-

squares solution of the system Ax = b is given by x∗ = A†b. All other least-squares solutions

are given by

x = A†b+ (In − A†A)z, z ∈ Cn.

Lemma 1.2.9. LetA ∈ Cm×n be an arbitrary matrix. The Moore-Penrose inverseA† possesses

the following properties:

(a) (A†)† = A, (A†)∗ = (A∗)†;

(b) (AA∗)† = (A∗)†A†, (A∗A)† = A†(A∗)†;

(c) A†AA∗ = A∗ = A∗AA†;

(d) A† = (A∗A)†A∗ = A∗(AA∗)†;

(e) N (AA†) = N (A†) = N (A∗) = R(A)

(f)R(AA∗) = R(AA(1)) = R(A), rank(AA(1)) = rank(A(1)A) = rank(A);

(g) AA† = PR(A∗),N (A) and A†A = PR(A),N (A∗).

Lemma 1.2.10. Let A ∈ Cm×n be an arbitrary matrix. Then the matrix A can be written in the

form

A ∼

A1 O

O O

 :
R(A∗)
N (A)

→
 R(A)
N (A∗)

 , (1.2.6)

where A1 is invertible. Hence,

A† ∼

A−1
1 O

O O

 :
 R(A)
N (A∗)

→
R(A∗)
N (A)

 .
13

Chapter 1. Introduction

The representation (1.2.6) of can be easily obtained from the Singular value decomposition
(SVD) of A. More precisely, the SVD decomposition of A assumes that the matrix A1 is a
diagonal matrix whose entries are the singular values of A.

If the vector b in the system (1.2.3) satisfies b /∈ R(A), then it is necessary to search for
an approximate solution by trying to find a vector x which minimizes the norm of the vector
Ax− b.

Definition 1.2.2. LetA ∈ Cm×n and b ∈ Cm. A vector x̂ ∈ Cn which satisfies the minimization

problem

‖Ax̂− b‖2 = min
x∈Cn
‖Ax− b‖2. (1.2.7)

is called a least-squares solution of the system (1.2.3).

The next lemma gives a characterization of all least-squares solutions of the system (1.2.3).

Lemma 1.2.11. The vector x is a least-squares solution of the system (1.2.3) if and only if x is

a solution of the normal equation, defined by

A∗Ax = A∗b. (1.2.8)

The following proposition, restated from [2], shows that ‖Ax − b‖ is minimized by the
vector x = A(1,3)b. This statement establishes very important relation between the set of {1, 3}-
inverses and the least-squares solutions of the system (1.2.3).

Proposition 1.2.7. Let A ∈ Cm×n, b ∈ Cm. Then ‖Ax − b‖ is smallest when x = A(1,3)b,

where A(1,3) ∈ A{1, 3}. Conversely, if X ∈ Cn×m has the property that, for all b, ‖Ax− b‖ is

smallest when x = Xb, then X ∈ A{1, 3}.

SinceA(1,3) inverse of a matrix is not unique, as a consequence, a system of linear equations
has many least-squares solutions in general. However, among all least-squares solutions of a
given system of linear equations, there exists only one such solution of minimum norm.

Definition 1.2.3. Let A ∈ Cm×n and b ∈ Cm. A vector x̂, which satisfies the minimization

problem

‖x̂‖2 = min
x∈Cn
‖x‖2 (1.2.9)

is called a minimal-norm solution of the system (1.2.3).

The next proposition, restated from [2], establishes a relation between {1, 4}-inverses and
the minimum-norm solutions of the system (1.2.3).

Proposition 1.2.8. Let A ∈ Cm×n, b ∈ Cm. If Ax = b has a solution for x, the unique solution

x for which ‖x‖ is smallest is given by x = A(1,4)b, where A(1,4) ∈ A{1, 4}. Conversely, if

14

1.2. Main classes of generalized inverses

X ∈ Cn×m is such that, whenever Ax = b has a solution, x = Xb is the solution of minimal-

norm, then X ∈ A{1, 4}.

Joining the results from Proposition 1.2.7 and Proposition 1.2.8 we are coming to the most
important property of the Moore-Penrose inverse.

Corollary 1.2.3. (Penrose 1955) [61] Let A ∈ Cm×n, b ∈ Cm. Then, among the least-squares

solutions of Ax = b, A†b is the one of minimum-norm. Conversely, if X ∈ Cn×m has the

property that, for all b,Xb is the minimal-norm least-squares solution ofAx = b, thenX = A†.

In the essence, Lemma 1.2.3 shows that A†b is the minimal-norm least-squares solution of
the linear system Ax = b. This fact caused a dramatic increase of the interest in the generalized
inverses theory.

Further, the next proposition characterizes the set of all least-squares solutions of a given
system of linear equations.

Proposition 1.2.9. (Nashed 1970, 1976) [59] If A ∈ Cm×n has a closed range R(A), then the
set S of all least-squares solutions of the system Ax = b is given by

S = A†b⊕N (A) = {A†b+ (I − A†A)y| y ∈ Cn},

where N (A) denotes the null space of A.

Some additional properties of A† and A(1) can be found for example in [2, 89].

The Moore-Penrose inverse can be computed using arbitrary {1}-inverse.

Proposition 1.2.10. (Yanai, Takeuchi, Takane 2011) [119] The Moore-Penrose inverse A† can

be expressed by an arbitrary inner inverse, as

A† = ATA
(
ATAATA

)(1)
AT

= AT
(
AAT

)(1)
A
(
ATA

)(1)
AT.

The singular value decomposition is very important notion in developing RNN models and
even in numerical linear algebra.

Lemma 1.2.12. Let A ∈ Cm×nr and let A = UΣV ∗ be the singular value decomposition of A

where U ∈ Cm×m and V ∈ Cn×n are unitary matrices and A = diag(σ1, σ2, . . . , σr), σi =
√
λi and λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are the nonzero eigenvalues of A∗A. If

A = U

diag(σ1, σ2, . . . , σr) O

O O

V ∗ = U

Σ O

O O

V ∗ ∈ Cm×n,
15

Chapter 1. Introduction

then

A† = V

diag(1/σ1, 1/σ2, . . . , 1/σr) O

O O

U∗ = V

Σ−1 O

O O

U∗ ∈ Cn×m.
Moreover, let S1, S2, S3 be arbitrary r ×m − r, n − r × r, and m − r × n − r matrices,

respectively. Then an inner inverse of A is given by

A(1) = V

diag(1/σ1, 1/σ2, . . . , 1/σr) S1

S2 S3

U∗ ∈ Cn×m.
Theorem 1.2.2. Let A ∈ Cm×n

r , let

A = U

Σ O

O O

V ∗ (1.2.10)

be the singular value decomposition (SVD decomposition) of A, where U ∈ Cm×m and V ∈
Cn×n are unitary matrices and Σ = diag(σ1, σ2, . . . , σr), σi =

√
λi and λ1 ≥ λ2 ≥ · · · ≥

λr > 0 are the nonzero eigenvalues of A∗A. Then σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the nonzero

singular value of A and

‖A‖2 = σ1, ‖A†‖2 = 1
σr
. (1.2.11)

Proof. From (1.2.10), we have

A∗A = V

Σ2 O

O O

V ∗.
Thus the eigenvalues of A∗A are σ2

i = λi(A∗A), i = 1, 2, . . . , n and

‖A‖2
2 = ‖A∗A‖2 = |λ1(A∗A)| = σ2

1.

So ‖A‖2 = σ1 holds. It is easy to verify that

A† = V

Σ−1 O

O O

U∗. (1.2.12)

Hence the non-zero singular values of A† are

1
σr
≥ 1
σr−1

≥ · · · ≥ 1
σ1

> 0.

Thus ‖A†‖2 = 1
σr

holds.

16

1.2. Main classes of generalized inverses

Next lemma shows that the full rank factorization of a matrix A leads to an explicit formula
for its Moore-Penrose inverse A†. This formula is known as the full rank representation of the
Moore-Penrose inverse. As usual, by A−1

R and A−1
L we denote a right and a left inverse of A,

respectively.

Lemma 1.2.13. (MacDuffe, 1956) [55] Let A ∈ Cm×nr and A = PQ, P ∈ Cm×rr , Q ∈ Cr×nr be

its full rank factorization. Then it holds

A† = Q∗(P ∗AQ∗)−1P ∗ = Q∗(QQ∗)−1(P ∗P)−1P ∗.

In addition, Q is right invertible and P is left invertible:

Q−1
R = Q∗(QQ∗)−1, P−1

L = (P ∗P)−1P ∗.

Definition 1.2.1. For a given matrix A ∈ Cm×n, its weighted Moore–Penrose inverse A†M,N ∈
Cn×m satisfies the following matrix equations:

A†M,NA = A, A†M,NAA
†
M,N = A†M,N ,

(AA†M,N)# = AA†M,N , (A†M,NA)# = A†M,NA

where M and N are the symmetric positive definite matrices of order m and n, respectively,

and A# = N−1ATM . In particular, when M and N are the identity matrix I , A†M,N reduces

to the Moore– Penrose inverse A†.

A non-zero matrix that is of neither full column rank nor full row rank can be expressed as
the product of a matrix of full column rank and a matrix of full row rank. We call this a full
rank factorization.

Theorem 1.2.3. [89] Let A ∈ Cm×n
r , r > 0. Then there exist matrices P ∈ Cm×r

r and Q ∈
Cr×n
r such that

A = PQ. (1.2.13)

Definition 1.2.2. Let A ∈ Cn×n be a given matrix. The smallest nonnegative integer k for

which the condition

rank(Ak+1) = rank(Ak) (1.2.14)

holds is called the index of A, and it is denoted by ind(A) = k.

17

Chapter 1. Introduction

Further we will supplement the four Penrose equations by the following equations applica-
ble only to square matrices:

(1k) Al+1X = Al, l ≥ ind(A), (5) AX = XA.

Definition 1.2.3. The Drazin inverse of a square matrix A ∈ Cn×n is the unique matrix X ∈
Cn×n which fulfills the matrix equation (2) in conjunction with (1k) and (5) and it is denoted

by X = AD (for more details see [89]).

Definition 1.2.4. The Drazin inverse in the case ind(A) = 1 is called the group inverse and is

denoted by X = A#.

Definition 1.2.5. The outer inverse of A ∈ Cm×n
r with prescribed range T and null space S is

the matrix X which satisfies the equation (2) and two additional properties: R(X) = T and

N (X) = S, and is denoted by A(2)
T,S ,

It is well known that the Moore-Penrose inverse A† and the weighted Moore-Penrose in-
verse A†M,N , the Drazin inverse AD and the group inverse A# can be presented as particular
generalized inverses A(2)

T,S for appropriate choice of the matrices T = R(G) and S = N (G).
For example, the next statements are valid for a rectangular matrix A (see [2]):

A† = A
(2)
R(A∗),N (A∗), A

†
M,N = A

(2)
R(A]),N (A]), (1.2.15)

where M,N are positive definite matrices of appropriate orders and A] = N−1A∗M . For a
given square matrix A the next identities (see [2, 89]) are satisfied:

AD = A
(2)
R(Ak),N (Ak), A

= A
(2)
R(A),N (A), (1.2.16)

where k = ind(A).

The outer generalized inverses with prescribed range and null-space are very important
in matrix theory. The {2}-inverses have application in the iterative methods for solving the
nonlinear equations [2] as well as in statistics [20, 29]. In particular, outer inverses play an
important role in stable approximations of ill-posed problems and in linear and nonlinear prob-
lems involving rank-deficient generalized inverses [59, 134].

Outer inverses with prescribed range and null space are useful in solving the restricted sys-
tem of linear equations. This application is based on the following essential result from [12]:

Proposition 1.2.11. [12] Let A ∈ Cm×n be of rank r, let T be a subspace of Cn, and let the

condition

b ∈ AT, dim (AT) = dim (T)

18

1.3. Motivation and organization of the dissertation

be satisfied. Then the unique solution of

Ax = b, x ∈ T

is given by

x = A
(2)
T,Sb,

for any subspace S of Cm satisfying AT ⊕ S = Cm.

For other important properties of generalized inverses see [2, 89].

1.3 Motivation and organization of the dissertation

The aim of this dissertation is the application of recurrent neural networks (RNN shortly)
to solving some problems from a matrix algebra with particular reference to the computations
of the generalized inverses as well as solving the matrix equations of constant (time-invariant)
matrices.

The main efforts in the generalized inverse computation can be divided into two main types:
numerical algorithms and continuous-time algorithms. The numerical algorithms can be di-
vided into two categories: direct and iterative methods. The singular value decomposition
(SVD) algorithm is the most known between the direct methods [2]. Also, other types of ma-
trix factorizations has been exploited in computation of generalized inverses, such as the QR
decomposition [36, 78], LU factorization [83]. Methods based on the application of the Gauss-
Jordan elimination process to an appropriate augmented matrix were investigated [27, 79]. The
SVD algorithm is more accurate and is thus the most commonly used method, but it requires
a large amount of computational resources. The iterative methods, such as the orthogonal
projection algorithms, the Newton iterative algorithm, and the higher-order convergent itera-
tive methods [74, 47, 64, 19, 76] are more suitable for implementation. The Newton iterative
method is developed for block matrices in [58]. This algorithm has a fast convergence rate,
but it requires an initial condition for its convergence. All iterative methods, in general, require
initial conditions which are ultimate, rigorous and sometimes cannot be fulfilled easily. A lot of
iterative methods whose main objective is a numerical iterative computation of outer inverses
with prescribed range and null space have been developed. An overview of these methods
can be found in [19, 31, 51, 64, 76, 115, 121]. Iterative methods for computing generalized
inverses assume certain conditions for their convergence and the convergence is theoretically
established in the real variable case only. To overcome this disadvantage, an iterative algorithm
was proposed in [118].

Lately, neural networks have shown a huge potential as parallel distributed computational
models for solving many computationally challenging problems, such as various types of con-

19

Chapter 1. Introduction

strained optimization problems [30, 49], or the WTA (Winner-Take-All) competition phenom-
ena [43]. A quite a number of results related to the application of neural networks in solving
a variety of matrix algebra problems have been published recently. Different types of neural
networks have been introduced to solve systems of linear algebraic equations. The authors
of the papers [16, 97] designed recurrent neural networks for solving simultaneous linear alge-
braic equations. Wang in [92, 93, 95] proposed a gradient neural network to solve simultaneous
linear equations. In [95], it was verified that proposed recurrent neural networks are asymp-
totically stable in the large and capable of computing inverse matrices and solving Lyapunov
matrix equations. Two three-dimensional structured networks for solving linear equations and
the Lyapunov equation were developed in [99]. Neuron-like network architectures for comput-
ing eigenvalues and eigenvectors of real matrices were investigated in [15, 70]. Two recurrent
neural networks for computing LU decomposition and Cholesky factorization were presented
in [98]. A variety of other matrix algebra problems have been solved by using neural networks,
see for example [5, 13, 100].

In many real-time systems, real-time solutions of generalized inverses are usually imper-
ative. An example of such applications in robotics is the solution to the manipulator inverse
kinematics problem in real-time motion control of kinematically redundant robots. Reported
results show that neural network architectures are more suitable for real-time applications than
the conventional numerical algorithms. Thereinto, the neural approach is now regarded as
a powerful alternative for scientific computing because of its parallel distributed nature and
convenience of hardware implementation. A number of nonlinear and linear recurrent neural
network models have been developed for the inversion and generalized inversion of square and
full-rank rectangular matrices (for more details, see e.g. [34, 54, 94, 95]). Various recurrent
neural networks for computing generalized inverses of rank-deficient matrices were designed in
[96, 108]. Three recurrent neural networks for computing the weighted Moore–Penrose inverse
of rank-deficient matrices are presented in [108]. A neural network approach to compute the
Drazin inverse AD was developed in [14]. The approach from [14] is based on a feed-forward
multi-layer neural network, the gradient optimization technique and the standard back propaga-
tion learning algorithm. A new type of complex-valued Zhang neural network (ZNN), based on
a complex Zhang function, is proposed and investigated in [48]. ZNN models for online time-
varying full-rank matrix Moore-Penrose inversion are generalized, investigated and analyzed
in [127].

We will briefly present some of the latest results that were published at the time of writing
this dissertation. In [75] the authors proposed conditions for the existence and representations
of {2}, {1, 2}, and {1}–inverses along with a new computational framework for these general-
ized inverses. Proposed representations are applicable to the complex constant matrices. Four
nonlinear gradient-based recurrent neural networks for computation of the Drazin inverse for

20

1.3. Motivation and organization of the dissertation

real constant matrices, based on the limiting representations of the Drazin inverse, are investi-
gated in [101]. The global convergence performance of defined neural networks is ensured by
any monotonically increasing odd activation function. In [102] two gradient-based recurrent
neural networks for computing the W-weighted Drazin inverse of a real constant matrix are
presented. Complex neural network models for time-varying Drazin Inverse computation are
considered in [104]. The proposed network models are based on limit representations of the
Drazin inverse and error-monitoring functions, which exploit Tikhnov regularization method.
In [81] two gradient-based recurrent neural networks for generating various inner inverses, in-
cluding the Moore-Penrose and the Drazin inverse are investigated in detail. Extension of the
ZNN algorithmic conceptual framework, which was used for the computation of the regular
matrix inverse, pseudoinverse, and the Drazin inverse, to the class of time-varying complex
outer inverses with prescribed range and null space can be found in [103]. Moreover, the same
paper investigates a hybrid combination of ZNN and GNN models for computing outer in-
verses of real constant matrices. In [66] the authors give a general scheme of discretization
for transforming continuous-time ZNN models for matrix inversion and pseudoinversion into
corresponding discrete-time iterative methods. This iterative scheme arises from the 4th order
Adams-Bashforth method and is systematically examined.

However, numerical calculation of outer generalized inverses for the real constant matrices
using the gradient-based recurrent neural network approach is insufficiently studied. Wei in
[109] derived integral representation for the generalized inverse A(2)

T,S in an efficient way and
defined corresponding dynamic equation. But, the established dynamic equation is defined
intuitively, starting from defined integral representation and using an analogy with the previous
considerations.

1.3.1 GNN vs ZNN dynamics

According to the number of results related to the computation of inverses, generalized in-
verses and other matrix algebra problems, we could split neural network models into two main
types: more traditional gradient-based neural networks (or termed gradient neural networks,
GNN) usually aimed at constant (i.e. time-invariant) matrices and recently proposed new types
of neural networks called Zhang neural networks (i.e. ZNN) introduced to generalize to the
solution of online time-varying problems. The ZNN differs from conventional gradient-based
neural networks designed intrinsically for static problems solving in several important things.

• The design of GNN models are based on the elimination of the norm-based scalar-valued
error function which could only be positive or at least lower-bounded. In contrast, the
design of ZNN models are based on the elimination of every entry of the matrix-valued
error function, which could be positive, negative, bounded or even unbounded. The

21

Chapter 1. Introduction

matrix-valued error function could make the resultant ZNN models monitor and force
every entry of the error to zero. Thus, more information are used for network learning
and better performance can be achieved for the ZNN model, as compared to the GNN
model.

• The ZNN models exploit the time-derivative information of problem matrix during real-
time solving process. This is the reason why ZNN models could globally exponentially
converge to the theoretical solution of the time-varying problem. In contrast, GNN mod-
els have not exploited such important information, and thus may not be effective in solv-
ing such a time-varying problem. In essence, the ZNN method is based on a prediction
thought, while the GNN method belongs to a conventional tracking approach.

• The GNN models are depicted in explicit dynamics, i.e., in the general form Ẋ(t) = . . . ,
which are usually associated with classic Hopfield-type recurrent neural networks. In
contrast, the ZNN models are depicted in implicit dynamics (e.g., Ẋ(t)A(t)AT(t) =
. . .), which frequently arise in analog electronic circuits and systems due to Kirchhoff’s
rules [124]. In addition, the implicit dynamic equations could preserve physical param-
eters in the coefficient matrices. They could describe the usual and unusual parts of a
dynamic system in the same form. Thus, implicit systems have higher abilities in rep-
resenting dynamic systems, as compared to explicit systems. If needed, the implicit
dynamic systems could be transformed to explicit dynamic systems.

1.4 Review of known GNN models

In order to complete our motivation, we survey necessary known results of other authors
regarding regular and generalized inverses computation using both GNN and ZNN types of
recurrent neural networks. These results served as the starting point for the research presented
in this dissertation. In addition to the results, the related sources are listed.

When it comes to creating GNN models, the dynamics of neural network is based on the
usage of the scalar-valued norm-based error function ε(t) = ε(V (t)) = 1

2‖E(t)‖2
F where E(t)

is an appropriate error matrix, ‖A‖F :=
√

Tr(ATA) denotes the Frobenius norm of the matrix
A and Tr(·) denotes the trace of a matrix (see [21]). The general design formula is usually
defined along the negative gradient −∂ε(V (t))/∂V of ε(V (t)), until the minimum is reached:

dV (t)
dt = −γF

(
∂ε(V (t))
∂V

)
. (1.4.1)

Here, V (t) is the matrix of activation state variables, t ∈ [0,∞) is a time parameter and γ is
a positive scaling constant whose values must be harmonized with the chosen time interval.

22

1.4. Review of known GNN models

Further, F(R) is an odd and monotonically increasing function array, element-wise applica-
ble to elements of a real matrix R = (rij) ∈ Rm×n, i.e., F(R) = (f(rij)), i = 1, . . . ,m,
j = 1, . . . , n, wherein f(·) is an odd and monotonically increasing function. One of the main
motivation for investigating GNNs for generalized inverses computation is based on the ability
to exploit the correlation between the dynamic state equations of recurrent neural networks for
computing generalized inverses and integral representations of these generalized inverses.

Remark 1.4.1. Theorem 5.5.1 needs an activation function H1(·) which involves a monotoni-

cally increasing odd functionF(·). The following widely used real-valued linear and nonlinear

functions satisfy this requirement.

Linear function

f(x) = x. (1.4.2)

Bipolar-sigmoid function

f(x) = 1 + exp(−q)
1− exp(−q) ·

1− exp(−qx)
1 + exp(−qx) , q > 2. (1.4.3)

Power-sigmoid function

f(x) =

 xp, if|x| ≥ 1
1+exp(−q)
1−exp(−q) ·

1−exp(−qx)
1+exp(−qx) , otherwise

, q > 2, p ≥ 3. (1.4.4)

Smooth power-sigmoid function

f(x) = 1
2x

p + 1 + exp(−q)
1− exp(−q) ·

1− exp(−qx)
1 + exp(−qx) , p ≥ 3, q > 2. (1.4.5)

For illustration and comparison, the four types of activation functions f are illustrated in
Figure 1.1. Note that other new activation functions can be generated readily based on these
basic types.

1.4.1 GNN for regular inverse

Wang in [94] proposed the dynamic equation of the linear recurrent neural network for
computing the inverse of a nonsingular matrix A. This dynamics is initiated by the error matrix
E(t) = AV (t)− I . Since

∂ε(V (t))
∂V

= 1
2
∂‖AV (t)− I‖2

F

∂V
= AT (AV (t)− I) ,

and using the general design rule (1.4.1) with linear activation function F , dynamics can be

23

Chapter 1. Introduction

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−6

−4

−2

0

2

4

6

x

f(
x)

linear function
bipolar sigmoid fuction
Smooth power−sigmoid function
power sigmoid function

Figure 1.1: Behavior of the four basic types of activation functions

described as follows:

dV (t)
dt = −γATAV (t) + γAT, V (0) = V0, (1.4.6)

It is proven in [94] that the GNN model (1.4.6) is asymptotically stable in the large and
the steady-state matrix of the recurrent neural network is equal to the inverse matrix of A, i.e.,
lim
t→∞

V (t) = A−1, for arbitrary V (0).

1.4.2 GNN for computing the Moore-Penrose inverse

Recurrent neural network defined in (1.4.6) can be used for computing the Moore–Penrose
inverse of a full-column rank rectangular matrix A ∈ Rm×n

n , by simply allowing the activation
state matrix to be rectangular. In the full-row rank case, A ∈ Rm×n

m , the recurrent neural
network

dV (t)
dt = −γV (t)AAT + γAT, V (0) = V0, (1.4.7)

which is dual with respect to (1.4.6), can be also used to compute the Moore–Penrose inverse
of A. The closed-form solution of the state matrix can be described as follows ([96]):

V (t)=

 exp(−γATAt)V (0) + γ exp(−γATAt)
∫ t

0exp(γATAτ)AT dτ, m≥n,

V (0) exp(−γAATt) + γAT exp(−γAATt)
∫ t

0exp(γAATτ) dτ, m<n.

In the case of a full-rank rectangular A, Wang in [96] derived the following representation

24

1.4. Review of known GNN models

of A†, which is independent of V (0):

A†=


lim
t→∞

γ exp(−γATAt)
∫ t

0exp(γATAτ)AT dτ, m ≥ n,

lim
t→∞

γAT exp(−γAATt)
∫ t

0exp(γAATτ) dτ, m < n.
(1.4.8)

Moreover, Wang in [96] proposed three recurrent neural networks for computing the Moore–
Penrose inverse of rank-deficient matrices. The first recurrent neural network has the dynamic
equation

dV (t)
dt =


−MV (t)ATA+MAT, V (0)=0, m≥n,

−V (t)AATM+ATM, V (0)=0, m < n,
(1.4.9)

where M is a positive diagonal matrix satisfying M ∈ Rn×n if m ≥ n and M ∈ Rm×m if
m < n.

Representation of the Moore–Penrose inverse given in (1.4.8) corresponds to the following
integral representation of the Moore–Penrose inverse for bounded linear operators, introduced
in [26]:

A† =
∫ ∞

0
exp(−ATAτ)AT dτ, (1.4.10)

The global exponential convergence of Gradient neural network (1.4.7) in the case when A
is nonsingular as well as its global stability when A is singular is verified in [126].

1.4.3 GNN for computing the weighted Moore-Penrose inverse

Wei in [108] introduced the following dynamic state equation of the first recurrent neural
network (called NN1) for computing the weighted Moore–Penrose inverse of a rank–deficient
matrix:

dV (t)
dt

=

−DA
]AV (t)+DA], V (0)=0, m ≥ n,

−V (t)AA]D+A]D, V (0)=0, m < n,
(1.4.11)

where D is a positive diagonal matrix of proper dimensions and A] = N−1ATM (M and N are
chosen positive definite matrices). The simplest choice for D is D = γI , where γ > 0 [108].

Corresponding integral representation of the weighted Moore–Penrose inverse of a linear
operator between Hilbert spaces was introduced in [110]:

A†M,N =
∫ ∞

0
exp(−A#Aτ)A# dτ. (1.4.12)

25

Chapter 1. Introduction

1.4.4 GNN dynamics for solving matrix equations

GNN for solving the matrix equation AXB = D

A gradient-based neural dynamical design corresponding to the matrix equationAXB = D

was investigated in [80]. The model is based on the matrix-valued error function E(t) =
D−AV (t)B. The model defined in [80] is termed asdGNN(A,B,D) and defined as follows:

dV (t)
dt = V̇ (t) = γATF(D − AV (t)B)BT. (1.4.13)

Convergence properties of GNN(A,B,D) design are considered in [80].

Theorem 1.4.1. [80] Assume that real matrices A ∈ Rm×n, B ∈ Rp×q and D ∈ Rm×q satisfy

AA(1)DB(1)B = D, (1.4.14)

for some inner inverses A(1) and B(1). If an odd and monotonically increasing array activa-

tion function F(·) based on an elementwise function f(·) is used, then the neural state matrix

V (t) ∈ Rn×p of the GNN(A,B,D) model (1.4.13) asymptotically converges to the solution of

the matrix equation AXB = D, i.e., AV (t)B → D as t → +∞, for an arbitrary initial state

matrix V (0).

Theorem 1.4.2. [80] Assume that the real matrices A ∈ Rm×n, B ∈ Rp×q and D ∈ Rm×q

satisfy

AA†DB†B = D. (1.4.15)

Then the activation state variables matrix V (t) of the model GNN(A,B,D), defined by

(1.4.13), is convergent as t→ +∞ and has the equilibrium state

V (t)→ Ṽ = A†DB† + V (0)− A†AV (0)BB† (1.4.16)

for every initial state matrix V (0) ∈ Rn×p.

GNN for solving the matrix equation AXA = A

GNN model for solving the matrix equation AV (t)A = A, arising from the error function
ε(t) = 1

2‖A − AV (t)A‖, was investigated in [81]. Then the nonlinear GNN(A,B,D) model
becomes the GNN(A,A,A) model, defined in [81] as the following GNN-MP model:

dV (t)
dt = γATF (A− AV (t)A)AT = γATF (E(t))AT, V (0) arbitrary. (1.4.17)

26

1.4. Review of known GNN models

GNN for solving the matrix equation BXCAB = B

Solution ṼV (0) of the matrix equation

BXCAB = B

which is derived by the GNN(B,CAB,B) model

V̇ (t) = BTF(B −BV (t)CAB)(CAB)T (1.4.18)

gives ṼV (0) ∈ (CAB){1}. Then X = BṼ C gives various representations of outer inverses
according to Urguhart formula. The Urquhart formula was originated in [88] and later extended
in [89, Theorem 1.3.3] and [2, Theorem 13, P. 72].

Proposition 1.4.1. Let A ∈ Rm×n
r , B ∈ Rn×p, C ∈ Rq×m and X := BV C = B(CAB)(1)C,

where (CAB)(1) is a fixed but arbitrary element of (CAB){1}. Then

(1) X ∈ A{1} if and only if rank(CAB) = r;

(2) X ∈ A{2} andR(X) = R(B) if and only if rank(CAB) = rank(B);

(3) X ∈ A{2} and N (X) = N (C) if and only if rank(CAB) = rank(C);

(4) X = A
(2)
R(B),N (C) if and only if rank(CAB) = rank(B) = rank(C);

(5) X = A
(1,2)
R(B),N (C) if and only if rank(CAB) = rank(B) = rank(C) = r.

The following application of the GNN(A,B,D) model is motivated by the results from
[82] and the Urquhart formula.

Corollary 1.4.1. Assume thatA ∈ Rm×n
r ,B ∈ Rn×k, andC ∈ Rl×m satisfyB(CAB)†CAB =

B.

(i) If an odd and monotonically increasing function f(·) is used to define the array activation

function F(·), then the state matrix V (t) ∈ Rn×s of the GNN(B,CAB,B) model (1.4.18)
satisfies BV (t)CAB → B as t → +∞, for an arbitrary initial state matrix V (0). When

t→ +∞, the matrix V (t) is convergent and its limiting value ṼV (0) satisfies

ṼV (0) = B†B(CAB)† + V (0)−B†BV (0)CAB(CAB)† ∈ (CAB)(1), (1.4.19)

for every initial matrix V (0) ∈ Rk×l.

(ii) The following statements are valid:

(1) The condition rank(CAB) = r initiates

X := BṼV (0)C ∈ A{1}.

27

Chapter 1. Introduction

(2) The condition rank(CAB) = rank(B) implies

X := BṼV (0)C ∈ A{2}R(B),∗.

(3) The condition rank(CAB) = rank(C) implies

X := BṼV (0)C ∈ A{2}∗,N (C).

(4) If the conditions rank(CAB) = rank(B) = rank(C) are satisfied, then

X := BṼV (0)C = A
(2)
R(B),N (C).

(5) If the conditions rank(CAB) = rank(B) = rank(C) = r are satisfied, then

X := BṼV (0)C = A
(1,2)
R(B),N (C).

GNN for solving the matrix equation GAX = G or XAG = G

The GNN(GA, I,G) model is defined for solving the matrix equation GAX = G is based
on the error matrix E(t) = GAV (t) − G, where A ∈ Rm×n

r is given and G ∈ Rn×m
s , 0 <

s ≤ r, is appropriately chosen matrix. This model is applicable in generating the outer inverse
A

(2)
R(G),N (G). Corollary 1.4.2 can be derived as a consequence of Theorem 1.4.2.

Corollary 1.4.2. Assume that the real matrices A ∈ Rm×n
r , G ∈ Rn×m

s satisfy 0 < s ≤ r and

rank(GA) = rank(G). Then the following statements hold.

(i) The unknown matrix V (t) of the model GNN(GA, I,G)

dV (t)
dt = −γ (GA)T (GAV (t)−G) , V (0) arbitrary (1.4.20)

is convergent when t→ +∞ and has the limit value

ṼV (0) = (GA)†G+ V (0)− (GA)†GAV (0), (1.4.21)

for every initial matrix V (0) ∈ Rn×m.

(ii) In particular, V (0) = 0 initiates Ṽ0 = (GA)†G = A
(2,4)
N (GA)⊥,N (G).

Corollary 1.4.3. Assume that the real matrices A ∈ Rm×n
r , G ∈ Rn×m

s satisfy 0 < s ≤ r and

rank(AG) = rank(G). Then the following statements hold.

(i) The unknown matrix V (t) of the dynamical model GNN(I, AG,G) satisfies

dV (t)
dt = −γ (V (t)AG−G) (AG)T, V (0) arbitrary, (1.4.22)

28

1.4. Review of known GNN models

it is convergent when t→ +∞ and has the limit value

ṼV (0) = G(AG)† + V (0)− V (0)AG(AG)†, (1.4.23)

for every initial matrix V (0) ∈ Rn×m.

(ii) In particular, Ṽ0 = G(AG)† = A
(2,3)
N (G),N (AG)⊥ .

The authors of [138] omitted the constant term (GA)T from (1.4.20) and the constant term
(AG)T from (1.4.22), and considered two dual linear GNN models, defined as follows:


dV (t)

dt = −γ (GAV (t)−G) , V (0) = 0, if m ≥ n,

dV (t)
dt = −γ (V (t)AG−G) , V (0) = 0, if m < n.

(1.4.24)

The application of the dynamic equation (4.1.1) is conditioned by the properties of the spectrum
of the matrix GA or AG: σ(GA) ⊂ {z : Re (z) ≥ 0}, m ≥ n,

σ(AG) ⊂ {z : Re (z) ≥ 0}, m < n.
(1.4.25)

More precisely, the first GNN approach used in [138] fails in the case when Re (σ(GA)) con-
tains negative values. Clearly, the model (4.1.1) is simpler than the models (1.4.20) or (1.4.22),
but it loses global stability. An approach to resolve the requirement (4.1.7) and recover global
stability was proposed in [138], and it is based on the replacement of G by G0 = G(GAG)TG

in (4.1.1). But, this approach requires additional matrix multiplications during the computation
of the matrix G0 in (4.1.1) instead of the matrix G.

GNN for solving the matrix equation AkAX = Ak

Particularly, the GNN model for computing the Drazin inverse AD was proposed in [84].
This model can be derived removing the first constant term in GNN(Ak, A,Ak), k ≥ ind(A),
and it is defined as

dV (t)
dt = −γ

(
Ak+1V (t)− Ak

)
, k ≥ ind(A), V (0) = 0. (1.4.26)

Accordingly, an application of the model (1.4.26) is conditioned by

Re
(
λk+1
j

)
≥ 0, j = 1, . . . , n, (1.4.27)

where σ(A) = {λ1, . . . , λn} is the spectrum of A, and m ≥ ind(A) [84]. One method to
resolve the limitation (4.3.11) is proposed in [84], and it is based on the possibility to find an
appropriate power k such that (4.3.11) holds. Another possibility to ensure the nonnegativity

29

Chapter 1. Introduction

of the spectrum of the form (4.3.11) was proposed in [85], and it is based on the usage of the
matrix Ak

(
A2k+1

)T
Ak, k = ind(A).

GNN for computing W -weighted Drazin inverse

. The W -weighted Drazin inverse of A ∈ Rm×n corresponding to W ∈ Rn×m, denoted by
Ad,w, satisfies the matrix equation

(AW)l+2Ad,w = (AW)lA, (1.4.28)

which initiates the dynamical system GNN((AW)l+2, I, (AW)lA) defined by

dV (t)
dt = −γ

(
(AW)l+2

)T (
(AW)l+2V (t)− (AW)lA

)
, l ≥ k, V (0) arbitrary, (1.4.29)

where k = max{ind(AW), ind(WA)}. The dynamical system (1.4.29) is usable in approxi-
mating Ad,w, since Namely, the limit value ṼV (0) of the matrix of activation state variables V (t)
in (1.4.29) satisfies ṼV (0) = Ad,W .

After omitting the constant term
(
(AW)l+2

)T
, the dynamic equation (1.4.29) becomes the

GNN model defined in [102]:

dV (t)
dt = −γ

(
(AW)l+2V (t)− (AW)lA

)
, l ≥ k, V (0) arbitrary. (1.4.30)

1.5 Review of known ZNN models

On the other hand, the ZNN model for online time-invariant matrix inversion is based upon
the matrix-formed error function E(t) instead of a scalar valued function ε(t). The time deriva-
tive of error function E(t), should be selected in such a way that each element eij(t) of E(t)
converges to zero, ∀i = 1, ..., n . A general design rule of ˙E(t) is defined as follows

Ė(t) = dE(t)
dt = −γF (E(t)) . (1.5.1)

Again, F(C) is an odd and monotonically increasing function array, and γ is a positive scaling
constant.

1.5.1 ZNN for computing regular inverse

Matrix error function can be defined as E(t) = AX(t) − I . Substituting it into dynamic
system (1.5.1) and choosing F to be the linear function, the following Zhang dynamics for

30

1.5. Review of known ZNN models

computing regular inverse of a non singular real constant matrix can be can be obtained:

AẊ = −γAX(t) + γI, (1.5.2)

where X(t) is the matrix of activation state variables. The implicit dynamics were originally
proposed for online inversion of a time-varying matrixA(t) in [122]. It was shown in [122] that
the Zhang dynamics globally exponentially converges to the theoretical inverse A−1, starting
from any initial state X(0), with the exponential convergence rate γ.

1.5.2 ZNN for computing Moore-Penrose inverse

The starting point in [48, 132] was the fact that the left Moore-Penrose inverse A(t)† sat-
isfies A(t)*A(t)A(t)†. Further, on the basis of the assumption that A(t)*A(t) is invertible, the
following matrix-based error function, called ZF(5), is considered

E(t) := A(t)∗A(t)X(t)− A(t)∗,

where X(t) corresponds to A(t)†. An elegant way to avoid the assumption of the invertibility
of A(t)∗A(t) was presented in [48]. Namely, the authors of [48] defined the complex ZF which
arises from the ZF defined in (5.1.2), and the Tikhonov regularization:

E(t) =
(
A(t)*A(t) + λI

)
X(t)− A(t)*, λ > 0.

The resulting ZNN model (5.1.3) is termed as complex ZNN-II Model.

1.5.3 ZNN for computing the Drazin inverse

In addition, the following complex function was used as the fundamental error-monitoring
function (called ZFL2) in [104]:

E(t) =
(
A(t)l+1 + λI

)
X(t)− A(t)l l ≥ k = ind(A), λ > 0.

The matrix X(t) in (5.1.4) corresponds to the Drazin inverse A(t)D. Let us mention that the
ZNN-II model in [67] is defined on the basis of the ZF (5.1.4) and upon the Li activation
function.

1.5.4 ZNN for computing outer inverse

The starting point in generating the ZNNATS2-I model arises from Lemma 1.5.1 from
[105].

31

Chapter 1. Introduction

Lemma 1.5.1. Let A(t) ∈ Cm×n
r be given and G(t) ∈ Cn×m

s be an arbitrary matrix whose

rank satisfies 0 < s ≤ r. Assume that X(t) := A(t)(2)
R(G),N (G) exists. Then both the matrix

identities

G(t)A(t)X(t) = G(t), X(t)A(t)G(t) = G(t)

are satisfied.

The leading idea of [105] was to comprise so far known ZNN models for computing gen-
eralized inverses into a unique comprehensive model corresponding to outer inverses in the
time-varying complex matrix case. The ZNNATS2-I model defined in [105] requires two ma-
tricesA(t) ∈ Cm×n

r ,G(t) ∈ Cn×m
s , 0 < s ≤ r, and it is aimed to numerical computations of the

outer inverse A(t)(2)
R(G),N (G). The model is developed using the following two dual fundamental

error-monitoring ZFs, proposed in [105]:

EG(t) =

 (G(t)A(t) + λI)X(t)−G(t), n ≤ m, λ > 0

X(t) (A(t)G(t) + λI)−G(t), n > m, λ > 0.

1.6 Outline of the dissertation

In the following three chapters we introduce and study gradient-based recurrent neural
networks (GNNs) for computing the generalized inverses of a constant real matrix in real-
time. Recurrent neural networks are composed of independent parts (sub-networks). These
sub-networks can work simultaneously, so parallel and distributed processing can be accom-
plished. In this way, the computational advantages over the existing sequential algorithms can
be attained in real-time applications. The proposed GNNs can be easily implemented in an
electronic circuit. The number of neurons in the neural network is the same as the number
of elements in the output matrix, which represents the requested solution. We consider the
conditions that guarantee the stability of the defined GNNs as well as its convergence toward
the inverse. We show the efficacy of the proposed neural network models through illustrative
computer simulation and examples of application to the practical engineering problems.

Chapter 2 presents GNNs with dynamics conditioned by the properties of the spectrum of
a certain matrix. The chapter is based on the results published in papers:

[84] Predrag S. Stanimirović, Ivan S. Živković, and Yimin Wei. "Recurrent neural network for

computing the Drazin inverse." IEEE transactions on neural networks and learning systems 26.11

(2015): 2830-2843.

[138] Ivan S. Živković, Predrag S. Stanimirović, and Yimin Wei. "Recurrent neural network for

computing outer inverse." Neural computation 28.5 (2016): 970-998.

32

1.6. Outline of the dissertation

Chapter 3 resolves the drawback of the GNN models from Chapter 2, at the cost of increas-
ing the number of matrix operations. The results presented are based on the papers:

[85] Predrag S. Stanimirović, Ivan S. Živković, and Yimin Wei. "Recurrent neural net-
work approach based on the integral representation of the Drazin inverse." Neural com-

putation 27.10 (2015): 2107-2131.

[138] Ivan S. Živković, Predrag S. Stanimirović, and Yimin Wei. "Recurrent neural
network for computing outer inverse." Neural computation 28.5 (2016): 970-998.

Chapter 4 emphasizes the equivalence between two well known general representations
of outer inverses with prescribed range and null space of a given matrix. Two dynamic state
equations, corresponding to particular expressions related to these representations, are defined.
In this way, two gradient based neural networks, initiated by introduced dynamic equations,
are exploited in generating the class of outer inverses. The results corresponding to the most
common generalized inverses are obtained in particular cases. Simulation results are presented
at the end of the chapter. The chapter is based on the results from:

[86] Predrag S. Stanimirović, Ivan S. Živković, and Yimin Wei. "Neural network ap-
proach to computing outer inverses based on the full rank representation." Linear Algebra

and Its Applications 501 (2016): 344-362.

In Chapter 5 we investigate and exploit an analogy between the scaled hyperpower family
(SHPI family) of iterative methods for computing the matrix inverse and the discretization of
Zhang Neural Network (ZNN) models. We define a class of ZNN models corresponding to
the family of hyperpower iterative methods for computing generalized inverses on the basis of
the discovered analogy. The Matlab Simulink implementation of the introduced ZNN models
is described in the case of scaled hyperpower methods of the order 2 and 3. Convergence
properties of the proposed ZNN models are investigated as well as their numerical behavior.
This chapter is based on the paper:

[87] Igor Stojanović, Predrag S. Stanimirović, Ivan S. Živković, Dimitrios Gerontitis,
Xue-Zhong Wang, ZNN models for computing matrix inverse based on hyperpower iter-
ative methods. Filomat, 31(10) (2017), 2999-3014.

In Chapter 6 our goal is to compare a novel kind of a hybrid recursive neural model with
implicit dynamics and a conventional neural model with explicit dynamics. Through the sim-
ulation results we show the hybrid model can coincide better with systems in practice and has
higher abilities in representing dynamic systems. More importantly, hybrid model can achieve
superior convergence performance in comparison with the existing dynamic systems, specif-
ically ZNN dynamics. We present the Matlab Simulink model of a hybrid recursive neural

33

Chapter 1. Introduction

implicit dynamics and give a simulation and comparison to the existing Zhang dynamics for
real-time matrix inversion. Simulation results confirm a superior convergence of the hybrid
model compared to the classical Zhang model. The chapter is based on the following paper:

[137] Ivan S. Živković, and Predrag S. Stanimirović. "Matlab simulation of the hybrid
of recursive neural dynamics for online matrix inversion." Facta Universitatis, Series:

Mathematics and Informatics (2018): 799-809.

34

Chapter 2

GNN for computing generalized inverses
with restrictions on spectrum

This chapter presents a gradient-based recurrent neural networks (GNNs) for computing

the generalized inverses of a real constant matrix in a real time. These models are created of

a certain number of independent sub-networks, which can operate in parallel. In this way, the

computational advantages over the existing sequential algorithms can be attained in real-time

applications. The GNNs introduced are convenient for an implementation in an electronic cir-

cuit. The conditions that guarantee the stability of the defined GNNs as well as its convergence

toward the inverse are considered. In addition, illustrative examples and examples of appli-

cation to the practical engineering problems are discussed in order to show the efficacy of the

proposed neural networks.

2.1 GNN for computing the Drazin Inverse

2.1.1 Preliminaries and motivation

We repeat the definition of the Drazin inverse, for the sake of the completeness (for more
details see [2, 89]). Let A ∈ Cn×n and ind(A) = k. Then the matrix X ∈ Cn×n satisfying

Al+1X = Al, l ≥ ind(A), (2.1.1)

XAX = X, (2.1.2)

AX = XA (2.1.3)

is called the Drazin inverse of A, and it is denoted by X = AD.

If A is nonsingular, then ind(A) = 0 and AD = A−1. Otherwise, if A is singular, then
ind(A) ≥ 1. Also, in the case ind(A) = 1 the Drazin inverse becomes the group inverse

35

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

X = A# [69].

In [24, 115] Castro, Koliha and Wei derived a simple integral representation of the Drazin
inverse AD for matrices A ∈ Cn×n (and more generally elements of a Banach algebra) for
which the nonzero eigenvalues of Am+1 lie in the open right half plane for some m ≥ ind(A):

AD =
∫ ∞

0
exp(−Am+1τ)Am dτ. (2.1.4)

In the current section we present the main results from [84]. Developed GNN design rep-
resent a continuation of the results derived in [94, 96, 108] from the usual inverse and the
pseudoinverse to the Drazin inverse. A dynamic state equation of the neural network corre-
sponds to the integral representation (2.1.4). We also provide the conditions which must be
imposed to the spectrum of A which ensure the stability of the neural network. A specific neu-
ral network approach to compute the Drazin inverse AD was developed in [14]. The approach
from [14] is based on a multi-layer neural network arising from the system of matrix equations
(2.1.1)-(2.1.3).

2.1.2 Neural network architecture for computing Drazin inverse

Dynamic state equation for computing the Drazin inverse

We will assumeA ∈ Rn×n, i.e., our investigation will be limited to the real square matrices.

Let’s observe the matrix equation (2.1.1). We can rewrite it as follows

Am+1V − Am = 0, (2.1.5)

where m ≥ ind(A), and V ∈ Rn×n denotes the unknown matrix corresponding to AD. To
solve (2.1.5) for V via dynamic-system approach, we can define a scalar-valued norm based
error function:

E(t) = ‖A
m+1V (t)− Am‖2

F

2 , m ≥ ind(A).

Note that the minimal value E(t) = 0 of the residual-error function E(t) is achieved in a
minimizer V = V (t) if and only if V (t) is the exact solution of (2.1.5). A computational
scheme could be designed to evolve along a descent direction of this error function E(t), until
the minimum E(t) is reached. The typical descent direction of E(t) is defined by the negative
gradient −∂E(t)/∂V of E(t). The gradient of E with respect to V ∈ Rn×n could simply be
derived as (see, for example, [25, Chapter 5])

∂E(t)
∂V

=
(
Am+1

)T (
Am+1V (t)− Am

)
. (2.1.6)

36

2.1. GNN for computing the Drazin Inverse

As a consequence, the GNN model for computing the Drazin inverse is given by

dV (t)
dt = −γ

(
Am+1

)T (
Am+1V (t)− Am

)
,

m ≥ ind(A), V (0) = V0.

(2.1.7)

The GNN dynamics (2.1.7) will be termed as GNNAD.
The first term (Am+1)T in the right hand side of (2.1.6) can be considered as a constant fac-

tor. Therefore, the gradient direction of E(t) is also defined by (Am+1V (t)− Am), so (Am+1)T

can be removed.

According to design formula dV (t)/dt = −γ∂E(t)/∂V , and by excluding the constant
term from (2.1.6), the authors in [84] defined the dynamic equation of a gradient recurrent
neural network as follows

dV (t)
dt = −γ

(
Am+1V (t)− Am

)
,

m ≥ ind(A), V (0) = V0.

(2.1.8)

The reason for this definition could be the fact that if we find the equilibrium state V = V (t)
for dynamic system (2.1.8), then it is clear that the minimum for the residual-norm function
E(t) is also achieved, because the following is satisfied

dV
dt = 0 (2.1.9)

at the equilibrium state V . Thus,

−γ
(
Am+1V − Am

)
= 0, (2.1.10)

and, therefore (2.1.5) holds.

Here, V (t) is a matrix of activation state variables, t ∈ [0,+∞), γ is a positive scaling
constant which should be established as large as the hardware permits, or selected appropriately
for simulative and/or experimental purposes ([94, 97]).

The recurrent neural network defined in (2.1.8) is a linear dynamic system in a matrix form.
According to the linear systems theory [35], the closed-form solution of the state matrix can be
described as follows:

37

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

V (t) = exp(−γAm+1t)V (0) + γ exp(−γAm+1t)
∫ t

0
exp(γAm+1τ)Am dτ. (2.1.11)

To analyze the convergence and stability of a neural network it is necessary to know the
eigenvalues of Am.

Proposition 2.1.1. [1, Page 164] If x is an eigenvector corresponding to an eigenvalue λ ∈ C
of the matrix A ∈ Rn×n, then x is an eigenvector of Am associated with the eigenvalue λm, for

any integer m ≥ 0.

According to Proposition 2.1.1 the following useful result is obtained in [84].

Lemma 2.1.1. [84] Let A ∈ Rn×n be given singular matrix and σ(A) = {λ1, . . . , λn} be the

spectrum of A, and m ≥ 0. Suppose that the condition

Re
(
λm+1
j

)
≥ 0, j = 1, 2, . . . , n (2.1.12)

is satisfied. Then the following holds:

lim
t→∞

exp(−γAm+1t) = 0. (2.1.13)

Proof. The Jordan normal form of the matrix Am+1 is defined by [2, 7]

Am+1 = P diag [J1, J2, . . . , Jp]P−1,

where P is invertible matrix and diag operator denotes a block diagonal matrix whose Jordan
blocks Jk, k = 1, 2, . . . , p lie on the main diagonal and are equal to

Jk = Jk(λm+1
k)

=



λm+1
k 1

λm+1
k

. . .

. . . 1
λm+1
k

 ∈ Rnk×nk .

The matrix exponential of −γAm+1t is defined by (see [21, Chapter 11], [28])

exp(−γAm+1t) = P diag [exp(−γtJ1), exp(−γtJ2), . . . , exp(−γtJp)]P−1.

38

2.1. GNN for computing the Drazin Inverse

By applying known results from [28], it is not difficult to conclude

exp(−γtJk) =

exp(−γtλm+1
k)



1 −γt
1! . . . (−γt)nk−1

(nk−1)!

1
. . . −γt

1!

1

 ,

k = 1, 2, . . . , p.

(2.1.14)

The power λm+1
k of the eigenvalue λk is a complex number

λm+1
k = uk + ı vk,

where ı denotes the imaginary unit and uk, vk mean the real and imaginary part of λm+1
k , re-

spectively. According to the assumption (2.1.12) the inequality

−γ Re
(
λm+1
k

)
= −γuk ≤ 0

is valid for each λk ∈ σ(A). Since real parts of all eigenvalues contained in the spectrum
σ (Am+1) are nonnegative, it follows that

lim
t→∞

exp(−γtλm+1
k) · (−γt)l =

lim
t→∞

exp(t(−γuk)) (cos(−γvkt) + ı sin(−γvkt)) · (−γt)l

= 0,

for each l, 0 ≤ l ≤ nk−1. Therefore, according to (2.1.14), lim
t→∞

exp(−γtJk) is the zero matrix
for each k = 1, 2, . . . , p. This further implies that lim

t→∞
exp(−γAm+1t) is the zero matrix.

Now, equation (2.1.11) and Lemma 2.1.1 imply the following representation for lim
t→∞

V (t) =
V :

V = lim
t→∞

γ exp(−γAm+1t)
∫ t

0
exp(γAm+1τ)Am dτ. (2.1.15)

It can be verified, based on the definition and properties of matrix exponential, that the
closed-form solution of V in (2.1.15) represents the Drazin inverse, and it is independent of the
parameter γ.

39

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

Theorem 2.1.1. [84] Let A ∈ Rn×n be given matrix, σ(A) = {λ1, . . . , λn} be the spectrum

of A, and m ≥ ind(A). Suppose that the condition (2.1.12) is satisfied. Then the limiting

expression (2.1.15) produces the Drazin inverse AD, i.e.,

V = AD.

Proof. Applying several elementary transformations and using basic properties of the Drazin
inverse, one can verify

V = lim
t→∞

γ exp(−γAm+1t)
∫ t

0
exp(γAm+1τ)Am dτ

= lim
t→∞

exp(−γAm+1t)
∫ t

0
exp(γAm+1τ)γAm dτ

=
[

lim
t→∞

exp(−γAm+1t)
∫ t

0
exp(γAm+1τ)(γAm+1)dτ

]
AD

=
[

lim
t→∞

exp(−γAm+1t)
∫ t

0
d
(
exp(γAm+1 τ

)]
AD

=
[

lim
t→∞

exp(−γAm+1t) exp(γAm+1τ)
∣∣∣∣τ=t

τ=0

]
AD

=
{

lim
t→∞

exp(−γAm+1t)
[
exp(γAm+1t)− I)

]}
AD

=
[
I − lim

t→∞
exp(−γAm+1t)

]
AD.

According to Lemma 2.1.1, we conclude

V = AD,

which completes the proof.

The equation (2.1.11) can be simplified by forcing the first matrix term in the right-hand
side to be zero by setting zero initial states, i.e. V (0) = 0. In light of the above discussion, the
dynamic state equation of the recurrent neural network for computing the Drazin inverse can
be described as follows:

dV (t)
dt = −γ

(
Am+1V (t)− Am

)
,

m ≥ ind(A), V (0) = 0, (2.1.16)

where γ is a positive real constant. The model (2.1.16) will be termed as GNND model.

Now we are investigating the stability of the equilibrium state V . Before the main result,
which shows that the equilibrium state is stable in the sense of Lyapunov, we restate two auxil-
iary results.

40

2.1. GNN for computing the Drazin Inverse

Proposition 2.1.2. [38] If C,D are two n × n real symmetric positive semidefinite matrices.

Then

λmin(C) Tr(D) ≤ Tr(CD) ≤ λmax(C) Tr(D), (2.1.17)

where λmin(A) (resp. λmax(A)) denote the smallest (resp. the largest) eigenvalue of A.

Lemma 2.1.2. [1] Let M and N be two positive semi-definite matrices. Then the following

statements hold:

(a) Tr(MN) ≥ 0.
(b) Tr(M) = 0⇐⇒M = 0.

In Lemma 2.1.3 we show that the Hermitian part of a square real matrix M , defined by

H(M) = 1
2
(
M +MT

)
,

possesses a useful property with respect to the trace function.

Lemma 2.1.3. [84] Let M and N be two real square matrices of the order n. If the matrix N

is symmetric, then the following equality is valid:

Tr(MN) = Tr(H(M)N). (2.1.18)

Proof. Let us denote (ij)th element of M (resp. N) by mij (resp. nij). By applying definition
of the trace function and several algebraic transformations, we obtain:

Tr(H(M)N) =
n∑
i=1

(H(M)N)ii

=
n∑
i=1

n∑
j=1

H(M)ij nji

= 1
2

 n∑
i=1

n∑
j=1

mij nji +
n∑
i=1

n∑
j=1

mji nji

.
Since the matrix N is symmetric, we further have

Tr(H(M)N) = 1
2

 n∑
i=1

n∑
j=1

mij nji +
n∑
j=1

n∑
i=1

mji nij


= 1

2

 n∑
i=1

(MN)ii +
n∑
j=1

(MN)jj


= Tr(MN),

which was our initial intention.

41

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

Theorem 2.1.2. [84] Let A ∈ Rn×n be given singular matrix and σ(A) = {λ1, . . . , λn} be the

spectrum of A. Suppose that (2.1.12) holds. Then the gradient-based neural network model

GNND, defined in (2.1.16), is stable in the sense of Lyapunov.

Proof. To prove stability we use the Lyapunov’s method [63, Chapter 2.9]. We construct the
following Lyapunov function candidate

E(t) = ‖A
m+1V − Am‖2

F

2 =
Tr
(
(Am+1V − Am)T (Am+1V − Am)

)
2 .

Clearly, the inequality E(t) ≥ 0 holds. Applying the matrix calculus (see, for example [25,
Chapter 5]) on E(t), we derive the following transformations:

∂E(t)
∂V

= 1
2
∂Tr[V T(Am+1)TAm+1V]

∂V
− 1

2
∂Tr[V T(Am+1)TAm]

∂V
− 1

2
∂Tr[(Am)TAm+1V]

∂V

= 1
2

{[
(Am+1)TAm+1

]
+
[
(Am+1)TAm+1

]T
}
V − (Am+1)TAm

= (Am+1)TAm+1V − (Am+1)TAm

= (Am+1)T(Am+1V − Am).

Thus, the time derivative of E(t) is equal to

dE(t)
dt = Tr

(∂E
∂V

)T dV
dt


= Tr

((
Am+1V −Am

)T
Am+1

(
−γ

(
Am+1V −Am

)))
= −γTr

(
Am+1

(
Am+1V − Am

) (
Am+1V − Am

)T
)
.

From the identity (2.1.18) of Lemma 2.1.3 we further get

dE(t)
dt = −γTr

(
H(Am+1)

(
Am+1V − Am

) (
Am+1V − Am

)T
)
.

Since the eigenvalues of a square matrix are equal to the eigenvalues of its transpose, then the
assumption (2.1.12) implies that the nonnegativity Re

(
λm+1
j

)
≥ 0 is valid for each λm+1

j ∈
σ (H(Am+1)). Moreover, since H(Am+1) is symmetric, it is positive semi-definite. The matri-
ces H(Am+1) and (Am+1V − Am) (Am+1V − Am)T are both positive semi-definite, so that the
trace of their product is nonnegative, according to Lemma 2.1.2, part (a). Therefore,

dE(t)
dt ≤ 0,

so the gradient-based neural network GNND is stable.

42

2.1. GNN for computing the Drazin Inverse

Corollary 2.1.1. [84] Let A ∈ Rn×n be given nonsingular matrix and (2.1.12) holds. Then the

GNND neural network (2.1.16) is globally asymptotic stable in the sense of Lyapunov.

Proof. For the sake of simplicity, we use the following notations:

C = H(Am+1), D =
(
Am+1V − Am

) (
Am+1V − Am

)T
.

By the Lyapunov stability theory, the gradient-based neural network (2.1.16) is asymptotically
stable if the inequality dE(t)/dt < 0 is satisfied for any non-equilibrium state V , and

dE(t)
dt = 0

only for dV (t)/dt = 0 (at the equilibrium state V). In our case, it is necessary to verify
Tr(CD) = 0⇐⇒ D = 0.

If D = 0 holds, applying Lemma 2.1.2, part (b), we obtain Tr(D) = 0. Further, from
(2.1.17) Tr(CD) = 0 immediately follows.

On the other hand, let us assume Tr(CD) = 0. An application of Proposition 2.1.2 leads to
λmin(C) Tr(D) ≤ 0. Nonsingularity of C (i.e., λmin(C) 6= 0) in conjunction with Tr(D) ≥ 0
further implies Tr(D) = 0. Since D is positive semidefinite, we obtain D = 0 and further
dV (t)/dt = 0.

Moreover, the Lyapunov function E(V (t)) is radially unbounded, therefore according to
Theorem 4.2 [37, Chapter 4.1, page 124] the gradient-based neural network (2.1.16) is globally
asymptotic stable.

According to the Theorem 2.1.1, we can conclude that our goal is to find the integer m such
that the matrix Am+1 has nonnegative real parts of eigenvalues, i.e.,

σ
(
Am+1

)
⊂ {z : Re(z) ≥ 0}. (2.1.19)

Conditions ensuring that the non-zero spectrum of Am+1 lies in the open left/right half of
the complex plane as an equivalent to the condition that the non-zero spectrum of A lies in
the union of m + 1 angular regions are found in [24]. Therefore, the authors in [24] found
conditions for the arguments of eigenvalues. If the required conditions are not satisfied, the
Drazin inverse can not be generated. We develop a different approach: find corresponding
conditions for the matrix exponent k, such that Ak+1 satisfies (2.1.19).

There are several cases for selecting the parameter m which guarantee nonnegativity of real
parts for all eigenvalues of the matrix Am+1. These cases are discussed in Theorem 2.1.3 from
[84]. Before the main results, we present several supporting facts and notations.

43

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

Lemma 2.1.4. [84] Let A ∈ Rn×n be given matrix, λj ∈ σ(A) and k be a fixed positive integer.

Then the condition Re
(
λkj
)
≥ 0 is ensured in the following cases:

C1. λj ∈ R+.

C2. λj ∈ R−, k is even.

C3. λj and k satisfy

ϕj = Arg λj = ±π2 , k ∈ {4l : l ∈ N+}, (2.1.20)

where Arg denotes the argument of a complex number.

C4. λj satisfies

λj ∈ C ∩ {z = rj e
ıϕj : 0 < |ϕj| < π} (2.1.21)

and the parameter k satisfies

4s− 1
2

π

|ϕj|
< k <

4s+ 1
2

π

|ϕj|
, s ∈ N0, (2.1.22)

Proof. The proof in the cases C1–C3 is evident. In the case C4 it follows that

λj = aj + ı bj = rj e
ıϕj = rj (cos(ϕj) + ı sin(ϕj)) ,

where
rj = |λj| =

√
a2
j + b2

j ,

ϕj =



−1, aj = 0, bj = 0
π
2 , aj = 0, bj > 0

−π
2 , aj = 0, bj < 0

arctan
(
bj

aj

)
, aj 6= 0.

The real part of
λkj = rkj (cos(k ϕj) + ı sin(k ϕj))

is equal to
Re
(
λkj
)

= rkj cos(kϕj).

Therefore, Re
(
λkj
)
> 0 is satisfied in the case cos(k |ϕj|) > 0, or equivalently

−π2 + 2sπ < k |ϕj| <
π

2 + 2sπ, s ∈ N0.

Therefore, the condition (2.1.22) in conjunction with γ > 0 implies γ Re
(
λkj
)
≥ 0. The length

of the interval (2.1.22) which gives bounds for possible values of k is equal to π/|ϕj| so that

44

2.1. GNN for computing the Drazin Inverse

the condition
π

|ϕj|
> 1 (2.1.23)

must be satisfied. Therefore, necessity of (2.1.21) and (2.1.22) is verified.

Theorem 2.1.3. [84] Let A ∈ Rn×n be a given matrix of index k= ind(A) whose eigenvalues

are σ(A) = {λj, j = 1, 2, . . . , n}. For each λj we consider the set of possible values of the

exponent m which ensure Re(λmj) ≥ 0. The set M j
1 is defined by M j

1 = [l,+∞], l ≥ ind(A),

for each j = 1, 2, . . . , n. LetM j
2 be the set of values of the parameterm defined by applying the

restrictions imposed in the case C2 from Lemma 2.1.4 on the basis of known value λj ∈ σ(A).

Similarly, by M j
3 ,M

j
4 we denote the sets of admissible values of the parameter m defined by

applying the cases C3 and C4 from Lemma 2.1.4, respectively.

Therefore,
M j

2 = {m = 2l : l ∈ N+}, M j
3 = {m = 4l : l ∈ N+},

M j
4 =

{
m : 4l − 1

2
π

|ϕj|
< m <

4l + 1
2

π

|ϕj|
, l ∈ N0

}
.

Later, the set of positive integers corresponding to λj we denote by Uj. It is easy to conclude

Uj = M j
2 or Uj = M j

3 or Uj = M j
4 . The recurrent neural network defined by (2.1.16) is stable

and the steady-state matrix of the recurrent neural network is equal to AD, i.e.,

lim
t→∞

V (t) = AD

in the following cases:

Case 1. σ(A) ⊂ R+, m ≥ ind(A).

Case 2. σ(A) ⊂ R, λj < 0 for at least one index j and m satisfies m ≥ ind(A), m+ 1 is even.

Case 3. The spectrum of A satisfies

σ(A) ⊂ C ∩ {z = r eıθ : 0 < |θ| < π}, (2.1.24)

and the parameter m satisfies (2.1.25):

m+ 1 = min
 n⋂
j=1

(Uj ∩M j
1)
 , (2.1.25)

where Uj = M j
1 in the case λj ≥ 0.

Proof. It is necessary to ensure the existence of the condition (2.1.19). Also, to ensure the
existence of AD, the condition m ≥ ind(A) must be satisfied in all cases. The proof in Case
1 and Case 2 is obvious from Lemma 2.1.4, since from Proposition 2.1.1 we have σ(Am+1) =
{λm+1

j , j = 1, 2, . . . , n}. In Case 1 and Case 2 the conditions (2.1.19) are satisfied. According

45

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

to Lemma 2.1.4, the condition (2.1.24) ensures Re
(
λmj
)
≥ 0. Finally, (2.1.24) and (2.1.25)

ensure (2.1.19).

The choice of m in accordance with the condition (2.1.25) in conjunction with γ > 0
ensures that the nonzero spectrum of the matrix Am+1 from (2.1.8) lies in the open right half of
the complex plane.

Network configuration of GNND model

Similarly with the recurrent neural networks for matrix inversion ([94, 96]), neural network
is composed from a number of independent sub-networks. Each sub-network represents a
column vector of V (t). Let us define vj(t) (resp. amj) as the jth column vector of V (t) (resp.
Am), for j = 1, 2, . . . , n. The dynamics of the jth sub-network can be expressed as follows:

dvj(t)
dt = −γ

(
Am+1vj(t)− amj

)
. (2.1.26)

The dynamics defined in (2.1.26) indicates that each sub-network is basically similar to the
recurrent neural network presented in [97]. Let W be the connection weight matrix. The
connection weight matrix −γAm+1 is identical for each sub-network (i.e., W = −γAm+1) and
the biasing threshold vector for the jth sub-network is

γamj = {γam1j, . . . , γamnj}.

Elements of the matrix W (resp. V) are denoted by wij (resp. vij). Figure 2.1 depicts the
architecture of the proposed recurrent neural network for computing the Drazin inverse.

Elements of unknown matrix V (t) are computed using

v̇ij = dvij
dt =

n∑
k=1

vkjwik + γamji , i, j = 1, 2, . . . , n. (2.1.27)

Elements of the column vj = {v1j, . . . , vnj} are generated in the jth sub-network.

Since the connection weight matrix of the neurons in each sub-network is identical, the
proposed recurrent neural network can also be realized by a single sub-network with time-
sharing threshold vectors. In each time slot, sub-network biased by the corresponding threshold
vector generates one column vector of the Drazin inverse. Therefore, the spatial complexity of
the neural network can be reduced by a factor of n.

The main advantage of the neural network approach to matrix inversion lies in its potential
of hardware realization. The state dynamics equation (2.1.16) indicates that the proposed recur-
rent neural network is convenient for an implementation in an electronic circuit. The proposed

46

2.1. GNN for computing the Drazin Inverse

Figure 2.1: Architecture of the RNN for computing the Drazin inverse

electronic neural network consists of n2 neurons - processing elements. The neurons can be
implemented by electronic devices which represent three-operational amplifiers: a summing
amplifier, an integrating amplifier, and an inverting amplifier. In [94], Wang gave a detailed de-
scription of implementing a mathematical model of recurrent neural network into an electronic
neural network. In the same paper, it is also shown that, since the process of finding inverse is
parallel and distributed, the convergence rate of the electronic neural network is independent
of the order of input matrices. In this way, the electronic neural network has an advantage over
traditional sequential procedures for large-scale matrix inversion. Also, as discussed in [94],
the convergence rate of the linear recurrent neural network (2.1.16) is directly proportional to
the smallest nonzero eigenvalue of the connection weight matrix. Specifically, the time needed
for the recurrent neural network to converge is approximately 5/|λmin(W)|, where λmin(W) is
the minimum nonzero eigenvalue of the connection weight matrix W = −γAm+1. As will be
shown through illustrative examples in Section 2.1.3, the recurrent neural network defined by
the dynamic equation (2.1.16) is indeed able to generate the Drazin inverse of singular matrices
at the projected convergence rate.

Remark 2.1.1. The positive real scaling constant γ should be chosen as large as possible in

order to speed up the process of computation. Since γ multiplies the time parameter t, it is

clear that the term

lim
t→∞

exp(−γAm+1t)

from (2.1.13) will vanish faster with larger γ.

47

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

Remark 2.1.2. Since the computation of ind(A) requires knowledge of powers Ak, its compu-

tation could be difficult, especially for large-scale matrices. In view of its importance in the

computation of the Drazin inverse, we present a speedy/simplified method to obtain integer l

satisfying l ≥ ind(A). Our idea is to calculate matrix powers A2k
, k ≥ 1, and find first l = 2k

satisfying rank(Al) = rank(A2l), where the rank of a matrix is computed using the built-in

function rank in Matlab. It is clear that l selected in such a way satisfies l ≥ ind(A). Then we

useM j
1 = [l,+∞] and apply Theorem 2.1.3. More precisely, we compute the matrix powerA2k

using square and multiply method: calculate A2 = A ·A,A4 = A2 ·A2 etc., until the condition

rank(A2k) = rank(A2k+1) is satisfied.

2.1.3 Illustrative examples for GNND model

In order to check the validity and performance of the neural network approach in the com-
putation of the Drazin inverse some computer simulations have been done. In all examples
it is assumed that AD denotes the exact Drazin inverse of A and Ad denotes its approximation
derived from our NN approach. In the case ind(A) = 1, the exact group inverse ofA is denoted
by A# and Ag denotes its approximation. All the tests are performed on AMD Athlon 3000+
machine, with 1GB RAM.

Example 2.1.1. Let us consider two singular matrices from [14]:

A1 =


1 0 −1
0 1 0
0 −1 0


and

A2 =


1 0 0
1 1 0
0 1 0

 .
Both matrices have the same index: ind(A1) = ind(A2) = 1. It is easy to check that the exact

group inverse of matrix A1 is

A#
1 =


1 −2 −1
0 1 0
0 −1 0

 .
The computer simulation was done on the basis of the system of differential equations (2.1.16)
and the neural network with the architecture shown in Figure 2.1. Since ind(A1) = 1 and

σ(A) = {1, 1, 0}, we can choose m = 1, so the weighted matrix Am+1
1 =A2

1 has the same

eigenvalues σ(A2
1) = {1, 1, 0}. For the learning rate γ chosen as γ = 107 the weighted ma-

trix −γAm+1 =−107 · A2 has the eigenvalues {−10000000,−10000000, 0}. Because all the

48

2.1. GNN for computing the Drazin Inverse

eigenvalues are non-positive, neural network defined by (2.1.16) is stable. The convergence

behavior of the network in 10−6 seconds is illustrated in Figure 2.2.

0 0.5 1

x 10
�6

0

0.5

1

Time (s)

S
ta

te
 v

a
ri
a
b
le

v11

0 0.5 1

x 10
�6

�1

0

1

Time (s)

S
ta

te
 v

a
ri
a
b
le

v21

0 0.5 1

x 10
�6

�1

0

1

Time (s)

S
ta

te
 v

a
ri
a
b
le

v31

0 0.5 1

x 10
�6

�2

�1

0

Time (s)

S
ta

te
 v

a
ri
a
b
le

v12

0 0.5 1

x 10
�6

0

0.5

1

Time (s)

S
ta

te
 v

a
ri
a
b
le

v22

0 0.5 1

x 10
	6

1

�0.5

0

Time (s)

S
ta

te
 v

a
ri
a
b
le

v32

0 0.5 1

x 10
�6

1

�0.5

0

Time (s)

S
ta

te
 v

a
ri
a
b
le

v13

0 0.5 1

x 10
�6

�1

0

1

Time (s)

S
ta

te
 v

a
ri
a
b
le

v23

0 0.5 1

x 10
�6

�1

0

1

Time (s)

S
ta

te
 v

a
ri
a
b
le

v33

Figure 2.2: Convergence behavior of the RNN in 10−6 seconds for Example 2.1.1

The approximation of the exact group inverse A#
1 with the accuracy of 10−4, given by

Ag1 =


0.9999 −2.0001 −0.9999

0 0.9999 0
0 −0.9999 0

 ,

was obtained after 10−6 seconds. Figure 2.2 also shows that the states of the neural network

are stabilized after approximately 5/(10000000) = 0.0000005 seconds.

Similarly, the approximation of the group inverse A#
2

Ag2 =


0.9999 0 0
−1.0002 0.9999 0
−2.0002 −0.9999 0


is generated after 10−6 seconds. In Table 2.1 we arrange numerical results concerning the

accuracy of approximations generated by our method and the feed-forward neural network

approach (denoted by FF) from [14]. The matrix 2-norm ‖ · ‖ is computed by the Matlab

function norm(). We can see that more accurate results are provided using the recurrent neural

49

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

network approach compared to the feed-forward neural network approach.

Table 2.1: Numerical comparison test with FF[14]

Matrix γ time(s) ‖Ag−AG‖ ‖FF (A)−AG‖
A1 107 10−6 1.099466084 · 10−4 0.022568085212
A2 107 10−6 3.397199551 · 10−4 0.042300935109

Example 2.1.2. Consider the matrix from [136]

A =



2 −1.6 5.6 −5.6 0 5.6
0 1 6 −6 0 6
0 0 4 −4 0.1 3.9
0 0 0 0 0.1 −0.1
0 0 0 0 0.1 0.1
0 0 0 0 0 0


with ind(A) = 3. The exact Drazin inverse of A is equal to

AD =



0.5000 0.8000 −1.9000 1.9000 0 −1.9000
0 1.0000 −1.5001 1.5001 0 −1.5001
0 0 0.2500 −0.2500 0 0.2500
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

The eigenvalues of A are {2, 1, 4, 0, 0.1, 0}. Since the matrix A4 has all eigenvalues nonneg-

ative, we can select k = ind(A) = 3. We choose γ = 107, so the connection weight matrix

W = −107 · A4 has all non-positive eigenvalues. Trajectories for zero initial conditions are

depicted in Figure 2.3 and they show convergence behavior in 10−6 seconds.

The matrix produced by our algorithm is

Ad =



0.5000 0.8000 −1.9000 1.9000 0 −1.9000
0 1.0000 −1.5000 1.5000 0 −1.5000
0 0 0.2500 −0.2500 0 0.2500
0 0 0 0 0 0
0 0 0 0 0 0


.

50

2.1. GNN for computing the Drazin Inverse

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
�6

�2

�1.5

�1

�0.5

0

0.5

1

1.5

2

Time (s)

S
ta

te
 v

a
ri
a
b
le

s v11

v12

v22

v13

v23

v33

v14

v24

v34

v15

v25

v35

Figure 2.3: Convergence behavior of the RNN in 10−6 seconds for Example 2.1.2

Example 2.1.3. Consider the matrix from [115], given by

A =



1 −1 0 0 0 0
−1 1 0 0 0 0
−1 −1 1 −1 0 0
−1 −1 −1 1 0 0
−1 −1 −1 0 2 −1
−1 −1 0 −1 −1 2


.

The spectrum of A is equal to σ(A) = {3, 2, 2, 1, 0, 0}. Using m = ind(A) = 2 and γ = 107,

the method produces the following approximation of the Drazin inverse after 10−7 seconds;

Ad =



0.2500 −0.2500 0 0 0 0
−0.2500 0.2500 0 0 0 0

0 0 0.2500 −0.2500 0 0
0 0 −0.2500 0.2500 0 0
0 0 −0.4166 −0.5833 0.6666 0.3333
0 0 −0.5833 −0.4166 0.3333 0.6666


.

The convergence behavior of the network in 10−7 seconds is graphically illustrated in Figure

2.4.

51

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
�6

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

Time (s)

S
ta

te
 v

a
ri
a
b
le

s

v11 v22 v33

v63

v44

v54

v64v53

v43v34v21

v55

v65

v12

v56

v66

Figure 2.4: Convergence behavior of the RNN in 10−6 seconds for Example 2.1.3

The exact Drazin inverse of A is equal to

AD =



1
4 −1

4 0 0 0 0
−1

4
1
4 0 0 0 0

0 0 1
4 −1

4 0 0
0 0 −1

4
1
4 0 0

0 0 − 5
12 −

7
12

2
3

1
3

0 0 − 7
12 −

5
12

1
3

2
3


.

Example 2.1.4. The following randomly generated matrix

A =



0.4447 0.4057 0.3529 0.6038 0.9318 0.6721
0.6154 0.9355 0.8132 0.2722 0.4660 0.8381
0.7919 0.9169 0.0099 0.1988 0.4186 0.0196
0.9218 0.4103 0.1389 0.0153 0.8462 0.6813
0.7382 0.8936 0.2028 0.7468 0.5252 0.3795
0.1763 0.0579 0.1987 0.4451 0.2026 0.8318


is nonsingular. Therefore, it satisfies ind(A) = 0 and A−1 =AD. We want to show that for

appropriate choice of m, our neural network produces a good approximation of the inverse

A−1. The eigenvalues of A generate the set

{3.0601, 0.6701,−0.6206 + 0.1081ı,−0.6206− 0.1081ı, 0.3905,−0.1170}.

We need to find such m ≥ ind(A) which ensures that all eigenvalues of Am+1 has nonnegative

52

2.1. GNN for computing the Drazin Inverse

real parts. Firstly, we have M j
1 = [0,+∞], j = 1, . . . , 6. The eigenvalues λ1, λ2 and λ5 are

positive, so that U1 = M1
1 = U2 = M2

1 = U5 = M5
1 = [0,+∞]. Since we have one eigenvalue

(λ6) that is negative, this means that our m corresponding to λ6 need to be even. Therefore,

U6 = M6
2 = {2, 4, 6, . . .}. Further, we have two complex conjugate eigenvalues (λ3, λ4). Since

it holds cosα = cos(−α) and cos(π − α) = cos(π + α), we have Re(zm+1) ≥ 0 for the

same m such Re(zm+1) ≥ 0. In our case, this means that M3
4 = M4

4 . The real part of λ3 is

a = −0.6206 < 0, so this eigenvalue lies in the second quadrant of the complex plane. We

have

ϕ = arctan
(
b

a

)
= −9.88100◦ = 180◦ − 9.88100◦ = 170.119◦.

So, π
ϕ

= 1.05805. Therefore, the sets U3 = M3
4 = U4 = M4

4 are defined as:

4s− 1
2

π

|ϕ|
< m+ 1 < 4s+ 1

2
π

|ϕ|
, s ∈ N0. (2.1.28)

For s = 1, we have
3
2 · 1.05805 < m+ 1 < 5

2 · 1.05805,

i.e., 1.5870 < m+ 1 < 2.645125. So, m+ 1=2, and m=1. For such choice of m, the matrix

Am+1 = A2 has all eigenvalues with positive real parts. Indeed, the eigenvalues of the matrix

A2 are
{9.3643, 0.4490, 0.3735 + 0.1341ı,

0.3735− 0.1341ı, 0.1525, 0.0137}.

The neural network gives the following solution after 10−7 seconds, for γ = 1010:

Ad =



−3.0746 0.1593 −5.2799 3.2284 5.3347 −2.6300
1.7626 0.0864 5.4113 −2.5822 −4.2963 2.4363
−1.4431 1.4461 −5.4049 1.7459 4.1102 −3.4690
−0.5694 −0.3461 −2.4723 0.3365 3.0550 −0.8025
2.2305 −0.3552 1.6884 −0.6080 −2.0921 −0.0317
0.6351 −0.1135 2.9452 −0.9536 −2.9387 2.8558


The exact inverse of the matrix A is

AD = A−1 =



−3.0746 0.1594 −5.2799 3.2284 5.3347 −2.6300
1.7626 0.0864 5.4113 −2.5822 −4.2963 2.4364
−1.4430 1.4461 −5.4049 1.7459 4.1102 −3.4690
−0.5694 −0.3461 −2.4723 0.3365 3.0550 −0.8024
2.2305 −0.3552 1.6884 −0.6080 −2.0921 −0.0317
0.6351 −0.1135 2.9452 −0.9536 −2.9387 2.8558


.

53

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
�7

�6

�4

�2

0

2

4

6

Figure 2.5: Convergence behavior of the RNN in 10−7 seconds for Example 2.1.4

The convergence behavior of the network in 10−7 seconds is graphically illustrated in Fig-

ure 2.5.

Example 2.1.5. Consider another singular matrix A from [115], with index ind(A) = 4:

A =



3 −1 −1 −1 1 −3 1 2
3 −1 −1 −1 1 −3 1 2
2 0 −1 −1 1 −3 1 2
1 0 0 −1 1 −3 1 2
0 0 0 0 1 −3 1 2
0 0 0 0 0 −2 1 2
0 0 0 0 0 0 −1 2
0 0 0 0 0 0 0 1



.

Here σ(A) = {0, 0, 0, 0, 1,−2,−1, 1}. Since A has negative eigenvalues, we can take m = 5,

because the matrix Am+1 = A5+1 = A6 has all nonnegative eigenvalues. Using γ = 107,

neural network produces the solution

54

2.1. GNN for computing the Drazin Inverse

Ad =



0 0 0 0 1.0000 −1.4999 −0.5000 1.9999
0 0 0 0 1.0000 −1.4999 −0.5000 1.9999
0 0 0 0 1.0000 −1.4999 −0.5000 1.9999
0 0 0 0 1.0000 −1.4999 −0.5000 1.9999
0 0 0 0 1.0000 −1.4999 −0.5000 1.9999
0 0 0 0 0 −0.5000 −0.5000 1.9999
0 0 0 0 0 0 −1.0000 0
0 0 0 0 0 0 0 1.0000



.

The exact Drazin inverse of A is

AD =



0 0 0 0 1 −3
2 −

1
2 2

0 0 0 0 1 −3
2 −

1
2 2

0 0 0 0 1 −3
2 −

1
2 2

0 0 0 0 1 −3
2 −

1
2 2

0 0 0 0 1 −3
2 −

1
2 2

0 0 0 0 0 −1
2 −

1
2 2

0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1



.

The convergence behavior of the network in 10−6 seconds is graphically illustrated in Figure

2.6.

0 0.2 0.4 0.6 0.8 1

x 10
−6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

S
ta

te
 v

ar
ia

bl
e

Figure 2.6: Convergence behavior of the RNN in 10−6 seconds for Example 2.1.5

55

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

Our model is intended for computing the Drazin inverse of singular matrices, but it can also
deal with the inverses of regular matrices. More precisely, if the matrix A is nonsingular, then
our method produces A−1; but if A is singular, the method gets AD. Compared to previous
works, where neural networks for computing the inverse matrix are introduced (for example,
[94, 96, 108]), our neural network has the same neural network architecture as discussed in
[94], but different neurodynamic.

Example 2.1.6. Several nonsingular matrices with different orders are randomly created in

this example. We compare the performance of our neural network against the performance of

the neural network for calculating the matrix inverse, presented in [94].
The output of our neural network is denoted by Ad; by GN(A) we denote the output of neu-

ral network presented in [94], while A−1 denotes the matrix inverse calculated by the Matlab

function inv(). Finally, the matrix norm ‖ · ‖ is computed by the Matlab function norm().

The test shows that our neural network computes the inverse of a given matrix with very good

precision, similar to the precision achieved by the network presented in [94].

Table 2.2: Numerical comparison test with [94]

Matrix n γ time(s) ‖Ad−A−1‖ ‖GN(A)−A−1‖
A1 5 109 10−7 1.34 · 10−4 1.06 · 10−4

A2 10 109 10−7 4.97 · 10−5 1.47 · 10−5

A3 15 109 10−7 2.97 · 10−5 9.39 · 10−6

A4 20 109 10−7 7.88 · 10−5 1.93 · 10−6

A5 25 109 10−7 1.79 · 10−4 2.30 · 10−4

Example 2.1.7. In this example we compare the performance of our method against the per-

formance of an iterative method for computing the Drazin inverse proposed in [136], which

we denote by IM. The Matrix A takes the values A1, . . . , A5 reused from examples 1-5. The

comparison in Table 2.3 is given in the sense of the accuracy of the solution and the CPU time

required for the convergence. Previous testing has shown that both methods produce solutions

with the similar accuracy. So in this table, we fixed the accuracy (∼ 10−4) and we measure the

CPU time required for each method to generate the solution with that accuracy.

Table 2.3: Numerical comparison test with [136]

‖AD − Ad‖ time(s)
Matrix IM NN IM NN

A1 ∼ 10−4 ∼ 10−4 0.029391 10−6

A2 ∼ 10−4 ∼ 10−4 0.050967 10−6

A3 ∼ 10−4 ∼ 10−4 0.006505 10−6

A4 ∼ 10−4 ∼ 10−4 0.232515 10−7

A5 ∼ 10−4 ∼ 10−4 0.541346 10−6

56

2.1. GNN for computing the Drazin Inverse

Results from Table 2.3 show that RNN approach gives results with similar accuracy but about

three orders of magnitude faster than [136].

2.1.4 Application of the GNND model

The Drazin inverse and the group inverse have been applied to various fields, for instance,
singular linear systems, finite Markov chains, singular differential and difference equations,
multibody system dynamics (see, [7, 22, 57, 71]), cryptography [41], etc. In the monograph
[7, Page 123] it is shown that the Drazin inverse solution ADb solves the singular linear system
Ax = b if and only if b ∈ R(Ak). Also, ADb is the unique solution of Ax = b provided that
x ∈ R(Ak) [7, Page 123]. It is also known result that the Drazin inverse solution represents the
minimal P -norm solution of the linear system Ax = b, where P is invertible matrix such that
P−1AP is the Jordan canonical form of A and ‖x‖P = ‖P−1x‖2 [107]. Moreover, the group
inverse is of fundamental importance in the analysis of Google’s PageRank system [39, 40].
The restricted matrix equation

AXB = D,R(X) ⊂ R(Ak),N (X) ⊃ N (Ak),

k = max{ind(A), ind(B)}

has the unique solution X = ADDBD [90].
The Drazin inverse is applicable in the study of linear systems of differential equations with

singular coefficients, which can occur in electrical circuits if, for example, there are dependent
sources [7].

Example 2.1.8. In this example we consider solutions of the linear system Ax = b. The

matrix A takes, in succession, the values A1, A2, A3, A4 reused from [57] and the vector b takes

two values bCon ∈ R(Ak) and bGen /∈ R(Ak), both defined in [57]. The results contained

in Table 2.4 (resp. Table 2.5) are corresponding to the case b = bCon (resp. b = bGen).

Using γ = 108, after 10−7 seconds, RNN approach generates the result x = Adb according to

numerical data arranged in Table 2.4 and Table 2.5. By MMSW are denoted accuracy and the

CPU time obtained applying the iterations from [57]; corresponding results generated by our

RNN approach are denoted by NN.

57

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

Table 2.4: Comparison test with [57] in the case b = bCon

‖ADb− x‖ time(s)
Matrix MMSW NN MMSW NN

A1 0.00163624 0.000880501 1.41 0.000001
A2 0.00354824 0.015209950 3.47 0.000001
A3 1.06348014 0.013472465 9.41 0.000001
A4 0.000000197 0.002730538 0.8 0.000001

Table 2.5: Comparison test with [57] in the case b = bGen

‖ADb− x‖ time(s)
Matrix MMSW NN MMSW NN

A1 0.001108242 0.0016349695464 0.73 0.000001
A2 0.002457201 0.0000760248121 0.7 0.000001
A3 0.486144760 0.0004332707662 6.72 0.000001
A4 0.000000432 0.0026274614443 0.44 0.000001

Comparing data arranged in both Table 2.4 and Table 2.5 it can be easily observed that

RNN approach produces more accurate results in significantly smaller CPU time.

Example 2.1.9. The group inverse plays a central role in the theory of finite Markov chains

[7, 56]. Let T be the one-step transition matrix of a finite homogeneous Markov chain and

A = I − T . According to known result [7, Theorem 8.2.1] the condition ind(A) = 1 holds,

i.e., the existence of AG is ensured for any stochastic matrix T . It is well known fact that the

answer to every important question concerning the chain can be obtained from AG [56].

Let us consider the regular chain whose transition matrix is given by

T = 1
4


0 2 2 0
2 0 2 0
2 1 0 1
1 1 1 1

 .

For the description of the Markov chain it is necessary to compute the group inverse of

A = I − T = 1
4


4 −2 −2 0
−2 4 −2 0
−2 −1 4 −1
−1 −1 −1 3

 .

58

2.1. GNN for computing the Drazin Inverse

The exact group inverse of A is known from [56]:

A# = 2
1083


265 −61 −96 −108
−96 300 −96 −108
−115 −137 246 6
−210 −156 −210 576

 .

Setting γ = 109, we obtain the resulting group inverse Ag after 10−7 seconds. The convergence

behavior is presented in Figure 2.7.

Ag =


0.4893 −0.1126 −0.1773 −0.1994
−0.1773 0.5540 −0.1773 −0.1994
−0.2123 −0.2530 0.4543 0.0111
−0.3878 −0.2881 −0.3878 1.0637

 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
�7

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2.7: Convergence behavior of the RNN in 10−7 seconds for Example 2.1.9

59

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

2.2 GNN models for computing outer inverse

Next, we present the results from [138]. We are expanding investigation applied to the com-
putation of the Drazin inverse ([84]), based on appropriate dynamic equation and induced gra-
dient based RNN, to the more generalized problem of computing the outer inverses. Similarly
to the RNNs developed for the usual matrix inversion as well as to the RNNs for computing the
matrix pseudoinverse and the Drazin inverse, developed earlier, the proposed neural network
are also composed of a number of independent sub-networks which can operate concurrently.
Due to its simplicity in the implementation a linear activation function is chosen. The stabil-
ity of the proposed recurrent neural networks as well as their performance is demonstrated by
means of a few numerical examples.

2.2.1 Preliminaries and motivation

Recall that the generalized inverse A(2)
T,S of A ∈ Cm×n is the matrix X ∈ Cn×m which

satisfies
XAX = X, R(X) = T, N(X) = S. (2.2.1)

If A ∈ Cm×n
r , T is a subspace of Cn of dimension t ≤ r and S is a subspace of Cm of

dimension m− t, then A has a {2}-inverse X such thatR(X) = T andN (X) = S if and only
if AT ⊕ S = Cm, in which case X is unique and it is denoted by A(2)

T,S (see [89]).

Our aim is to develop a general RNN approach for computing the outer inverse with pre-
scribed range and null space, continuing dynamic state equations and gradient RNN approach
exploited in [84, 94, 96, 108].

It is reasonable to expect that the starting point should be the integral representation of
outer inverses. In [109, 111], Wei introduced the integral representation of the generalized
inverse A(2)

T,S of a complex matrix A ∈ Cm×n, where T and S are subspaces of Cn and Cm,
respectively. For the sake of simplicity, Re (σ(GA))≥0 stands for Reλ≥ 0, ∀λ ∈ σ(GA).
Under the assumptions R(G) = T,N (G) = S, in the case when the spectrum of GA satisfies
Re (σ(GA)) ≥ 0, the following integral representation of A(2)

T,S is valid:

A
(2)
T,S =

∫ ∞
0

exp(−GAτ)G dτ. (2.2.2)

In the dual case, Re (σ(AG)) ≥ 0 guarantees the existence of the following integral represen-
tation:

A
(2)
T,S =

∫ ∞
0
G exp(−AGτ) dτ. (2.2.3)

We define an appropriate dynamic equation and the corresponding RNN, both initiated by
(2.2.2) or (2.2.3). The RNN is capable of generating outer inverses with prescribed rangeR(G)

60

2.2. GNN models for computing outer inverse

and null space N (G) under the assumption of zero initial states. The particular case G = Am,
where m ≥ ind(A) is appropriately defined nonnegative integer, includes all the results we
presented in section 2.1.

2.2.2 Neural network architecture

Our general observation is that the problem of computing various generalized inverses can
be resolved as a solution of appropriate dynamic state equation of a generic recurrent neural
network. Furthermore, the dynamic state equation is stated by virtue of appropriately defined
constraint satisfaction problem. In order to define the constraint satisfaction problem which
initiates the dynamic state equation underlying in the corresponding recurrent neural network,
it is necessary to introduce Lemma 2.2.1 and several observations.

Lemma 2.2.1. Let A ∈ Cm×n
r be given and G ∈ Cn×m

s be arbitrarily chosen matrix satisfying

0 < s ≤ r. Assume that X := A
(2)
R(G),N (G) exists. Then the matrix equations

GAX = G, XAG = G (2.2.4)

are satisfied.

Proof. The following known facts are used to verify the statements (cf. [89, 120]):

AX = PAR(G),N (G), XA = P
R(G),(A∗N (G)⊥)⊥ .

Now, the first and the second statement in (2.2.4) follows, respectively, from the next known
results (see, for example [2]): PL,MG = G if and only if R(G) ⊆ L and GPL,M = G if and
only if N (G) ⊇M .

Remark 2.2.1. The constraint satisfaction problem (2.2.4) defined in Lemma 2.2.1 for the usual

matrix inversion as well as for the Moore-Penrose inverse is AX = I [94, 96]; for the Drazin

inverse it is defined by Am+1X = AmAX = Am, m ≥ ind(A) [84]. This certainly means that

(2.2.4) in the caseG = I leads to the results corresponding to the usual inverse and the Moore-

Penrose inverse; similarly, the case G = Am, m ≥ ind(A) produces the results corresponding

to the Drazin inverse. Finally, the choice G = Ak
(
A2k+1

)T
Ak, k = ind(A) leads to the RNN

defined in [85].

The number of floating point operations in the case m ≥ n can be reduced by applying the
first matrix equation in (2.2.4) in defining the dynamic equation. The first equation in (2.2.4)
can be rewritten as

GAVG(t)−G = 0, (2.2.5)

61

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

where VG(t) ∈ Rn×m denotes the unknown matrix to be solved and which corresponds to the
outer inverse with prescribed range and null space X := A

(2)
R(G),N (G). Our intention is to solve

(2.2.5) for the unknown matrix VG using dynamic-system approach. Therefore, we define a
scalar-valued norm based error function

E(t) = ‖GAVG(t)−G‖2
F

2 .

The minimal valueE(t) = 0 of the residual-error functionE(t) is achieved in a minimum point
VG = VG(t) if and only if VG(t) is the exact solution of (2.2.5). Therefore, a computational
scheme for computing the minimum point VG could be defined along the gradient descent
direction of E(t). The derivative of E(t) with respect to VG ∈ Rn×m could be derived by
applying the principles of the matrix calculus described in [25, Chapter 5]:

∂E(t)
∂VG

= (GA)T (GAVG(t)−G) . (2.2.6)

Therefore, the GNN model for computing outer inverses A(2)
R(G),N (G) possesses the form

dVG(t)
dt = V̇G(t) = −γ (GA)T (GAVG(t)−G) , VG(0) = V0, m ≥ n, (2.2.7)

The GNN design (2.2.7) will be termed as GNNATS2 model.

Clearly, the term (GA)T in the right-hand side of (2.2.6) is constant matrix. Therefore,
following the same reason as in [84], it can be omitted without loss of generality. In this way,
the dynamic equation of the initiated recurrent neural network can be given in the form

dVG(t)
dt = V̇G(t) = −γ (GAVG(t)−G) , VG(0) = V0, m ≥ n, (2.2.8)

where VG(t) is a matrix of activation state variables and γ is a positive scaling constant. The
GNN design (2.2.8) was originated in [138] and will be termed as GNNGA model.

The equilibrium state VG = VG(t) of the dynamic system (2.2.8), satisfying

dVG
dt = 0 (2.2.9)

is also the minimum of the residual-norm function E(t). Namely, (2.2.9) implies

−γ
(
GAVG −G

)
= 0, (2.2.10)

which means that VG satisfies (2.2.5).

Remark 2.2.2. The second matrix equation in (2.2.4) is more efficient for the dual case,m < n.

62

2.2. GNN models for computing outer inverse

In accordance to that, it is completely justified to define following dynamic system, whose

equilibrium state VG satisfies the second equation in (2.2.4):

dVG(t)
dt = −γ (VG(t)AG−G) , VG(0) = V0, m < n. (2.2.11)

The GNN design (2.2.11) will be termed as GNNAG model.
The recurrent neural network defined above is a linear dynamic system in matrix form.

According to the linear systems theory [35], the closed-form solution of the state matrix was
given in [138]:

VG(t)=

exp(−γGAt)VG(0) + γ exp(−γGAt)
∫ t

0exp(γGAτ)G dτ, m ≥ n,

VG(0) exp(−γAGt) + γG exp(−γAGt)
∫ t

0exp(γAGτ) dτ, m < n.
(2.2.12)

To analyze the convergence and stability of a neural network, it is of major interest to
know the eigenvalues of the matrix GA (or AG for the dual case). Using the principles from
[84], it can be easily shown that the term limt→∞ exp(−γGAt) vanishes if the matrix GA has
nonnegative eigenvalues. That fact and equation (2.2.12) imply the following representation
for limt→∞ VG(t) = VG:

VG =


lim
t→∞

γ exp(−γGAt)
∫ t

0exp(γGAτ)G dτ, m ≥ n,

lim
t→∞

γG exp(−γAGt)
∫ t

0exp(γAGτ) dτ, m < n,
(2.2.13)

It can be verified, based on the definition and properties of matrix exponential, that the
closed-form solution of VG in (2.2.13) satisfies (2.2.1) and it is independent of γ. This means
that (2.2.13) and (2.2.2) produce the same result, equal to A

(2)
T,S . The proof is presented in

Theorem 2.2.1 from [138].

Theorem 2.2.1. [138] LetA ∈ Rm×n be given matrix,G ∈ Rn×m
s be arbitrary matrix satisfying

0 < s ≤ r, and σ(GA) = {λ1, λ2, . . . , λn} be the spectrum of GA. Suppose that the condition

Re(λj) ≥ 0, j = 1, 2, . . . , n (2.2.14)

is satisfied. Then the limiting expression (2.2.13) produces the outer inverse A(2)
R(G),N (G), i.e.,

VG = A
(2)
R(G),N (G). (2.2.15)

63

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

Proof. Applying several elementary transformations and basic properties (2.2.4) of the outer
inverse A(2)

R(G),N (G), we conclude

VG = lim
t→∞

γ exp(−γGAt)
∫ t

0
exp(γGAτ)G dτ

=
[

lim
t→∞

exp(−γGAt)
∫ t

0
exp(γGAτ)(γGA) dτ

]
A

(2)
R(G),N (G)

=
[

lim
t→∞

exp(−γGAt)
∫ t

0
d (exp(γGA τ)

]
A

(2)
R(G),N (G)

=
[

lim
t→∞

exp(−γGAt) exp(γGAτ)
∣∣∣∣τ=t

τ=0

]
A

(2)
R(G),N (G)

=
{

lim
t→∞

exp(−γGAt) [exp(γGAt)− I)]
}
A

(2)
R(G),N (G)

=
[
I − lim

t→∞
exp(−γGAt)

]
A

(2)
R(G),N (G).

Using the principles from [84] one can verify that the term limt→∞ exp(−γGAt) vanishes.
Therefore, (2.2.15) is verified.

Remark 2.2.3. Analogous statement can be verified when the outer inverseA(2)
R(G),N (G) is gene-

rated using dual equation XAG = G in (2.2.4). This situation is more appropriate in the case

m < n, due to the reduced complexity required for matrix multiplications.

In light of the above discussion, the dynamic state equation of the RNN for computing outer
inverse can be described as follows:

dVG(t)
dt = −γ (GAVG(t)−G) , V (0) = 0, if m ≥ n,

dVG(t)
dt = −γ (VG(t)AG−G) , V (0) = 0, if m < n

(2.2.16)

Now we investigate stability of the equilibrium state VG. The main result shows that the
equilibrium state is stable.

Theorem 2.2.2. [138] LetA ∈ Rm×n be given matrix,G ∈ Rn×m
s be arbitrary matrix satisfying

0 < s ≤ r and σ(GA) = {λ1, λ2, . . . , λn} be the spectrum of GA. Suppose that (2.2.14) holds.

Then the gradient-based neural network (2.2.16) is stable in the sense of Lyapunov.

Proof. It is only worth to mention that the Lyapunov candidate function is defined by

E(t) = ‖GAX −G‖
2
F

2 =
Tr
(
(GAX −G)T (GAX −G)

)
2 . (2.2.17)

Then the rest of the proof is analogous to the proof of Theorem 2 from [84].

64

2.2. GNN models for computing outer inverse

According to the Theorem 2.2.1, the matrixGmust be chosen such that the matricesGA (in
the casem ≥ n) orAG (in the casem < n), have nonnegative real parts of all their eigenvalues,
i.e.

σ(GA) ⊂ {z : Re(z) ≥ 0}, m ≥ n, (2.2.18)

σ(AG) ⊂ {z : Re(z) ≥ 0}, m < n. (2.2.19)

The positive real scaling constant γ should be chosen as large as possible in order to speedup
the process of computation. Since γ multiplies the time parameter t, it is clear that vanishing
of the term limt→∞ exp(−γGAt) from (2.2.12) is faster with for larger γ.

The neural network used in our implementation is composed from a number of independent
sub-networks, in the similar way as it has already been discussed in [94, 96]. Specifically, the
number of sub-networks is m if m ≥ n or it is equal to n if m < n. The connection weight
matrix W of the neurons is identical in each sub-network and defined as

W =

 −γGA, m ≥ n

−γAG, m < n.

Note that the size of the connection weight matrix is min{m,n}×min{m,n}which usually
has fewer connections than being defined otherwise. The threshold (input) matrix of the neuron
array is −γG. Figures 2.8 and 2.9 present the architecture of the recurrent neural network for
computing outer inverses in both cases.

Consider the case m ≥ n. Let us denote by vj(t) (resp. gj) the jth column vector of VG(t)
(resp. G), for j = 1, 2, . . . ,m. The dynamics of the jth sub-network can be expressed in the
general form which is first time presented in [94]:

dvj(t)
dt = −γ (GAvj(t)− gj) . (2.2.20)

Each sub-network exploits the same connection weight matrix W = −γGA and

γgj = {γg1j, γg2j, . . . , γgnj}

is the biasing threshold vector for the jth sub-network.
Elements vij of unknown matrix VG(t) are computed using

v̇ij = dvij
dt

=
n∑
k=1

wikvkj + γgji, i = 1, 2, . . . , n; j = 1, 2, . . . ,m, (2.2.21)

65

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

where wij are elements of W . It is important to mention that the column vector

vj = {v1j, v2j, . . . , vnj}

is output in the jth sub-network.

Because the connection weight matrix of the neurons in each sub-network is identical, the
proposed recurrent neural network can also be realized by a single sub-network with time-
sharing threshold vectors. In each time slot, sub-network biased by the corresponding threshold
vector generates one column vector of the outer inverse. Each neuron can be implemented by
cascading a summer, an integrator, and an inverter, in the same way as was done in [94].

Analogous equations can be derived in the case m < n.

Figure 2.8: Architecture of the RNN for computing outer inverse in case m ≥ n

2.2.3 Particular cases of GNNGA and GNNAG model

According to (1.2.15), the following particular choices of the matrix G could be pointed
out.

2.a) In the particular case G = AT of of GNNGA model we immediately derive known
results concerning the usual inverse [94] when A is nonsingular, as well as the Moore–Penrose
inverse when matrix A is rectangular or rank-deficient [96].

2.b) The choice G = A] = N−1A∗M produces the results corresponding to the weighted
Moore-Penrose inverse A†M,N [108].
The following particular choices of the matrix G in GNNGA could be pointed out according to

66

2.2. GNN models for computing outer inverse

Figure 2.9: Architecture of the RNN for computing outer inverse in case m < n

(1.2.16).
3.a) In the caseG = Am,m ≥ ind(A) we get corresponding RNN approach in computation

of the Drazin inverse. But, in this case we have additional possibilities to generate the Drazin
inverse using appropriate choice of the exponent m. Two different approaches in resolving this
problem are described in [85, 84].

3.b) For a square matrixA of index ind(A) = 1, the limiting expression (4.3.9) produces the
group inverse A# of A in the case when G is equal to a square matrix A of index ind(A) = 1.

3.c) The choice rank(G) = r = rank(A) implies VG ∈ A{1, 2}.
According to Proposition 1.2.11, it is possible to use defined RNN approach to compute

the outer inverse A(2)
T,S and subsequently the vector x = A

(2)
T,Sb, which is a solution of the linear

system Ax = b under certain conditions presented in Proposition 1.2.11.

2.2.4 Illustrative examples for GNNGA model

Example 2.2.1. Consider the matrix A equal to

A =



1 2 3 4 1
1 3 4 6 2
2 3 4 5 3
3 4 5 6 4
4 5 6 7 6
6 6 7 7 8


, (2.2.22)

67

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

choose the following matrices P ∈ R5×2 and Q ∈ R2×6

P =



0 0
2 1
3 2
5 3
1 0


, Q =

 0 1 0 1 0 1
1 0 1 0 1 0

 (2.2.23)

and compute G = PQ. The spectrum of GA is

σ(GA) = {266.346716180717, 0.653283819282910, 0, 0, 0} .

The following approximation of A(2)
R(P),N (Q) can be obtained using G=PQ and γ= 108 in the

RNN (2.2.16):

X =



0 0. 0 0 0 0
−0.1207 0.1092 −0.1207 0.1092 −0.1207 0.1092

0.3448 0.2644 0.3448 −0.2644 0.3448 −0.2644
0.2241 −0.1552 0.2241 −0.1552 0.2241 −0.1552
−0.5862 0.4828 −0.5862 0.4828 −0.5862 0.4828


.

Corresponding exact {2}-inverse of A corresponding to G is defined by P (QAP)−1Q (see
[12]) and it is equal to

A
(2)
R(P),N (Q) = 1

174



0 0 0 0 0 0
−21 19 −21 19 −21 19

60 −46 60 −46 60 −46
39 −27 39 −27 39 −27

−102 84 −102 84 −102 84


.

Convergence behavior of the network in time 10−7 seconds is graphically illustrated in

Figure 2.10.

68

2.2. GNN models for computing outer inverse

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−7

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (second)

S
ta

te
 v

ar
ia

bl
e

Figure 2.10: Convergence behavior of the RNN in 10−7 seconds for Example 2.2.1

Example 2.2.2. The goal of this example is to compute the Drazin inverse of the matrix

A =



2 0.4 0 0 0 0 0 0 0 0 0 0
−2 0.4 0 0 0 0 0 0 0 0 0 0
−1 −1 1 −1 0 0 0 0 −1 0 0 0
−1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 −1 −1 0 0 −1 0
0 0 0 0 1 1 −1 −1 0 0 0 0
0 0 0 −1 −2 0.4 0 0 0 0 0 0
0 0 0 0 2 0.4 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 1 −1 −1 −1
0 0 0 0 0 0 0 0 −1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0.4 −2
0 0 0 0 0 0 0 0 0 0 0.4 2


satisfying ind(A) = 3. Therefore, our first attempt is to use G = A3. Since the eigenvalues of

GA are equal to

σ(GA) = σ(A4) = {16.0000 + 0.0000i, 16.0000 + 0.0000i, 4.3866, 0.7168 + 2.4576i,

0.7168− 2.4576i, 0.0934 + 0.0000i, 0, 0, 0, 0, 0.7168 + 2.4576i,

0.7168− 2.4576i},

whose real parts are greater than zero, the choice G = A3 is appropriate. Using γ = 1010,
we get the following approximation of the Drazin inverse with the precision 10−9 after 10−7

69

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

seconds:

Ad=

0.25 −0.25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
1.25 1.25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
−1.6640 −0.9922 0.25 −0.25 0. 0. 0. 0. −0.0625 −0.0625 0. 0.1563
−1.1953 −0.6797 −0.25 0.25 0. 0. 0. 0. −0.0625 0.1875 0.6875 1.3437
−2.7637 −1.0449 −1.875 −1.25 −1.25 1.25 1.25 1.25 1.4844 2.5781 3.3203 6.6406
−2.7637 −1.0449 −1.875 −1.25 −1.25 1.25 1.25 1.25 1.4844 2.5781 4.5703 8.5156
14.1094 6.3008 6.625 3.375 5. −3. −5. −5.−4.1875 −8.5 −10.5078−22.4609
−19.3242 −8.5078 −9.75 −5.25 −7.5 4.5 7.5 7.5 6.375 12.5625 15.9766 33.7891
−0.625 −0.3125 0. 0. 0. 0. 0. 0. 0.25 −0.25 −0.875 −1.625
−1.25 −0.9375 0. 0. 0. 0. 0. 0. −0.25 0.25 −0.875 −1.625

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.25 1.25
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. −0.25 0.25



.

Convergence behavior of the network in time 10−7 seconds is graphically illustrated in Figure

2.11.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−7

−30

−20

−10

0

10

20

30

40

Time (second)

S
ta

te
 v

ar
ia

bl
e

Figure 2.11: Convergence behavior of the RNN in 10−7 seconds for Example 2.2.2

Example 2.2.3. Consider the Hessenberg matrix of the order 6:

A =



−1 1 0 0 0 0
1 −1 1 0 0 0
−1 1 −1 1 0 0
1 −1 1 −1 1 0
−1 1 −1 1 −1 1
1 −1 1 −1 1 −1


.

70

2.2. GNN models for computing outer inverse

The index of A is equal to ind(A) = 3, so that the exact Drazin inverse of A is equal to

Ad = A3
(
A2∗3+1

)†
A3 =



−7
8

7
8

7
16 −7

4
29
32

67
32

−1
8

1
8

5
16 −3

4
11
32

29
32

1
2 −1

2 −
1
2

3
2 −3

4 −
7
4

−1
4

1
4

1
8 −1

2
5
16

7
16

0 0 1
4 −1

2
1
8

7
8

0 0 −1
4

1
2 −1

8 −
7
8


.

Eigenvalues of the matrix GA = A4 form the set {135.88225, 16.0, 0.1177, 0., 0., 0.}. Using
G = A3, and γ = 108, RNN produces the following approximation of the Drazin Inverse:

VG = AD =



−0.8750 0.8750 0.4375 −1.7500 0.9062 2.0937
−0.1250 0.1250 0.3125 −0.7500 0.3437 0.9062
0.5000 −0.5000 −0.5000 1.5000 −0.7500 −1.7500
−0.2500 0.2500 0.1250 −0.5000 0.3125 0.4375

0. 0. 0.2500 −0.5000 0.1250 0.8750
0. 0. −0.2500 0.5000 −0.1250 −0.8750


.

Convergence behavior of the network in 10−7 seconds is illustrated in Figure 2.12.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−7

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time (second)

S
ta

te
 v

ar
ia

bl
e

Figure 2.12: Convergence behavior of the RNN in 10−7 seconds for Example 2.2.3

71

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

2.3 GNN for computing the W -weighted Drazin inverse

This section is written on the basis of the results from the recent paper [102].

2.3.1 About W -weighted Drazin inverse

A rectangular matrix X is called a W -weighted Drazin inverse of A ∈ Cm×n if it satisfies
three matrix equations

(AW)k+1XW = (AW)k, XWAWX = X, AWX = XWA, (2.3.1)

where W ∈ Cn×m (see [18]). Usually, the notation X = Ad,w has been used to denote the
W -weighted Drazin inverse of A.

In particular, when A is square and W = I , the W -weighted Drazin inverse becomes the
Drazin inverse X = AD of A. Further, in the case k = 1 the Drazin inverse reduces to the
group inverse A#. The W -weighted Drazin inverse possesses the following representations
(see [18, 113, 114])

Ad,w = A[(WA)D]2 = [(AW)D]2A,

and the following properties

R(Ad,w) = R[(AW)k], N (Ad,w) = N [(WA)k].

The following several lemmas are needed in what follows to analyze the convergence and
stability of proposed neural networks.

Lemma 2.3.1. ([1]) Let M and N be two positive semi-definite matrices. Then the following

statements on the trace hold:

(a) Tr(MN) ≥ 0.
(b) Tr(M) = 0⇐⇒M = 0.

Lemma 2.3.2. ([84]) Let M and N be two real square matrices of the order n. If the matrix N

is symmetric, then the following relation is valid:

Tr(MN) = Tr[H(M)N], (2.3.2)

where H(M) = 1
2(M +MT).

The following result from [68] will be useful in the rest of the section.

Lemma 2.3.3. ([68]) If A is W-Drazin invertible, then the W -Drazin inverse Ad,w is a {2}-
inverse of WAW with the range R(A(WA)k) and the null space N (A(WA)k), where k =

72

2.3. GNN for computing the W -weighted Drazin inverse

max {Ind(AW),
Ind(WA)}, i.e.,

Ad,w = (WAW)(2)
R(A(WA)k),N (A(WA)k). (2.3.3)

Since A(WA)k = (AW)kA, Lemma 2.3.3 immediately implies

Ad,w = (WAW)(2)
R((AW)kA),N ((AW)kA). (2.3.4)

Let σ(A) be the spectrum of A and s(A) = Re (σ(A)) = {Re (λ) : λ ∈ σ(A)}, then
s(A) ≥ 0 denotes Re(λi) ≥ 0, i = 1, 2, . . . , n.

2.3.2 Specific case for W-weighted Drazin inverse

We consider the case when the nonzero eigenvalues of (AW)l+2 lie in the open right-half
plane, i.e., the condition s((AW)l+2) ≥ 0 holds, for some positive integer l satisfying l ≥ k =
max{ind(AW), ind(WA)}. Value of l could be determined according to rules given in Lemma
4 and Theorem 3 from [84]. Because of the assumed constraint, we use the term ‘specific case’
to denote this RNN approach.

Dynamic equation in the specific case

We restrict our investigation to real matrices, i.e., it will be assumed that A ∈ Rm×n and
W ∈ Rn×m.

Lemma 2.3.4. [102] The W -weighted Drazin inverse of A ∈ Rm×n satisfies the following

matrix equation:

(AW)l+2Ad,w = (AW)lA. (2.3.5)

Proof. Let G = (AW)lA. When the existence of A(2)
R(G),N (G) is ensured, it is possible to verify

that the matrix equations

GAA
(2)
R(G),N (G) = G, A

(2)
R(G),N (G)AG = G (2.3.6)

are satisfied. According to the result representation (2.3.4), in conjunction with (2.3.6), imme-
diately follows the identity

(AW)lA(WAW)Ad,w = (AW)lA, (2.3.7)

which is just another appearance of (2.3.5).

73

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

Let V ∈ Rm×m be the unknown matrix corresponding to Ad,w. According to (2.3.7), the
following matrix equation holds:

(AW)l+2V − (AW)lA = 0. (2.3.8)

In order to solve (2.3.8) for V (t) via dynamic-system approach, we can define a scalar-valued
norm based error function:

E(t) = ‖(AW)l+2V (t)− (AW)lA‖2
F

2 , l ≥ k.

Note that the minimal value E(t) = 0 of the residual-error function E(t) is achieved in a
minimizer V = V (t) if and only if V (t) is the exact solution of (2.3.8). A computational
scheme could be designed to evolve along a descent direction of this error function E(t), until
the minimum E(t) is reached. The typical descent direction of E(t) is defined by the negative
gradient −∂E(t)/∂V of E(t). The gradient of E with respect to V ∈ Rm×m could simply be
derived as

∂E(t)
∂V

=
(
(AW)l+2

)T (
(AW)l+2V (t)− (AW)lA

)
. (2.3.9)

Therefore, the GNN neural dynamics for computing the W -weighted Drazin inverse is defined
by

dV (t)
dt = −γ

(
(AW)l+2V (t)− (AW)lA

)
, l ≥ k, V (0) = V0 (2.3.10)

where V (t) is a matrix of activation state variables, t ∈ [0,+∞), and γ is a positive scaling
constant. The model (2.3.10) will be refereed as GNNADW.

The first term,
(
(AW)l+2

)T
, in the right-hand side of (2.3.10) is a constant factor. There-

fore, the gradient direction of E(t) is also defined by (AW)l+2V (t)− (AW)lA.

According to design formula

dV (t)
dt = −γ ∂E(t)

∂V
,

and by omitting the constant term, the dynamic equation of a gradient recurrent neural network
can be defined as

dV (t)
dt = −γ

(
(AW)l+2V (t)− (AW)lA

)
, l ≥ k, V (0) = V0. (2.3.11)

Here, V (t) is a matrix of activation state variables, t ∈ [0,+∞), and γ is a positive scaling
constant. The model (2.3.11) was proposed in [102] and will be refereed as GNNDW.

The reason for this definition could be the fact that if we find the equilibrium state V = V (t)
for dynamical system (2.3.11), then the minimum for the residual-norm function E(t) is also

74

2.3. GNN for computing the W -weighted Drazin inverse

achieved, because it satisfies
dV
dt = 0 (2.3.12)

at the equilibrium state V . Thus,

−γ
(
(AW)l+2V − (AW)lA

)
= 0, (2.3.13)

and, therefore (2.3.8) holds.

The RNN defined in this section is determined by the linear dynamical system (2.3.11) in a
matrix form. The closed-form solution of the state matrix can be derived using known results
of the linear systems theory (see [35]), and it is equal to

V (t) = exp[−γ(AW)l+2t]V (0)+

+ γ exp[−γ(AW)l+2t]
∫ t

0
exp[γ(AW)l+2τ](AW)lA dτ.

(2.3.14)

Convergence and stability analysis in the specific case of GNNDW

To analyze the convergence and stability of a neural network, the following lemmas are
needed in what follows.

Lemma 2.3.5. [102] LetA ∈ Rm×n andW ∈ Rn×m. Suppose that the condition s
(
(AW)l+2

)
≥

0 is satisfied for some l ≥ k = max{ind(AW), ind(WA)} and t ∈ [0,+∞]. Then it holds,

lim
t→∞

exp
[
−γ(AW)l+2t

]
= 0.

Proof. For each singular matrixAW ∈ Rm×m which is not nilpotent, there exists a nonsingular
matrix P such that

AW = P

 B O

O N

P−1,

where B is a nonsingular matrix and N is nilpotent. It is known that the nilpotency index of N
is equal to the index of AW .

It is easy to check that

(AW)l+2 = P

 Bl+2 O

O O

P−1,

where s(Bl+2) ≥ 0. Since

exp
[
−γ(AW)l+2t

]
= P

 exp(−γBl+2t) O

O O

P−1,

75

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

from Lemma 1 in [84], it follows that

lim
t→∞

exp
(
−γBl+2t

)
= 0,

and later
lim
t→∞

exp
[
−γ(AW)l+2t

]
= 0.

This completes the proof.

Now, (2.3.14) and Lemma 2.3.5 imply the following representation for lim
t→∞

V (t) = V :

lim
t→∞

V (t) = V = lim
t→∞

γ exp[−γ(AW)l+2t]
∫ t

0
exp[γ(AW)l+2τ](AW)lA dτ. (2.3.15)

Based on the definition and properties of the matrix exponential, it can be verified that the
closed-form solution of V in (2.3.15) represents the W -weighted Drazin inverse Ad,w, and it is
independent of the gain parameter γ.

Theorem 2.3.1. [102] Let A∈Rm×n and W∈Rn×m. Let the eigenvalues of (AW)l+2 satisfy

s((AW)l+2)≥ 0, for some l ≥ k = max{ind(AW), ind(WA)}. Then the limiting expression

(2.3.15) satisfies V = Ad,w.

Proof. The following can be derived employing several basic properties of the W -weighted
Drazin inverse:

V = lim
t→∞

γ exp
(
−γ(AW)l+2t

) ∫ t

0
exp[γ(AW)l+2τ](AW)lA dτ

=
[

lim
t→∞

exp
(
−γ(AW)l+2t

)∫ t

0
exp

(
γ(AW)l+2τ

) (
γ(AW)l+2

)
dτ
]
Ad,w

=
[

lim
t→∞

exp
(
−γ(AW)l+2t

)
exp

(
γ(AW)l+2τ

) ∣∣∣∣τ=t

τ=0

]
Ad,w

=
[
I − lim

t→∞
exp

(
−γ(AW)l+2t

)]
Ad,w.

Now, the result of Lemma 2.3.5 implies

V = Ad,w,

which was our initial intention.

If A is a square and W = I , then the W -weighted Drazin inverse Ad,w reduces to Drazin
inverse AD. The corresponding convergence result is stated in Corollary 2.3.1.

76

2.3. GNN for computing the W -weighted Drazin inverse

Corollary 2.3.1. Let A ∈ Rn×n and the nonzero eigenvalue λi of Al+1, l ≥ Ind(A), satisfy

s(Al+1)≥ 0. Then the limiting expression (2.3.15) produces the Drazin inverse AD, i.e., V =
AD.

Note that the equation (2.3.14) can be simplified by forcing the first matrix term in the right-
hand side to be zero by setting zero initial states. In light of the above discussion, the dynamical
state equation (2.3.11) of the recurrent neural network for computing the W -weighted Drazin
inverse can be stated in the form

dV (t)
dt = −γ

(
(AW)l+2V (t)− (AW)lA

)
, l ≥ Ind(AW), V (0) = 0. (2.3.16)

Now we investigate the stability of the equilibrium state V .

Theorem 2.3.2. [102] LetA ∈ Rm×n andW ∈ Rn×m with l ≥ k = max{ind(AW), ind(WA)}.
If s((AW)l+2) ≥ 0, then the gradient-based neural network (2.3.16) is stable in the sense of

Lyapunov.

Proof. We consider the following Lyapunov function candidate

E(t) = ‖(AW)l+2V − (AW)lA‖2
F

2

=
Tr
((

(AW)l+2V − (AW)lA
)T (

(AW)l+2V − (AW)lA
))

2 .

Clearly, the inequality E(t) ≥ 0 holds. Applying the matrix derivative on E(t), we derive the
following statements:

∂E(t)
∂V

= 1
2

∂Tr
((

(AW)l+2V − (AW)lA
)T (

(AW)l+2V − (AW)lA
))

∂V

= 1
2

{[
((AW)l+2)T(AW)l+2

]
+
[(

(AW)l+2
)T

(AW)l+2
]T
}
V − ((AW)l+2)T(AW)lA

= ((AW)l+2)T
(
(AW)l+2V − (AW)lA

)
.

Thus, the time derivative of E(t) is equal to

dE(t)
dt = Tr

(∂E
∂V

)T dV
dt


= Tr

((
(AW)l+2V −(AW)lA

)T
(AW)l+2

(
−γ

(
(AW)l+2V −(AW)lA

)))
= −γTr

(
(AW)l+2

(
(AW)l+2V − (AW)lA

) (
(AW)l+2V − (AW)lA

)T
)
.

77

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

It follows from the identity (5.1.5) of Lemma 2.3.2 that

dE(t)
dt = −γTr

(
H
(
(AW)l+2

) (
(AW)l+2V − (AW)lA

) (
(AW)l+2V − (AW)lA

)T
)
.

Since the eigenvalues of a square matrix are equal to the eigenvalues of its transpose, and
using the assumption that the nonzero eigenvalues λi of (AW)l+2 satisfy Re(λi) > 0, together
with the fact that H((AW)l+2) is symmetric, thus, H((AW)l+2) is positive semi-definite. The
matrices H((AW)l+2) and

(
(AW)l+2V − (AW)lA

) (
(AW)l+2V − (AW)lA

)T

are both positive semi-definite. According to Lemma 2.3.1, the trace of their product is non-
negative. Therefore

dE(t)
dt ≤ 0,

so the gradient-based neural network is stable and the proof is thus complete.

Particulary, if A ∈ Rn×n and take W = I , then the W -weighted Drazin inverse Ad,w
reduces to the Drazin inverse AD. We also obtain the stability of the equilibrium state V as
follows.

Corollary 2.3.2. Let A ∈ Rn×n. If s(Al+1) ≥ 0, for some l ≥ ind(A), then the gradient-based

neural network (2.3.16) is stable in the sense of Lyapunov.

78

Chapter 3

GNN for computing generalized inverse
without restriction on spectrum

All considered models in Chapter 2 have a drawback concerning the convergence. Namely,

the convergence of these GNNs is conditioned by the nonnegativity of real parts of eigenval-

ues of certain matrices. In this chapter, we present the dynamic equations and corresponding

recurrent neural networks for computing the generalized inverses for arbitrary real matrix, con-

vergent without any restriction on its eigenvalues. These neural networks resolve the drawback

of considered GNN models from the previous chapter, at the cost of increasing the number of

matrix operations. The structure of the neural networks introduced in this chapter is the same

as the structure discussed in Chapter 2. We discuss conditions which ensure the stability of

the defined recurrent neural networks as well as its convergence. Several illustrative examples

present the results of computer simulations.

3.1 Globally convergent GNN for computing Drazin inverse

3.1.1 Preliminaries and motivation

The stability of the gradient-based neural networks for computing the usual inverse and the
Moore-Penrose inverse [94, 96] is warranted, since the matrix M = ATA ∈ Rn×n possesses
the spectrum σ(M) = {λ1, λ2, . . . , λn} which satisfies

λj ≥ 0, j = 1, . . . , n. (3.1.1)

In the case of the weighted Moore-Penrose inverse [109] the stability is ensured since the
spectrum σ(M) = {λ1, λ2, . . . , λn} of the matrix M = A#A ∈ Rn×n also satisfies (3.1.1).

In addition, the conditions that must be imposed to the spectrum of Am ensure the stability

79

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

of the gradient-based neural network initiated in [84, Lemma 1]. In the case of the Drazin
inverse, the stability is ensured in the case when the spectrum σ(M) = {λ1, λ2, . . . , λn} of the
matrix M=AmA=Am+1∈Rn×n satisfies

Re(λj) ≥ 0, j = 1, . . . , n. (3.1.2)

One of the main results of [84] was the algorithm, proposed in Lemma 4, for estimating an
appropriate exponent m such that the power Am+1 satisfies (3.1.2). But, that algorithm may
request an unbounded in advance exponent m. Now, we present an alternative approach de-
veloped by Stanimirović, Živković and Wei in [85]. Basically, instead of the matrix Am,
where the exponent m is defined as in [84, Lemma 4], our current intention is to use the
matrix Ak

(
A2k+1

)T
Ak, k = ind(A). That matrix requires relatively great exponent A4k+1,

k = ind(A). But, this exponent is fixed and predefined in advance. Necessary details will be
explained in the next section.

3.1.2 Neural network architecture

We follow the main leading idea from [23]. Namely, the goal here is to to drop the restriction
(2.1.4) imposed on the spectrum ofAm+1. Guided by this idea, the authors of [23] introduced an
additional representation of the Drazin inverse AD, which is applicable without any restriction
on the eigenvalues of A.

Proposition 3.1.1. [23] Suppose that A ∈ Cn×n and k = ind(A). Then

AD =
∫ ∞

0
exp

(
−Ak

(
A2k+1

)T
Ak+1τ

)
Ak

(
A2k+1

)T
Ak dτ. (3.1.3)

As we have seen in the previous chapter, the general property of GNNs for computing
generalized inverses is based on a main principle which requires solving one representative
matrix equation via dynamic-system approach. Further, the dynamic-system approach is de-
fined as a scalar-valued norm based error function E(t). Then the proposed approaches try to
find the minimum for the residual-norm function E(t) using the design formula dV (t)/dt =
−γ∂E(t)/∂V . Therefore, the main idea used in [84, 96, 108] is the same as the leading prin-
ciple from [118]: convert the generalized inverse problem into a matrix norm optimization
problem.

Here we continue the described approach. The leading notions will be the integral represen-
tations of the Drazin inverse in conjunction with the dynamic-system equation which is defined
as an appropriately defined norm based error function E(t). To simplify notation, we use the

80

3.1. Globally convergent GNN for computing Drazin inverse

substitution G = Ak
(
A2k+1

)T
Ak, k = ind(A). Clearly that

GAAD = G

is satisfied. Then the following matrix equation with respect to unknown matrix V can be
considered:

GAV −G = 0. (3.1.4)

The scalar-valued norm based error function corresponding to (3.1.4) is defined as

E(t) = ‖GAV (t)−G‖2
F

2 . (3.1.5)

Note that the minimal value E(t) = 0 of E(t) is achieved if and only if V (t) is the exact
solution of (3.1.4). The gradient descent direction of E(t) is defined by −∂E(t)/∂V . The
gradient of E with respect to V ∈ Rn×n could simply be derived as (see, for example, [25,
Chapter 5])

∂E(t)
∂V

= (GA)T (GAV (t)−G) . (3.1.6)

To make the equation simpler, the authors of [85] omitted the constant factor (GA)T and the
dynamics corresponding to the integral representation (3.1.3) can be defined as

dV (t)
dt = −γG (AV (t)− I) , V (0) = V0, G = Ak

(
A2k+1

)T
Ak, k = ind(A). (3.1.7)

Here, V (t) is a matrix of activation state variables, t ∈ [0,+∞), γ is a positive scaling constant
[94, 97].

The recurrent neural network (3.1.7) is a linear dynamic system in matrix form. The closed-
form solution of the state matrix can be described as follows (see [35]):

V (t) = exp(−γGAt)V (0) + γ exp(−γGAt)
∫ t

0
exp(γGAτ)G dτ. (3.1.8)

Lemma 3.1.1 along with Proposition 3.1.2 provide necessary conditions that the first matrix
term in the right-hand side of (3.1.8) approaches the zero matrix of the same size as time
approaches infinity, regardless of the initial states; i.e., for arbitrary V (0)

lim
t→∞

exp(−γGAt)V (0) = 0. (3.1.9)

Lemma 3.1.1. Let M ∈ Rn×n be given matrix, σ(M) = {λ1, λ2, . . . , λn} be the spectrum of

81

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

M , and t ∈ [0,+∞). Suppose that the condition (3.1.2) is satisfied in the case of σ(M). Then

the following limiting expression holds:

lim
t→∞

exp(−Mt) = 0. (3.1.10)

Proof. This result is a generalization of Lemma 1 from [84] and can be proved in the same
way.

Proposition 3.1.2. The matrix GA = Ak
(
A2k+1

)T
Ak+1, k = ind(A), from (3.1.8) has a

nonnegative spectrum, i.e. σ(GA) = {λ1, λ2 . . . , λn} satisfies λj ≥ 0, j = 1, . . . , n, for

arbitrary given matrix A ∈ Rn×n.

Proof. The proof of this statement has been shown in the proof of Theorem 2.1 in [23].

Corollary 3.1.1. The limit expression (3.1.9) is valid for arbitrary matrix A ∈ Rn×n.

The result of Corollary 3.1.1 is very important, and shows that (3.1.9) holds for arbitrary
V (0) as well as for arbitrary matrix A, in both nonsingular and singular cases. Now, equations
(3.1.8) and (3.1.9) imply the following representation for lim

t→∞
V (t) = V :

V = lim
t→∞

γ exp(−γGAt)
∫ t

0
exp(γGAτ)G dτ. (3.1.11)

Next we verify, based on the definition and properties of matrix exponential, that the closed-
form solution of V in (3.1.11) satisfies (1k), (2), (5) and it is independent of the parameter γ.
This means that (3.1.11) and (2.1.4) produce the same result, AD.

Theorem 3.1.1. [85] Let A ∈ Rn×n be given matrix, and k = ind(A). Then the limiting

expression (3.1.11) produces the Drazin inverse AD, i.e.,

V = AD.

Proof. According to the basic property (1k) of the Drazin inverse, immediately follows

G = Ak
(
A2k+1

)T
Ak = Ak

(
A2k+1

)T
Ak+1AD = GAAD,

which, in conjunction with (3.1.11), implies

82

3.1. Globally convergent GNN for computing Drazin inverse

V = lim
t→∞

γ exp
(
−γAk

(
A2k+1

)T
Ak+1t

) ∫ t

0
exp

(
γAk

(
A2k+1

)T
Ak+1τ

)
Ak

(
A2k+1

)T
Ak dτ

= lim
t→∞

exp(−γGAt)
∫ t

0
exp(γGAτ) γGAAD dτ

=
[

lim
t→∞

exp(−γGAt)
∫ t

0
d(exp(γGA τ))

]
AD

=
[

lim
t→∞

exp(−γGAt) exp(γGAτ)
∣∣∣∣τ=t

τ=0

]
AD

=
{

lim
t→∞

exp(−γGAt) [exp(γGAt)− I)]
}
AD

=
[
I − lim

t→∞
exp(−γGAt)

]
AD.

An application of Corollary 3.1.1 gives limt→∞ exp(−γGAt) = 0 and V = AD.

The equation (3.1.8) can be simplified by forcing the first matrix term in the right-hand side
to be zero by setting zero initial states. For this purpose, it is useful to appoint V (0) = 0 in
the first matrix term in the right-hand of (3.1.8), which will also speed up the convergence.
Therefore the dynamic state equation of the recurrent neural network for computing the Drazin
inverse can be presented as follows:

dV
dt = −γG (AV (t)− I) , V (0) = 0, G = Ak

(
A2k+1

)T
Ak, k = ind(A). (3.1.12)

Now we are investigating the stability of the equilibrium state V . Before the main result, which
shows that the equilibrium state is stable in the sense of Lyapunov, we restate the following
Lemma 3.1.2 from [1], for the sake of completeness.

Lemma 3.1.2. Let M and N be two positive semi-definite matrices. Then

Tr(MN) ≥ 0. (3.1.13)

Theorem 3.1.2. [85] The recurrent neural network described in (3.1.12) is stable in the sense

of Lyapunov.

Proof. The Lyapunov’s method (see [63, Chapter 2.9]) is used to prove the stability. The
Lyapunov function candidate can be instinctively defined as

E(t) = ‖GAV −G‖
2
F

2 =
Tr
(
(GAV −G)T (GAV −G)

)
2 . (3.1.14)

It is clear that the inequality E(t) ≥ 0 is true.

83

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

Applying known matrix calculus (see, for example [25, Chapter 5]) on E(t), it is not diffi-
cult to verify

∂E(t)
∂V

= (GA)T(GAV −G).

Thus, the time derivative of E(t) is equal to

dE(t)
dt = Tr

(∂E
∂V

)T dV
dt


= Tr

(
(GAV −G)T GA (−γ (GAV −G))

)
= −γTr

(
GA (GAV −G) (GAV −G)T

)
.

(3.1.15)

In the rest of the proof we consider the Hermitian part of a square real matrix GA, defined by

H(GA) = 1
2
(
GA+ (GA)T

)
.

Since (GAV − G)(GAV − G)T and H(GA) are both symmetric, after some algebraic trans-
formation one can verify

dE(t)
dt = −γTr

(
H(GA) (GAV −G) (GAV −G)T

)
.

In accordance with the known fact that all eigenvalues of a square matrix are equal to the
eigenvalues of its transpose, an application of Proposition 3.1.2 implies the nonnegativity of
λj ≥ 0, for each λj ∈ σ (H(GA)). Moreover, since H(GA) is symmetric, it is positive semi-
definite. Finally, since both the matrices H(GA) and (GAV − G)(GAV − G)T are positive
semi-definite, another application of Proposition 3.1.2 immediately implies

dE(t)
dt ≤ 0.

Thus, by Lyapunov stability theory, neural network (3.1.12) is stable, therefore, the proof is
complete.

Remark 3.1.1. The positive real scaling constant γ could be set as large as possible. This will

speed up the process of computation, because it is clear that the term

lim
t→∞

exp
(
−γAk

(
A2k+1

)T
Ak+1t

)
, k = ind(A)

will vanish faster for larger γ, because γ multiplies the time parameter t. Usually, values of

γ should be as large as the hardware permits, or selected appropriately for simulative and/or

84

3.1. Globally convergent GNN for computing Drazin inverse

experimental purposes.

The configuration of a neural network is similar to what it has already been discussed in
[94, 96]. It is composed from a number of independent sub-networks where each sub-network
consists of n massively connected linear neurons in a single layer, and each layer represents
a column vector of V (t). Simple linear activation functions can be used instead of nonlinear
ones. We denote vj(t) (resp. aj) as the jth column vector of V (t) (resp. Ak

(
A2k+1

)T
Ak), for

j = 1, 2, . . . , n. The dynamics of the jth sub-network can be expressed as follows:

dvj(t)
dt = −γ

(
Ak

(
A2k+1

)T
Ak+1vj(t)− aj

)
. (3.1.16)

The dynamics defined in (3.1.16) indicates that each sub-network is essentially the same as
the recurrent neural network presented in [94]. The connection weight matrix W is identical
for each sub-network, W = −γAk

(
A2k+1

)T
Ak+1, and the biasing threshold vector for the jth

sub-network is γaj = {γa1j, . . . , γanj}. Elements of the matrix W (resp. V) are denoted by
wij (resp. vij). Figure 3.1 depicts the architecture of the proposed recurrent neural network for
computing the Drazin inverse.

Figure 3.1: Architecture of the RNN for computing the Drazin inverse

Elements of unknown matrix V (t) are computed using the relation (34) from [84]. This
essentially means that the elements of the column vj = {v1j, . . . , vnj} are generated in the jth
sub-network.

85

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

3.1.3 Illustrative examples

Several computer simulations have been done in order to check the validity and performance
of the neural network approach in the computation of the Drazin inverse. In all examples it
is assumed that AD denotes the exact Drazin inverse of A and Ad denotes its approximation
derived from RNN approach. All the tests are performed on Intel Core i3-4130 CPU machine,
with 8GB RAM.

Example 3.1.1. Consider the following singular matrix from [115]

A =



1 −1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
−1 −1 1 −1 0 0 0 0
−1 −1 −1 1 0 0 0 0
0 0 0 0 1 −1 −1 −1
0 0 0 0 −1 1 −1 −1
0 0 0 −1 0 0 1 −1
0 0 0 0 0 0 −1 1



.

Here σ(A) = {0, 0, 0, 0, 2, 2, 2, 2}. The following approximation of the Drazin inverse AD

is obtained using k = ind(A) = 4 and γ = 104 after 10−7 seconds:

Ad =



0.2500 −0.2500 0 0 0 0 0 0
−0.2500 0.2500 0 0 0 0 0 0

0 0 0.2500 −0.2500 0 0 0 0
0 0 −0.2500 0.2500 0 0 0 0
0 0 −0.0625 0.0625 0.2500 −0.2500 0 0
0 0 −0.0625 0.0625 −0.2500 0.2500 0 0

0.0625 0.0625 −0.0625 −0.0625 0 0 0.2500 −0.2500
−0.0625 −0.0625 0.1875 −0.0625 0 0 −0.2500 0.2500



.

Elementwise convergence behavior of the network in 10−7 seconds is graphically illustrated in

Figure 3.2.

86

3.1. Globally convergent GNN for computing Drazin inverse

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−7

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (seconds)

S
ta

te
 v

ar
ia

bl
e

Figure 3.2: Convergence behavior of the RNN in 10−7 seconds for Example 3.1.1.

Let us mention that the exact Drazin inverse of A is equal to

AD =



1
4 −1

4 0 0 0 0 0 0
−1

4
1
4 0 0 0 0 0 0

0 0 1
4 −1

4 0 0 0 0
0 0 −1

4
1
4 0 0 0 0

0 0 − 1
16

1
16

1
4 −1

4 0 0
0 0 − 1

16
1
16 −1

4
1
4 0 0

1
16

1
16 − 1

16 −
1
16 0 0 1

4 −1
4

− 1
16 −

1
16

3
16 − 1

16 0 0 −1
4

1
4



.

Example 3.1.2. Consider the following singular matrix

A =



3
2

1
3 0 0 0 0 0 0

−1
4 1 0 0 0 0 0 0
−1 −1 3

4 −3
4 0 0 0 0

−1 −1 −3
4

3
4 0 0 0 0

0 0 0 0 3
4 −3

4 −1 −1
0 0 −1 0 −3

4
3
4 −1 −1

0 0 0 0 0 0 1 −1
4

0 0 0 0 0 0 1
3

3
2



.

The eigenvalues of matrix A are included in the set

σ(A) = {1.5, 1.5, 1.25 + 0.1443i, 1.25− 0.1443i, 1.25− 0.1443i, 1.25 + 0.1443i}.

87

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

Using k = ind(A) = 2, and γ = 108 we get after 10−7 seconds the following approximation of

the Drazin inverse:

Ad =



0.6316 −0.2105 0 0 0 0 0 0
0.1579 0.9474 0 0 0 0 0 0
−0.6150 −0.5319 0.3333 −0.3333 0 0 0 0
−0.6150 −0.5319 −0.3333 0.3333 0 0 0 0
0.6166 0.5282 −0.1111 0.3333 0.3333 −0.3333 −0.5319 −0.6150
−0.1442 −0.1538 −0.1111 −0.1111 −0.3333 0.3333 −0.5319 −0.6150

0 0 0 0 0 0 0.9474 0.1579
0 0 0 0 0 0 −0.2105 0.6316



.

Convergence behavior of the network used in Example 3.1.2 in 10−7 seconds is illustrated in

Figure 3.3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−7

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (seconds)

S
ta

te
 v

ar
ia

bl
e

Figure 3.3: Convergence behavior of the RNN in 10−7 seconds for Example 3.1.2.

88

3.1. Globally convergent GNN for computing Drazin inverse

The exact Drazin inverse is

AD =



12
19 − 4

19 0 0 0 0 0 0
3
19

18
19 0 0 0 0 0 0

−222
361 −192

361
1
3 −1

3 0 0 0 0
−222

361 −192
361 −1

3
1
3 0 0 0 0

12688
20577

32608
61731 −1

9
1
3

1
3 −1

3 −
192
361 −

222
361

− 2968
20577 −

9496
61731 −

1
9 −

1
9 −

1
3

1
3 −192

361 −
222
361

0 0 0 0 0 0 18
19

3
19

0 0 0 0 0 0 − 4
19

12
19



.

To monitor the network convergence, it is appropriate to use the norm of the computational

error ‖V (t)−AD(t)‖. Figure 3.4 shows that the state matrices of presented neural network all

converge to the theoretical inverse AD and computational errors ‖V (t)−AD(t)‖ all converge

to zero, for three different values of γ. Also, it is observable that the convergence can be

accelerated by increasing γ = γ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−6

0

0.5

1

1.5

2

2.5

3

Time (seconds)

β = 10
8

β = 10
7

β = 10
6

Figure 3.4: Convergence of ‖V (t)−AD‖ for three different values γ = γ.

89

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

Example 3.1.3. In this example we will show that our neural network produces the regular

inverse in the case when the input matrix is regular. Consider the following randomly generated

matrix

A =



0.0046 0.8001 0.8693 0.5132 0.4173 0.9001 0.0965
0.7749 0.4314 0.5797 0.4018 0.04965 0.3692 0.1320
0.8173 0.9106 0.5499 0.0760 0.9027 0.1112 0.9421
0.8687 0.1818 0.1450 0.2399 0.9448 0.7803 0.9561
0.0844 0.2638 0.8530 0.1233 0.4909 0.3897 0.5752
0.3998 0.1455 0.6221 0.1839 0.4893 0.2417 0.05978
0.2599 0.1361 0.3510 0.2400 0.3377 0.4039 0.2348


.

The matrix A is regular, so it satisfies ind(A) = 0. The spectrum of A is equal to

σ(A) = {3.0953,−0.9778,−0.5571, 0.2904 + 0.3749i, 0.2904− 0.3749i, 0.2354,−0.1833}.
Using k = ind(A) = 0 and γ = 1011, the neural network produces the following approximation

of the Drazin inverse after 10−7 seconds:

Ad =



0.0439 1.2022 −0.4308 1.1517 0.0312 1.1600 −4.0275
1.0869 0.1738 0.5595 0.2298 −0.4034 −0.1539 −2.6975
−0.0877 0.5401 −0.4067 −0.0575 1.3195 0.8319 −1.8463
−2.3972 −1.4086 2.0950 −4.6892 −2.6342 −3.6889 19.8601
−0.0888 −1.6265 0.6749 −0.4814 −1.2210 1.1998 2.8891
1.7409 0.8704 −1.6648 2.8154 1.0611 1.1242 −8.8760
−0.9648 0.0431 0.5126 −0.6807 0.8499 −2.3282 3.8572


.

The convergence behavior of the network in 10−7 seconds is graphically illustrated in Fig-

ure 3.5.

The exact Drazin inverse of A is equal to

AD = A−1 =



0.0440 1.2022 −0.4308 1.1517 0.0312 1.1600 −4.0275
1.0869 0.1738 0.5595 0.2298 −0.4034 −0.1539 −2.6975
−0.0877 0.5401 −0.4067 −0.0575 1.3195 0.8319 −1.8463
−2.3972 −1.4086 2.0950 −4.6892 −2.6342 −3.6889 19.8601
−0.0888 −1.6265 0.6749 −0.4814 −1.2210 1.1998 2.8891
1.7409 0.8704 −1.6648 2.8154 1.0611 1.1242 −8.8760
−0.9648 0.0431 0.5126 −0.6807 0.8499 −2.3282 3.8572


.

90

3.1. Globally convergent GNN for computing Drazin inverse

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−7

−10

−5

0

5

10

15

20

Time (seconds)

S
ta

te
 v

ar
ia

bl
e

Figure 3.5: Convergence behavior of the RNN in 10−7 seconds for Example 3.1.3.

Example 3.1.4. Consider the following Hessenberg matrix of the order n = 4:

A =


−2 1 0 0
4 −2 1 0
−8 4 −2 1
16 −8 4 −2

 .

Here, the spectrum of A is equal to σ(A) = {−6,−2, 0, 0}. Again, using γ = 107, we obtain

the following approximation of the Drazin inverse, after 10−7 seconds:

AD =


−0.2778 0.1389 −0.00463 −0.03009
0.1111 −0.05555 0.01852 −0.004628
0.6667 −0.3333 −0.05556 0.1389
−1.333 0.6667 0.1111 −0.2778

 .

The exact Drazin inverse of A is equal to

Ad =


−0.2778 0.1389 −0.00463 −0.03009
0.1111 −0.05555 0.01852 −0.004628
0.6667 −0.3333 −0.05556 0.1389
−1.333 0.6667 0.1111 −0.2778

 .

The convergence behavior of the network in 10−7 seconds is graphically illustrated in Figure

3.6.

91

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−7

−1.5

−1

−0.5

0

0.5

1

Time (seconds)

S
ta

te
 v

ar
ia

bl
e

Figure 3.6: Convergence behavior of the RNN in 10−7 seconds for Example 3.1.4.

Example 3.1.5. Consider the following well known Rosser matrix:

A =



611 196 −192 407 −8 −52 −49 29
196 899 113 −192 −71 −43 −8 −44
−192 113 899 196 61 49 8 52
407 −192 196 611 8 44 59 −23
−8 −71 61 8 411 −599 208 208
−52 −43 49 44 −599 411 208 208
−49 −8 8 59 208 208 99 −911
29 −44 52 −23 208 208 −911 99



.

The matrix is 8 × 8 with integer elements. It has a double eigenvalue, three nearly equal

eigenvalues, dominant eigenvalues of the opposite sign,a zero eigenvalue and a small nonzero

eigenvalue:

σ(A) =



−1.020049018429998e+ 03
0.000000000000001e+ 03
0.000098048640722e+ 03
1.000000000000000e+ 03
1.000000000000000e+ 03
1.019901951359279e+ 03
1.020000000000000e+ 03
1.020049018429996e+ 03



.

92

3.1. Globally convergent GNN for computing Drazin inverse

The exact Drazin inverse of A is equal to

AD =



4.0406 −2.0198 2.0198 −4.0396 −0.2000 0.2000 0.4000 −0.4000
−2.0198 1.0109 −1.0099 2.0198 0.0999 −0.1001 −0.2000 0.2000
2.0198 −1.0099 1.0109 −2.0198 −0.0999 0.1001 0.2000 −0.2000
−4.0396 2.0198 −2.0198 4.0406 0.2000 −0.2000 −0.4000 0.4000
−0.2000 0.0999 −0.0999 0.2000 0.0103 −0.0105 −0.0196 0.0200
0.2000 −0.1001 0.1001 −0.2000 −0.0105 0.0103 0.0200 −0.0196
0.4000 −0.2000 0.2000 −0.4000 −0.0196 0.0200 0.0397 −0.0405
−0.4000 0.2000 −0.2000 0.4000 0.0200 −0.0196 −0.0405 0.0397



.

Neural network produces the following approximation of the Drazin inverse:

Ad =



4.0406 −2.0198 2.0198 −4.0396 −0.2000 0.1999 0.4000 −0.4000
−2.0198 1.0109 −1.0099 2.0198 0.1000 −0.1001 −0.2000 0.2000
2.0198 −1.0099 1.0109 −2.0198 −0.1000 0.1001 0.2000 −0.2000
−4.0396 2.0198 −2.0198 4.0406 0.2000 −0.2000 −0.4000 0.4000
−0.2000 0.0999 −0.0999 0.2000 0.0104 −0.0105 −0.0196 0.0200
0.2000 −0.1001 0.1000 −0.2000 −0.0104 0.0103 0.0200 −0.0196
0.4000 −0.2000 0.2000 −0.4000 −0.0196 0.0200 0.0397 −0.0405
−0.4000 0.2000 −0.2000 0.4000 0.0201 −0.0196 −0.0405 0.0397



.

Example 3.1.6. In this example we want to show the application of the method in finding

the solution of the singular linear system Ax = b, where b ∈ R(Ak), k = ind(A). In the

monograph [7], it is shown that the Drazin inverse solution ADb solves the singular linear

system Ax = b if and only if b ∈ R(Ak). In addition, ADb is the unique solution of Ax = b

provided that x ∈ R(Ak) [7]. By xd and xD we denote the approximation of the Drazin-inverse

solution and the exact theoretical solution, respectively.

Consider

A =



1 −1 0 0 0 0
−1 1 0 0 0 0
−1 −1 1 −1 0 0
−1 −1 −1 1 0 0
−1 −1 −1 0 2 −1
−1 −1 0 −1 −1 2


, b =



−14
14
−22
22
81
−28


.

After setting γ = 108, k = ind(A) = 2, the neural network produces the following Drazin-

93

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

inverse solution in 10−7 seconds:

xd = Adb =



−7.0000
7.0000
−10.9993
10.9993
40.9974
12.0026


.

Theoretical solution is

xD = ADb =



−7.0000
7.0000
−11.0000
11.0000
41.0000
12.0000


.

The estimation error given in terms of the norm ‖ · ‖, and computed in Matlab with built-in

function norm() is ‖ADb− xd‖ = 0.0038.

Example 3.1.7. Consider the homogeneous differential equation from [8]:

Ax′ +Bx = 0,

where it is assumed

A =


1 0 −2
−1 0 2
2 3 2

 , B =


0 1 2
−27 −22 −17
18 14 10

 .

Following calculations described in [8] and introducing Â and B̂, where

Â = 1
3


−3 −5 −4
6 5 −2
−3 2 10

 , B̂ = 1
3


6 5 4
−6 −2 2
3 −2 7

 ,

one can get the solution of the homogeneous differential equation in the form

x(t) = exp
(
−ÂDB̂t

)
x(0),

where x(0) is the initial vector of the differential equation.

For γ = 106, k = ind(A) = 0, our neural network produces the following approximation

94

3.1. Globally convergent GNN for computing Drazin inverse

of the Drazin inverse of the matrix Â:

Âd =


−0.1068 0.1885 −0.0717
−0.1513 0.1663 0.0394
−0.0889 −0.0444 0.2222

 ,

so, the final result can be obtained:

x(t) = exp
(
−ÂdB̂t

)
x(0) = exp




0.6624 0.2559 0.1840
0.5957 0.3892 −0.0012
−0.1333 0.2667 −0.3704

 t
x(0).

Example 3.1.8. The group inverse plays an important role in the theory of finite Markov chains

[7, 56]. Let T be the one-step transition matrix of a finite homogeneous Markov chain reused

from [84, Example 9]:

T = 1
4


0 2 2 0
2 0 2 0
2 1 0 1
1 1 1 1

 .

To characterize the Markov chain [56] it is of importance to compute the group inverse of

A = I − T = 1
4


4 −2 −2 0
−2 4 −2 0
−2 −1 4 −1
−1 −1 −1 3

 ,

wherein I denotes the identity matrix. The exact group inverse of A is given in [56]:

A# = 2
1083


265 −61 −96 −108
−96 300 −96 −108
−115 −137 246 6
−210 −156 −210 576

 .

Setting γ = 1010, we obtain the resulting approximation of the group inverse after 10−7 sec-

onds.

Ag =


0.4893 −0.1127 −0.1773 −0.1994
−0.1773 0.5540 −0.1773 −0.1994
−0.2123 −0.2530 0.4543 0.0111
−0.3878 −0.2881 −0.3878 1.0637



95

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

Example 3.1.9. In order to compare the performance of the architecture proposed in the cur-

rent section with the one presented in previous chapter [84], we firstly reuse the matrix A from

Example 3.1.1. The output of the neural network from [84] is denoted by Ad[84]; by Ad we de-

note the output of the neural network produced in this paper, while AD denotes the theoretical

Drazin inverse. Finally, the matrix norm ‖ · ‖ is computed by the Matlab function norm().

Both the neural networks give the solution after approximately 10−7 seconds. The comparison

in Table 3.1 is given in the sense of the accuracy of the solutions Ad and Ad[84], generated for

the different values of the parameter γ. It is clear that more accurate solutions Ad with respect

to Ad[84] are reached for much smaller values of γ. This observation indicates a less compu-

tational complexity of the neural network used in [84] during the convergence of the neural

network.

Table 3.1: Numerical comparison test with [84] for Example 3.1.1
γ = 103 γ = 104 γ = 105 γ = 106 γ = 107 γ = 108

‖Ad[84]−A
D‖ 0.5957 0.5886 0.5208 0.0917 8.9562×10−6 1.4079× 10−5

‖Ad−AD‖ 0.0060 1.0387× 10−5 1.9609× 10−5 3.7774×10−13 2.2236×10−5 4.7100×10−6

Similarly, let us reuse the matrix A from the Example 3.1.2, and compare the previous two

architectures in the same way. Table 3.2 shows the accuracy of the approximations Ad and

Ad[84] reached after 10−7 seconds, for several different values of γ.

Table 3.2: Numerical comparison test with [84] for Example 3.1.2
γ = 105 γ = 106 γ = 107 γ = 108 γ = 109 γ = 1010

‖Ad[84]−A
D‖ 1.7357 1.5397 0.4122 2.9217× 10−5 8.1804×10−5 2.2366×10−5

‖Ad−AD‖ 1.4463 0.9121 0.0419 3.4623×10−7 4.9231×10−7 3.8940×10−7

The data arranged in Table 3.2 lead to similar conclusions as the data arranged in Table

3.1. The network from [84] converges little bit slower, so that the corresponding architecture

requires larger γ in order to produce a more accurate solution.

3.2 Globally convergent GNN for computing outer inverse

3.2.1 Preliminaries and motivation

We follow the same principles we applied to the Drazin inverse computation in the manner
presented in the previous section [85]. We expand the main idea to the set of outer inverses with
prescribed range and null space. Guided by this idea, our intention is to exploit the integral
representation of outer inverses which is restated in Proposition 3.2.1. All the results presented
here are derived in [138].

96

3.2. Globally convergent GNN for computing outer inverse

Proposition 3.2.1. ([52, 112]) Suppose that A ∈ Cm×n and T and S are subspaces of Cn and

Cm, respectively. Under the assumptions R(G) = T,N (G) = S, If A has the outer inverse

A
(2)
T,S , then

A
(2)
T,S =

∫ ∞
0

exp
(
−G(GAG)TGAτ

)
G(GAG)TG dτ

=
∫ ∞

0
exp(−G0Aτ)G0 dτ, G0 = G(GAG)TG.

(3.2.1)

Generally speaking, we follow the main leading idea which initiated the results from [112,
135]. As it was stated in [135], most of methods for computing outer inverses start from
an appropriate matrix G which satisfies R(G) = T,N (G) = S and assume the condition
Re(GA) ⊂ (0,+∞) or Re (σ(GA)) > 0. The authors of the paper [135] established a unified
representation theorem for the generalized inverse A(2)

T,S which avoids the restriction on the
nonnegativity of the spectrum ofGA. Also, the integral representation given in (3.2.1) assumes
Re (σ(GA)) > 0. Our intention is to avoid this restriction imposed on the spectrum of GA.

This goal can be achieved by replacing the appropriate matrix G from (2.2.2) or (2.2.3) by
the matrix G0 = G(GAG)TG, used in (3.2.1). The drawback of this approach is the necessity
to perform additional matrix multiplications in order to deriveG0 fromG. But, there is no other
alternative to overcome very restrictive and ultimate conditions on the spectrum of GA or AG.

3.2.2 Neural Network Architecture

In the general case, it is possible that the set σ(GA) contains elements with negative real
parts. Then the steady-state matrix of the recurrent neural network is generally not equal to
A

(2)
R(G),N (G). In spite of this, there is the possibility that the outer inverse A(2)

R(G),N (G) exists in
this case. In order to investigate the existence of outer inverse with prescribed range and null
space we use the result derived in Proposition 3.2.2.

Proposition 3.2.2. Let A ∈ Cm×n
r be given and G ∈ Cn×m

s be arbitrary matrix satisfying

0 < s ≤ r. The condition ind(AG) = ind(GA) = 1 implies the existence of the outer inverse

AR(G),N (G).

Proof. Indeed, the assumption ind(AG) = ind(GA) = 1 implies the existence of (AG)# and
(GA)#. Further, using known result from [106], the existence of the outer inverseA(2)

R(G),N (G) =
G(AG)# = (GA)#G is ensured.

Certainly, in the case when (2.2.14) is not satisfied and ind(AG) = ind(GA) = 1 the gen-
eralized inverse A(2)

R(G),N (G) can not be generated using RNN (2.2.16), in spite of its existence.
However, A(2)

R(G),N (G) can be generated using the dynamic equation of the form


dVG(t)

dt = −γ (G0AVG(t)−G0) , V (0) = 0, if m ≥ n,

dVG(t)
dt = −γ (VG(t)AG0 −G0) , V (0) = 0, if m < n,

(3.2.2)

97

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

where G0 = G(GAG)TG.

The connection weight matrix of the neurons in RNN is identical in each sub-network and
defined by

W =

 −γG0A, m ≥ n

−γAG0, m < n.

Corollary 3.2.1. Let A ∈ Rm×n be given matrix, G ∈ Rn×m
s be arbitrary matrix satisfying

0 < s ≤ r. Then the limiting expression

VG =


lim
t→∞

γ exp(−γG0At)
∫ t

0exp(γG0Aτ)G0 dτ, m ≥ n,

lim
t→∞

γG exp(−γAG0t)
∫ t

0exp(γAG0τ) dτ, m < n
(3.2.3)

satisfies

VG = A
(2)
R(G),N (G). (3.2.4)

Proof. Since Re(σ(G0A))≥0 is satisfied (see [52, 112]), an application of Theorem 2.2.1 gives
VG=A(2)

R(G0),N (G0). The proof can be completed using R(G0)=R(G) and N (G0)=N (G) (see
[135]).

3.2.3 Illustrative Examples

Example 3.2.1. Consider the initial matrix A equal to

A =



1 −1 0 0 0 0
−1 1 0 0 0 0
−1 −1 1 −1 0 0
−1 −1 −1 1 0 0
−1 −1 −1 0 2 −1
−1 −1 0 −1 −1 2


.

In the case G = −AT the RNN (2.2.16) does not provide a solution, since the matrix GA is

negative semidefinite. Its eigenvalues are included in the set

σ(GA) = {−10.6056,−9.1231,−4.0000,−3.3944,−0.8769, 0.0000}.

The divergence of the neural network RNN (2.2.16) is illustrated in Figure 3.7.

Since ind(GA) = 1, according to Proposition 3.2.2, A(2)
R(G),N (G) exists. But, in spite of its

existence, A(2)
R(G),N (G) cannot be computed using RNN (2.2.16). A possible solution is usage of

the matrix G= (−AT)
(
(−AT)A(−AT)

)T
(−AT) =AT

(
ATAAT

)T
AT instead of the matrix

G = −AT. Such a choice initiates that the spectrum ofGA contains elements with nonnegative

98

3.2. Globally convergent GNN for computing outer inverse

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−7

−6000

−4000

−2000

0

2000

4000

6000

Time (second)

S
ta

te
 v

ar
ia

bl
e

Figure 3.7: Divergence of the RNN in 10−7 seconds for Example 3.2.1

real parts:

σ(GA) = 103 {1.1929, 0.7593, 0.0640, 0.0391, 0.0007, 0.0000} .

Using γ = 1000000000 and G = AT
(
ATAAT

)T
AT the RNN (3.2.2) approach produces the

approximation of the Moore-Penrose inverse of A:

A† =



0.2500 −0.2500 −0.2500 −0.2500 0.0000 0.0000
−0.2500 0.2500 −0.2500 −0.2500 0.0000 0.0000

0 0 0.5000 0.0000 −0.2500 −0.2500
0 0 0.0000 0.5000 −0.2500 −0.2500
0 0 −0.1667 −0.3333 0.4167 0.0833
0 0 −0.3333 −0.1667 0.0833 0.4167


.

Example 3.2.2. Consider following randomly generated matrix of rank 2:

A =



−0.3891 −0.5719 −1.0486 0.0906
0.0507 0.0440 −0.7345 −0.5092
−0.2421 −0.3543 −0.6068 0.0825
−0.6085 −0.8380 −0.0271 1.0628
0.3589 0.4896 −0.1159 −0.7021


.

The matrix G is generated using the full rank factorization G = PQ, where P and Q are

99

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

randomly generated matrices of rank 2:

P =


0.6948 0.4387
0.3171 0.3816
0.9502 0.7655
0.0344 0.7952

, Q=

 0.1869 0.4456 0.7094 0.2760 0.6551
0.4898 0.6463 0.7547 0.6797 0.1626

 .

The RNN (2.2.16) does not converge to the outer inverse, because there is one negative eigen-

value in the spectrum σ(GA):

σ(GA) = {−2.9910, 0.2889, 0.0, 0.0} .

Again, ind(GA) = 1 confirms the existence of the outer inverse A(2)
R(G),N (G) initiated by the

matrix G.

But, if we take G0 = G (GAG)T G and γ = 1011 the RNN (3.2.2) approach produces the
following outer inverse of A:

X=


−0.162712466533 −0.193869486921 −0.206592043421 −0.224055760876 0.008074234858
−0.038944020388 −0.133747729506 −0.234434903367 −0.060929232708 −0.258398656300
−0.190291830114 −0.306447329758 −0.410440140316 −0.268697936905 −0.228150378169
0.142546400482 −0.202636669798 −0.607873904204 0.165143602730 −1.117224217594

.

The exact outer inverse corresponding to G = PQ is equal to

A
(2)
R(G),N (G) = P (QAP)−1Q

=


−0.162712645811 −0.193869773308 −0.206592425100 −0.224056013867 0.008074026949
−0.038944133693 −0.133747910475 −0.234435144552 −0.060929392570 −0.258398787674
−0.190292104036 −0.306447767247 −0.410440723476 −0.268698323377 −0.228150695786
0.142546257394 −0.202636898362 −0.607874208808 0.165143400823 −1.117224383521

.

Example 3.2.3. Consider following randomly generated matrix of rank 4:

A=



1.2510 −1.4505 1.6163 −0.3286 −0.7332 −0.2914
−1.2983 −0.1638 −1.3136 −0.2843 −0.2447 1.3777
−1.7206 0.1765 −1.5799 0.3005 0.7192 0.5433
0.7153 −0.1860 0.9885 0.7135 −0.4896 −0.2466
−0.7785 −1.1098 −0.1949 0.3593 −0.0978 0.5137
−0.9282 −0.8967 −0.2734 0.6571 0.5276 −0.1082
0.2117 −0.1662 0.3192 0.0994 0.1811 −0.4174


.

100

3.2. Globally convergent GNN for computing outer inverse

Now, randomly generated matrices P and Q of rank 4 are used:

P =



0.3102 0.1705 0.7818 0.6814
−0.6748 −0.5524 0.9186 −0.4914
−0.7620 0.5025 0.0944 0.6286
−0.0033 −0.4898 −0.7228 −0.5130
0.9195 0.0119 −0.7014 0.8585
−0.3192 0.3982 −0.4850 −0.3000


,

Q=


−0.6068 −0.2967 0.8344 −0.2391 0.0616 0.1376 −0.6756
−0.4978 0.6617 −0.4283 0.1356 0.5583 −0.0612 0.5886
0.2321 0.1705 0.5144 −0.8483 0.8680 −0.9762 −0.3776
−0.0534 0.0994 0.5075 −0.8921 −0.7402 −0.3258 0.0571

 .

For the choice of G = PQ, the RNN (2.2.16) does not converge to the outer inverse, because

there are three eigenvalues in the spectrum σ(GA) with negative real parts:

σ(GA) = {−0.6491− 1.2262i,−0.6491 + 1.2262i,−1.1737, 1.1509, 0.0, 0.0} .

On the other hand, usage of the matrix G0 =G (GAG)T G and the scaling parameter γ=1011

in the RNN (3.2.2) approach produces the following approximation of A(2)
R(P),N (Q):

X=



0.7418226 −0.8130738 0.9380724 −0.6689539 −0.179301 −0.473387 −1.080997
−1.200862 1.709335 −1.782507 0.6594245 −0.8578323 0.7906579 2.5548255
−0.5638703 0.7777778 −1.2338862 0.9416353 0.0575493 0.6281124 1.2348809
−0.5744556 0.3232869 −0.4726930 0.5609873 −0.0340408 0.5260483 0.5112868
1.1415376 −2.1082814 1.9963191 −0.4710172 0.3702859 −0.3844626 −2.8415981
−0.2089968 0.4880962 −0.4971972 0.2283032 0.4464316 −0.0373900 0.5130587


.

The exact outer inverse corresponding to G = PQ is equal to

A
(2)
R(P),N (Q) = P (QAP)−1Q

=



0.7418274 −0.8130737 0.9380642 −0.6689465 −0.1792986 −0.4733854 −1.0809940
−1.2008608 1.7093355 −1.7825098 0.6594270 −0.8578313 0.7906585 2.5548266
−0.5638670 0.7777779 −1.2338919 0.9416405 0.0575511 0.6281137 1.2348833
−0.5744604 0.3232867 −0.4726849 0.5609799 −0.0340436 0.5260464 0.5112835
1.1415368 −2.1082815 1.9963204 −0.4710184 0.3702855 −0.3844629 −2.8415986
−0.2089987 0.4880962 −0.4971941 0.2283003 0.4464306 −0.0373907 0.5130574


.

Remark 3.2.1. Usage of the matrix product G0 = G(GAG)TG sometimes causes numeri-

cal instability. But, despite this disadvantage, the gradient based RNN (3.2.2) and the dy-

namic state equation based on G0 offer a solution of the problem and is capable to generate

A
(2)
R(G),N (G). The solution has its own drawbacks, it is charged by an increased number of ma-

101

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

trix multiplications, but in some way overcomes the problem and generates an approximation

of A(2)
R(G),N (G).

3.3 Globally convergent GNN for computing W-weighted Drazin
inverse

In this section, we consider the case of A ∈ Rm×n and W ∈ Rn×m without the necessity to
find positive integer l such that s((AW)l+2) ≥ 0.

3.3.1 Dynamic equation with global convergence

If A is a rectangular matrix, Wei [113], Liu and Zhong [53] derived an integral representa-
tion of the W -weighted Drazin inverse Ad,w of the matrix A ∈ Cm×n, without any restriction
on the eigenvalues of the matrix (AW)l+2, l ≥ k = max{ind(AW), ind(WA)}.

Theorem 3.3.1. ([53]) Assume thatA ∈ Cm×n,W ∈ Cn×m and k = max{Ind(AW), Ind(WA)}.
Then

Ad,w =
∫ ∞

0
exp

(
−(AW)lA[(AW)2l+2A]∗(AW)l+2τ

)
(AW)lA[(AW)2l+2A]∗(AW)lAdτ,

(3.3.1)
where l ≥ k.

However, the dynamical state equation of a recurrent neural network which corresponds to
the integral representation (3.3.1), to the best of our knowledge, has not been developed. In
the following, we prove that the W -weighted Drazin inverse of a rectangular matrix can be
determined by using a recurrent neural network that presented in [85]. Our investigation is
restricted to real matrices, i.e., it is assumed that A ∈ Rm×n and W ∈ Rn×m. For the sake of
simplicity, we use the notations

G = (AW)lA, G0 = G(GWAW G)TG = (AW)lA[(AW)2l+2A]T(AW)lA.

Lemma 3.3.1. The W -weighted Drazin inverse of A ∈ Rm×n satisfies

(AW)lA[(AW)2l+2A]T(AW)l+2 Ad,w − (AW)lA[(AW)2l+2A]T(AW)lA = 0 (3.3.2)

Proof. On the basis ofR(G0) = R(G) andN (G0) = N (G), the following matrix equation
is valid

G0WAWAd,w −G0 = 0, (3.3.3)

which implies (3.3.2).

102

3.3. Globally convergent GNN for computing W-weighted Drazin inverse

According to (3.3.3), the following matrix equation with respect to unknown matrix V can
be considered:

G0WAWV −G0 = 0. (3.3.4)

The scalar-valued norm-based error function corresponding to equation (3.3.4) is defined as

E(t) = ‖G0WAWV (t)−G0‖2
F

2 , l ≥ k.

Note that the minimal value E(t) = 0 of the residual-error function E(t) is achieved in a
minimizer V = V (t) if and only if V (t) is the exact solution of (3.3.4). A computational
scheme could be designed to evolve along a descent direction of this error function E(t), until
the minimum E(t) is reached. The typical descent direction of E(t) is defined by the negative
gradient −∂E(t)/∂V of E(t). The gradient of E with respect to V ∈ Rm×m is equal to

∂E(t)
∂V

= (G0WAW)T (G0WAWV (t)−G0) . (3.3.5)

According to the design formula

dV (t)
dt = −γ ∂E(t)

∂V
,

and by omitting the constant term (G0WAW)T, it is reasonable to define the dynamical equa-
tion of a gradient recurrent neural network as follows:

dV (t)
dt = −γ (G0WAWV (t)−G0) ,

G0 = (AW)lA[(AW)2l+2A]T(AW)lA, l ≥ k, V (0) = V0.

(3.3.6)

The model (3.3.6) will be denoted by GNNDW0. On the other hand, the original GNN design
for computing W -weighted Drazin inverse can be defined as

dV (t)
dt = −γ (G0)T (G0WAWV (t)−G0) ,

G0 = (AW)lA[(AW)2l+2A]T(AW)lA, l ≥ k, V (0) = V0.

(3.3.7)

The recurrent neural network defined above is a linear dynamical system in a matrix form.
According to the linear systems theory [35], the closed-form solution of the state matrix can be
defined as

V (t) = exp (−γG0WAWt)V (0)+

+ γ exp (−γG0WAWt)
∫ t

0
exp (γG0WAWτ)G0 dτ.

(3.3.8)

103

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

3.3.2 Convergence and stability analysis of GNNDW0

To analyze the convergence and stability of a neural network, the following lemma is needed
in what follows.

Lemma 3.3.2. For arbitrary rectangular complex matrices A ∈ Rm×n and W ∈ Rn×m, the

matrix G0WAW = (AW)lA[(AW)2l+2A]T(AW)l+2, l ≥ k, possesses the eigenvalues λi
satisfying s(G0WAW) ≥ 0.

Proof. See the proof of Theorem 2.3 in [53].

Corollary 3.3.1. For any A ∈ Rm×n, W ∈ Rn×m, l ≥ k and t ∈ [0,+∞], the following holds:

lim
t→∞

exp (−γG0WAWt) = 0. (3.3.9)

The result of Corollary 3.3.1 is very important and shows that (3.3.9) holds for arbitrary
V (0) as well as for arbitrary matrices A ∈ Rm×n and W ∈ Rn×m.

Now, (3.3.8) and (3.3.9) imply the following representation for lim
t→∞

V (t) = V ,

lim
t→∞

V (t) = V = lim
t→∞

γ exp(−γG0WAWt)
∫ t

0
exp(γG0WAWτ)G0 dτ. (3.3.10)

Based on the definition and properties of the matrix exponential, it can be verified that the
closed-form solution of V in (3.3.10) represents the W -weighted Drazin inverse Ad,w, and it is
independent of γ. Corresponding statement is given in Theorem 5.5.2.

Theorem 3.3.2. Let A ∈ Rm×n and W ∈ Rn×m with l ≥ k and t ∈ [0,+∞]. Then the limiting

expression (3.3.10) produces the W -weighted Drazin inverse Ad,w, i.e., V = Ad,w.

Proof. The proof is similar as the proof of Theorem 2.3.1 and based on the usage of the matrix

G0 = (AW)lA[(AW)2l+2A]T(AW)lA

instead of the matrix G = (AW)lA.

If A is a square and W = I , then the results corresponding to the W -weighted Drazin
inverse Ad,w reduces to analogous results initiating the Drazin inverse AD. Indeed, the dynamic
equation of a gradient RNN (3.3.6) recasts to the dynamic equation

dV (t)
dt = −γ (G0AV (t)−G0) , G0 = Al+1(A2(l+1)+1)TAl+1, l ≥ k, V (0) = V0,

104

3.3. Globally convergent GNN for computing W-weighted Drazin inverse

which is of the same effect as the dynamic equation (3.5) proposed in [85]. Simply, a replace-
ment of k = Ind(A) by l + 1, l ≥ k is done, which is allowed. Corresponding convergence
result can be stated immediately in Corollary 3.3.2.

Corollary 3.3.2. Let A ∈ Rn×n, W = I and l ≥ Ind(A). Then the limiting expression (3.3.10)
produces the Drazin inverse AD, i.e., V = AD.

Clearly, (3.3.8) can be simplified by forcing the first matrix term in its right-hand side to
be the zero matrix, i.e., by establishing zero initial states. In light of the above discussion and
according to (3.3.6), the dynamic state equation of the RNN for computing the W -weighted
Drazin inverse can be stated using the zero initialization in (3.3.6):

dV (t)
dt = −γ (G0WAWV (t)−G0) ,

G0 = (AW)lA[(AW)2l+2A]T(AW)lA, l ≥ k, V (0) = 0.
(3.3.11)

The stability of the equilibrium state V is investigated in Theorem 3.3.3.

Theorem 3.3.3. The gradient-based neural network given in equation (3.3.11) is stable in the

sense of Lyapunov.

Proof. The proof is similar to the proof of Theorem 2.3.2. It is necessary to replace G =
(AW)lA by G0 = G(GAG)TG and consider the following Lyapunov function candidate:

E(t) = ‖G0WAWV −G0‖2
F

2

= Tr[(G0WAWV −G0)T (G0WAWV −G0)]
2 .

If A ∈ Rn×n and W = I , then the W -weighted Drazin inverse Ad,w reduces to the Drazin
inverse AD. We also obtain the stability of the equilibrium state V as follows.

Corollary 3.3.3. Let A ∈ Rn×n, W = I and l ≥ Ind(A). Then the gradient-based neural

network (3.3.11) is stable in the sense of Lyapunov.

Neural networks architecture of GNNDW0

Since the positive real scaling constant γ multiplies the time parameter t, its value could be
as large as possible. Greater values of γ will speed up the computation, because the terms

lim
t→∞

exp[−γ(AW)l+2t] = lim
t→∞

exp[−γGWAWt], G = (AW)lA, l ≥ k

105

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

or
lim
t→∞

exp[−γG0WAWt], G0 = (AW)lA[(AW)2l+2A]T(AW)lA, l ≥ k

vanish faster for larger γ.
Similarly with the RNNs for computing the Drazin inverse which are defined in [85, 84],

our neural network is composed from a number of independent subnetworks. Each subnetwork
represents a column vector of V (t). Denote by vj(t) (respectively, by hj, gj, (G0)j) the jth
column vector of V (t) (respectively, (AW)lA, G, G0), for j = 1, 2, . . . , n. The dynamics of
the jth subnetwork corresponding specific case can be expressed as

dvj(t)
dt = −γ

(
(AW)l+2vj(t)− hj

)
. (3.3.1)

In the general case, the jth subnetwork can be stated as

dvj(t)
dt = −γ (G0WAWvj(t)− (G0)j) , G0 = (AW)lA[(AW)2l+2A]T(AW)lA. (3.3.2)

106

Chapter 4

GNN for computing outer inverses based
on the full rank representation

In this chapter, we study numerical computation of outer inverses with prescribed range

and null space using dynamic equations and corresponding gradient based recurrent neural

networks. The defined neural networks are aimed to computation of the usual inverse or the

group inverse which are involved in matrix products representing two general representations

of outer inverses with known range and null space. The explicit closed-form solutions of de-

fined dynamic equations are derived. Similarly with the recurrent neural networks for matrix

inversion developed earlier, proposed neural networks are composed of a number of indepen-

dent sub-networks. Each sub-network corresponds to the column or row of the inverse matrix.

Numerical performances and stability of the proposed neural networks are demonstrated and

compared by means of several numerical examples.

4.1 Preliminaries and motivation

The starting point of our investigations is the dynamic state equation of the RNN for com-
puting outer inverse which was introduced in [138]:

dV (t)
dt = −γ (GAV (t)−G) , V (0) = 0, if m ≥ n,

dV (t)
dt = −γ (V (t)AG−G) , V (0) = 0, if m < n.

(4.1.1)

The GNN evolution (4.1.1) is termed as GNNGA or GNNAG. The main advantage of the
dynamic equation (4.1.1) is its universality. More precisely, (4.1.1) comprises all dynamic
equations proposed for numerical computation of generalized inverses.

107

Chapter 4. GNN for computing outer inverses based on the full rank representation

A) In the case G = AT, the dynamic equation (4.1.1) reduces to the dynamic equation of
the linear recurrent neural network for the usual matrix inversion, proposed in [94]:

dV (t)
dt = −γATAV (t) + γAT, V (0) = V0, (4.1.2)

wherein V (t) is a matrix of activation state variables corresponding to the inverse matrix of A
and γ is a positive scaling constant. As it is proved in [94], the RNN defined on the basis of
(4.1.2) is asymptotically stable in the sense of Lyapunov and its steady-state matrix is equal to
A−1.

B) By allowing the activation state matrix to be rectangular, recurrent neural network de-
fined in (4.1.2) can be used for computing the Moore-Penrose inverse of a full-column rectan-
gular matrix A ∈ Rm×n

n . In the dual full-row case A ∈ Rm×n
m , the dual GNN model

dV (t)
dt = −γV (t)AAT + γAT, V (0) = V0 (4.1.3)

can also be used to compute the Moore-Penrose inverse of A.

C) Three recurrent neural networks for computing the Moore–Penrose inverse of rank-
deficient matrices were proposed in [96]. The first RNN is most similar to our approach, and it
exploits the dynamic equation

dV (t)
dt

=

 −MATAV (t) +MAT , V (0) = 0, m ≥ n,

−V (t)AATM + ATM, V (0) = 0, m < n,
(4.1.4)

whereM is a positive diagonal matrix satisfyingM ∈ Rn×n in the casem ≥ n andM ∈ Rm×m

in the case m < n. The dynamic equation presented in (4.1.4) can be derived from (4.1.1) in
particular cases G = MAT or G = ATM .

D) Another particular case of (4.1.1) leads to RNN approach in computing the weighted
Moore-Penrose inverse. Wei in [108] introduced the following dynamic state equation of the
first recurrent neural network (called NN1) for computing the weighted Moore–Penrose in-
verses of a rank–deficient matrix A:

dV (t)
dt =

 −DA
]AV (t) +DA], V (0) = 0, m ≥ n,

−V (t)AA]D + A]D, V (0) = 0, m < n,
(4.1.5)

where D is a positive diagonal matrix of appropriate dimensions and A] = N−1ATM (M and
N are chosen positive definite matrices). The simplest choice for D is D = γI , where γ > 0
[108].

108

4.1. Preliminaries and motivation

E) The isolated case G = Am,m ≥ ind(A) in (4.1.1) leads to the dynamic equation of a
gradient recurrent neural network for computing the Drazin inverse of a square matrixA, which
was defined in [84]:

dV (t)
dt = −γ

(
Am+1V (t)− Am

)
, m ≥ ind(A), V (0) = V0. (4.1.6)

The exponent m in (4.1.6) is the smallest integer which assures nonnegative real parts for
all eigenvalues of the matrix Am+1. An alternative dynamic, which avoids the necessity to
avoid the computation of an appropriate exponent m, was defined in [85]. This dynamic is
based on the usage of the matrix G0 = Ak(AkAAk)TAk, k = ind(A), instead of the matrix
G = Am, m ≥ ind(A).

But, the dynamics defined in (4.1.1) has a serious drawback. Namely, the matrix G must be
chosen such that exactly one of the next two conditions is satisfied:

σ(GA) ⊂ {z : Re(z) ≥ 0}, m ≥ n, (4.1.7)

σ(AG) ⊂ {z : Re(z) ≥ 0}, m < n. (4.1.8)

The evolution rule (4.1.1), used in [138], fails in the case when some of real parts in the spec-
trum σ(GA) are negative. If one of the conditions (4.1.7) or (4.1.8) is not satisfied, the general-
ized inverse A(2)

R(G),N (G) could not be generated on the basis of (4.1.1), despite of his existence.
One possible solution is proposed in [138]; it is based on the replacement of the matrix G by
G0 = G(GAG)TG in (4.1.1). The replacement ofG byG0 eliminates the necessity to fulfill the
constraints (4.1.7) or (4.1.8), since σ(G0A) satisfies (4.1.7) and σ(AG0) satisfies (4.1.8). But,
the goal is achieved by a relatively large increase of the number of expensive matrix operations.
Additionally, the numbers in G0 grow, in some cases, which could cause numerical instability.
Finally, our numerical experience shows that real parts of eigenvalues contained in σ(G0A) or
σ(AG0) are sometimes very small negative integers, which later causes numerical instability,
or even divergence.

Two additional possibilities to overcome the problem were proposed in [86]. In this chapter
we present these possibilities. Derived simulations of RNN are based on two different rep-
resentations of outer inverses. Equivalence between these representations is investigated in
Section 4.2. Two dynamic equations arising from these representations and initiated RNNs are
considered in Section 4.3.

109

Chapter 4. GNN for computing outer inverses based on the full rank representation

4.2 On the existence and representations of outer inverses

We firstly show that Proposition 4.2.2 and Proposition 4.2.3 produce the same outer inverse
with prescribed range and null space. The next auxiliary result from [2] is used: if in the
matrix product A = FHG the matrix F is of full-column rank and G is of full-row rank, then
rank(A) = rank(H). Also, the representation of the group inverse, proposed in Proposition
4.2.1, is very important.

Proposition 4.2.1. [18] A square matrixA determined by the full- rank representationA = BC

has a group inverse if and only if CB is nonsingular, in which case

A# = B(CB)−2C.

A useful representation of A(2)
T,S , based on the usage of the group inverse, is presented in

[106]. This representation, restated in the next proposition, gave a new computational aspect in
relationship with the A(2)

T,S inverse.

Proposition 4.2.2. [106] Let A ∈ Cm×n be of rank r, let T be a subspace of Cn of dimension

s ≤ r, and let S be a subspace of Cm of dimension m− s. In addition, suppose that G ∈ Cn×m

satisfiesR(G) = T and N (G) = S. If A has A(2)
T,S then ind(AG) = ind(GA) = 1 and

A
(2)
T,S = G(AG)# = (GA)#G.

Full-rank representation of {2}-inverses with prescribed range and null space is determined
in the next proposition, which originated in [12].

Proposition 4.2.3. [12] Let A ∈ Cm×n
r , T be a subspace of Cn of dimension s ≤ r and let

S be a subspace of Cm of dimensions m − s. In addition, suppose that G ∈ Cn×m satisfies

R(G) = T,N (G) = S. Let G has an arbitrary full-rank decomposition, that is G = PQ. If A

has a {2}-inverse A(2)
T,S , then:

(1) QAP is an invertible matrix;

(2) A(2)
T,S = P (QAP)−1Q.

Representation of outer inverses in the general form A
(2)
R(G),N (G) = G(AG)# = (GA)#G

has been widely exploited in scientific literature. This representation is used in deriving the
determinantal representation of generalized inverses [6, 121] as well as in the construction of
iterative methods for their computation [47, 115, 116, 121]. Also, the full rank representation
A

(2)
R(G),N (G) = P (QAP)−1Q has been frequently applied in many numerical calculations. For

example, such a representation has been exploited to define the determinantal representation of
A

(2)
T,S inverse in [12]. Also, this representation has been used in the construction of the general

110

4.2. On the existence and representations of outer inverses

successive matrix squaring algorithm for computing A(2)
T,S [76] or in the block representation of

the set A{2}s [73].

Our first observation is that Proposition 4.2.2 should be stated as an "if and only if" state-
ment. Similar situation appears in Proposition 4.2.3. These results are verified in Lemma 4.2.1.
Also, Lemma 4.2.1 gives an unified aspect to these, so far, separate results.

Lemma 4.2.1. Let A ∈ Cm×n be of rank r, let T be a subspace of Cn of dimension s ≤ r, and

let S be a subspace of Cm of dimension m − s. In addition, suppose that G ∈ Cn×m
s satisfies

R(G) = T and N (G) = S. Assume that G = PQ is a full rank factorization of G. Then A

has A(2)
T,S if and only if one of the following conditions hold:

ind(AG) = ind(GA) = 1, (4.2.1)

QAP is invertible. (4.2.2)

In this case

A
(2)
T,S = G(AG)# = (GA)#G (4.2.3)

= P (QAP)−1Q. (4.2.4)

Proof. Proposition 4.2.2 claims the following: If A has A(2)
T,S then ind(AG) = ind(GA) = 1

and A(2)
T,S = G(AG)# = (GA)#G.

But, the opposite case also holds. Namely, does ind(AG) = ind(GA) = 1 ensures the
existence ofA(2)

R(G),N (G). Indeed, ind(AG) = ind(GA) = 1 implies the existence of (AG)# and
(GA)#. Further, the existence of A(2)

R(G),N (G) = G(AG)# = (GA)#G is ensured. Therefore,
we just verified that A(2)

R(G),N (G) exists if and only if (4.2.1) is satisfied.

Now, it is necessary to verify equivalence between (4.2.1) and (4.2.2). We use that AG =
(AP)Q is a full rank factorization of AG [12]. Since the (AG)# exists, according to full-rank
representation of the group inverse from [18], immediately follows that Q(AP) is invertible
(see, [12]).

It suffices to prove identity between the expressions (4.2.3) and (4.2.4). Concerning invert-
ibility of QAP , the following transformation is allowed:

P (QAP)−1Q = PQAP (QAP)−2Q.

Using the general representation of the group inverse from Proposition 4.2.1 we have

(AG)# = AP (QAP)−2Q

111

Chapter 4. GNN for computing outer inverses based on the full rank representation

which implies
P (QAP)−1Q = G(AG)#.

Similarly, using GA = P (QA) as a full rank factorization of GA, one can verify

P (QAP)−1Q = P (QAP)−2QAPQ = (GA)#G,

which completes the proof.

4.3 Neural networks based on full rank representation of
outer inverses

In order to simplify notations, by RNN(4.2.3) and RNN(4.2.4) we denote the RNNs which
can be used in the computation of the representation (4.2.3) and (4.2.4), respectively. RNN(4.2.3)
is designed for calculating the group inverse (AG)# or (GA)# in accordance with the results
proposed in [84]. RNN(4.2.4) is defined in order to calculate (QAP)−1. The main reason for
this choice are the relatively small dimensions s× s of the matrix QAP with respect to dimen-
sions m ×m or n × n of matrices AG or GA, respectively. Application of RNN(4.2.4) to the
invertible matrix of small dimensions indicates fast numerical computation and global stability.

4.3.1 Neural network RNN(4.2.4) based on (4.2.4)

The following facts are assumed in the rest of this chapter. The matrix A ∈ Rm×n
r is given;

G = PQ is a full-rank factorization of a selected matrix G ∈ Rn×m
s , where the integer s

satisfying 0 < s ≤ r is the rank of G. Under the assumption that QAP is invertible, the
following full rank representation holds:

A
(2)
R(P),N (Q) = P (QAP)−1Q. (4.3.1)

The RNN for computing (QAP)−1 is generated using the initial matrix equation

QAPV − I = 0, (4.3.2)

where V ∈ Rn×m represents the unknown matrix which should generate (QAP)−1. A scalar-
valued norm based error function

E(t) = ‖QAP V (t)− Is‖2
F

2 (4.3.3)

can be used to solve (4.3.2) via dynamic-system approach. The derivative of E(t) with respect

112

4.3. Neural networks based on full rank representation of outer inverses

to V ∈ Gn×m can be derived using [25, Chapter 5]:

∂E(t)
∂V

= (QAP)T (QAPV (t)− Is) . (4.3.4)

This approach leads to the dynamic equation of the form which was used in the complex-valued
gradient neural network from [122, 125, 129]:

V̇ (t) = −γ ∂E(t)
∂V

. (4.3.5)

Therefore, it is reasonable to define the dynamic equation of a recurrent neural network as
follows

dV (t)
dt = −γ

(
(QAP)TQAP V (t)− (QAP)T

)
, V (0) = V0, (4.3.6)

where V (t) ∈ Rs×m is a matrix of activation state variables and γ is a positive scaling constant.

The closed-form solution of (4.3.6) can be derived using the linear systems theory (see, for
example [35]):

V (t) = exp
(
−γ(QAP)T QAPt

)
V (0) +

+ γ exp
(
−γ(QAP)TQAPt

) ∫ t

0
exp (γQAPτ) dτ (QAP)T.

(4.3.7)

The matrix QAP is positive definite (according to assumptions), which means it has all
eigenvalues real and positive. Also, since γ > 0, all eigenvalues of −γQAP are real and
negative, and according to the linear dynamic system theory, the recurrent neural network is
globally asymptotically stable. Therefore, the term exp(−γQAPt)V (0) in the right-hand side
of (4.3.7) vanishes to the zero matrix of the same size as time approaches infinity, i.e.,

lim
t→∞

exp
(
−γ(QAP)TQAPt

)
V (0) = 0, (4.3.8)

regardless of the initial states V (0). Now, equations (4.3.7) and (4.3.8) imply the following
representation of limt→∞ V (t) = V , for arbitrary V (0):

V = lim
t→∞

γ exp(−γ(QAP)TQAPt)
∫ t

0
exp

(
γ(QAP)TQAPτ

)
dτ (QAP)T. (4.3.9)

According to known results from [96], it can be verified the closed-form solution V = (QAP)−1

of V in (4.3.9), and it is independent of γ.

Theorem 4.3.1. [86] Let A ∈ Rm×n be a given matrix and G ∈ Rn×m
s be an arbitrary matrix

whose rank satisfies 0 < s ≤ r. Further, let G = PQ be a full rank factorization of G and

σ(QAP) = {λ1, . . . , λn} be the spectrum of QAP . Suppose that QAP is regular. Then the

113

Chapter 4. GNN for computing outer inverses based on the full rank representation

outer inverse A(2)
R(P),N (Q) can be generated using the limiting value V of (4.3.9), as follows:

P V Q = A
(2)
R(P),N (Q). (4.3.10)

Also, the RNN initiated by (4.3.6) is globally assymptotically stable.

Proof. Since QAP is regular, the condition

Re(λj) > 0, j = 1, . . . , n (4.3.11)

is satisfied. Then the proof can be verified using the full-rank representation (4.3.1) and the
results from [94].

Following the recurrent neural networks for the matrix inversion [122, 129], our neural
network is composed from s independent sub-networks, where each sub-network generates
a column of V (t). Let us denote by vj(t) (resp. gj) the jth column vector of V (t) (resp.
G = (QAP)T), for j = 1, 2, . . . ,m. The dynamics of the jth sub-network can be expressed as
follows:

dvj(t)
dt = −γ

(
(QAP)TQAPvj(t)− gj

)
. (4.3.12)

The dynamics defined in (4.3.12) indicates that each sub-network is essentially the same as the
recurrent neural network presented in [94]. The connection weight matrixW = −γ(QAP)TQAP

is identical for each sub-network and the biasing threshold vector for the jth sub-network is
γgj = {γg1j, . . . , γgnj}. Elements of the matrix W (resp. V) are denoted by wij (resp. vij).

Elements of unknown matrix V (t) are computed using

v̇ij = dvij
dt =

n∑
k=1

wikvkj + γgij, i, j = 1, . . . , n. (4.3.13)

Elements of the column vj = {v1j, . . . , vnj} are generated in the jth sub-network.
Two advantages of the proposed RNN(4.2.4) approach are immediately observable:
1. Dimensions of QAP are equal to s × s; they are potentially much smaller than the

dimensions m and n of AG or GA.
2. RNN(4.2.4) is globally asymptotically stable in the case when QAP is invertible. There-

fore, RNN(4.2.4) is an elegant way to avoid the requirements on the spectrum of the matrixAG
or GA.

114

4.3. Neural networks based on full rank representation of outer inverses

4.3.2 Neural network RNN(4.2.3) based on (4.2.3)

Let us consider the case n ≤ m in more details. The second type of RNN, called RNN(4.2.3),
integrates n independent sub-networks, where each sub-network generates a column vector of
V (t). Under the assumptions that vj(t) denotes the jth column vector of V (t) and gj stands
for the jth column vector of G1 = (GA)k, k ≥ 1, the dynamics of the jth sub-network can be
expressed as follows:

dvj(t)
dt = −γ

(
(G1)k+1vj(t)− gj

)
, j = 1, 2, . . . ,m. (4.3.14)

The integer k in (4.3.14) is the first positive integer satisfying

Re
(
λk+1
j

)
≥ 0, j = 1, . . . , n, (4.3.15)

where σ((GA)k+1) = {λ1, . . . , λn} is the spectrum of (GA)k+1. The integer k can be defined
using the results from [84].

The connection weight matrix W − γ(G1)k+1 is identical for each sub-network and the
biasing threshold vector for the jth sub-network is γgj = {γg1j, . . . , γgnj}. Elements of the
matrix W (resp. V) are denoted by wij (resp. vij). Then

v̇ij = dvij
dt =

n∑
k=1

vkjwik + γgji, i, j = 1, . . . , n. (4.3.16)

Elements of the column vj = {v1j, . . . , vnj} are generated in the jth sub-network.

Corollary 4.3.1. Let A ∈ Rm×n be a given matrix, G ∈ Rn×m
s be an arbitrary matrix and

σ(GA) = {λ1, . . . , λn} is the spectrum of GA. Assume that the integer k is the first positive

integer satisfying (4.3.15). Then the outer inverse A(2)
R(P),N (Q) can be generated using

A
(2)
R(P),N (Q) = V G = lim

t→∞
γ exp(−γ(GA)k+1t)

∫ t

0
exp(γ(GA)k+1τ) dτ ·G. (4.3.17)

Proof. According to [84, Theorem 1], V = (GA)#. Then the proof follows from Proposition
4.2.2.

Remark 4.3.1. The results stated in Corollary 4.3.1 are applicable in the case n ≤ m. In the

opposite case, m ≤ n, similar result can be stated using the matrix AG instead of GA.

115

Chapter 4. GNN for computing outer inverses based on the full rank representation

4.3.3 Relationships between different RNNs

For the sake of simplicity, byRNN(ATS2) is denoted the RNN proposed in [138]. Outputs
generated by defined RNNs for input parameters γ,A,G are denoted by RNN(ATS2)[γ,A,G],
RNN(4.2.3)[γ,A,G] and RNN(4.2.4)[γ,A,G].

In the particular caseG = AT all three approaches, RNN(ATS2), RNN(4.2.3) and RNN(4.2.4),
derive known results concerning the usual inverse, originated in [94], as well as known results
concerning the Moore–Penrose inverse [96]:

RNN(ATS2)[γ,A,AT] = RNN (4.2.3)[γ,A,AT] = RNN (4.2.4)[γ,A,AT] = A†.

The case G = A] = N−1A∗M produces the results corresponding to the weighted Moore-
Penrose inverse A†M,N from [108]:

RNN(ATS2)[γ,A,A]] = RNN (4.2.3)[γ,A,A]] = A†M,N .

In the case G = Ak, k ≥ ind(A), RNN(ATS2)[γ,A,Ak] generates the Drazin inverse AD.
This case was devised in [84]. An algorithm for appropriate choice of the exponent k is given
in [84].

For a square matrix A of index ind(A) = 1, k ≥ 1, RNN(ATS2)[γ,A,Ak] produces the
group inverse A# of A.

The choice rank(G) = r = rank(A) it is not difficult to verify VG ∈ A{1, 2}.

Clearly, the following is valid under the assumption thatG = PQ is a full-rank factorization
of G:

RNN (4.2.3)[γ,A,G] =

 G ∗ RNN(ATS2)[γ,AG, (AG)k], m ≤ n

RNN(ATS2)[γ,GA, (GA)k] ∗G, n ≤ m,

where k is the first integer satisfying (4.3.15). Also, the following general statement is valid:

RNN (4.2.4)[γ,A,G = PQ] = P ∗ RNN(ATS2)[γ,QAP, (QAP)T] ∗Q.

It is not difficult to verify the following in the case G = Ak, k ≥ ind(A):

RNN(ATS2)[γ,A,Ak] = RNN (4.2.3)[γ,A,Ak] = AD.

Also, the full-rank representations of the sets A{2, 4}s and A{2, 3}s as particular cases
of the full-rank representation of the set A{2}s are derived in [77]. Introduced full-rank rep-
resentations enable adaptation of well-known algorithms for computing outer inverses with

116

4.4. Numerical experiments on GNN based on full rank representation

prescribed range and null space into corresponding algorithms for computing {2, 4} and {2, 3}-
inverses.

In the case G = (QA)∗Q, where Q ∈ Cs×m is an appropriate matrix, A(2)
R(P),N (Q) reduces

to
A

(2,4)
N (QA)⊥,N (Q) = (QA)∗(QA(QA)∗)−1Q. (4.3.18)

In the case G = P (AP)∗, where P ∈ Cn×s is an appropriate matrix, A(2)
R(P),N (Q) produces

A
(2,3)
R(P),R(AP)⊥ = P ((AP)∗AP)−1(AP)∗. (4.3.19)

According to (4.3.18), the following is satisfied:

A
(2,4)
N (QA)⊥,N (Q) = (QA)T(QA(QA)T)−1Q = RNN(ATS2)[γ,A, (QA)TQ]

= (QA)T ∗ RNN(ATS2)[γ,QA(QA)T,
(
QA(QA)T

)T
] ∗Q

= RNN (4.2.4)[γ,A, (QA)TQ]

= (QA)TQ ∗ RNN(ATS2)[γ, (QA)TQA, (QA)TQA]

= RNN (4.2.3)[γ,A, (QA)TQ].

Similarly, according to (4.3.19), the following holds:

A
(2,3)
R(P),R(AP)⊥ = P ((AP)TAP)−1(AP)T = RNN(ATS2)[γ,A, P (AP)T]

= P ∗ RNN(ATS2)[γ, (AP)TAP,
(
(AP)TAP

)T
] ∗ (AP)T

= RNN (4.2.4)[γ,A, P (AP)T]

= P (AP)T ∗ RNN(ATS2)[γ,AP (AP)T,
(
AP (AP)T

)k
]

= RNN (4.2.3)[γ,A, P (AP)T].

4.4 Numerical experiments on GNN based on full rank rep-
resentation

Example 4.4.1. Consider the matrix

A =



1 2 3 4 1
1 3 4 6 2
2 3 4 5 3
3 4 5 6 4
4 5 6 7 6
6 6 7 7 8


, (4.4.1)

117

Chapter 4. GNN for computing outer inverses based on the full rank representation

and choose the following matrices P ∈ R5×2 and Q ∈ R2×6

P =



0 0
2 1
3 2
5 3
1 0


, Q =

 0 1 0 1 0 1
1 0 1 0 1 0

 . (4.4.2)

According to (4.2.4), exact {2}-inverse of A corresponding to G = PQ is defined by

A
(2)
R(P),N (Q) = P (QAP)−1Q = 1

174



0 0 0 0 0 0
−21 19 −21 19 −21 19

60 −46 60 −46 60 −46
39 −27 39 −27 39 −27

−102 84 −102 84 −102 84


.

A) The spectrum of GA is included in the set

σ(GA) = {266.346716180717, 0.653283819282910, 0, 0, 0}

and provides the condition (4.1.7). Applying RNN(ATS2)[1010, A,G = PQ], we obtain the

following approximation of A(2)
R(P),N (Q):

X =



0 0. 0 0 0 0
−0.1207 0.1092 −0.1207 0.1092 −0.1207 0.1092

0.3448 0.2644 0.3448 −0.2644 0.3448 −0.2644
0.2241 −0.1552 0.2241 −0.1552 0.2241 −0.1552
−0.5862 0.4828 −0.5862 0.4828 −0.5862 0.4828


. (4.4.3)

Convergence properties are illustrated in Figure 4.1

118

4.4. Numerical experiments on GNN based on full rank representation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−7

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

X: 2.275e−009
Y: 0.4828

Time (second)

S
ta

te
 v

ar
ia

bl
e

Figure 4.1: Convergence behavior of the RNN [138] in 10−7 seconds for Example 4.4.1

B) Since rank(GA) = rank((GA)2) = 2, the existence of (GA)# is ensured as well as the

existence of the outer inverse A(2)
R(P),N (Q) = (GA)#G. Also s ((GA)2) ≥ 0 ensures stability

of RNN(4.2.3). Using G1 = GA and applying the RNN defined according to (4.3.16) with

γ = 1010, one can obtain the following approximation of the group inverse (GA)#:

RNN (4.2.3)[1010, GA,GA] = (GA)g =



0.0000 0.0000 0.0000 0.0000 0.0000
0.2240 0.1194 0.0148 −0.0898 0.2755
−0.6056 −0.3215 −0.0373 0.2470 −0.7442
−0.3816 −0.2020 −0.0225 0.1570 −0.4690

1.0537 0.5602 0.0668 −0.4267 1.2952


.

Now, the approximation (GA)gG of (GA)#G = A
(2)
R(P),N (Q) coincides with the approximation

X in (4.4.3).

C) An approximation (QAP)(−1) of (QAP)−1 can be produced using

RNN(ATS2)[109, QAP, (QAP)T]:

(QAP)(−1) =
 0.4828 −0.5862
−0.8563 1.0517

 .
The behavior of the method RNN(ATS2)[109, QAP, (QAP)T] in the process of its convergence

is illustrated in Figure 4.2.

Now, the approximation

Y = P (QAP)(−1)Q=P*RNN(ATS2)[109, QAP, (QAP)T] ∗Q =RNN(ATS2)[109, A, PQ]

119

Chapter 4. GNN for computing outer inverses based on the full rank representation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−7

−1

−0.5

0

0.5

1

1.5

X: 1.839e−009
Y: 1.051

Time (second)

S
ta

te
 v

ar
ia

bl
e

Figure 4.2: Convergence behavior of the RNN(4.2.4) in 10−7 seconds for Example 4.4.1

of the outer inverse coincides with the resulting matrix (4.4.3).

Example 4.4.2. Consider the matrices A as in Example 4.4.1 and randomly generated 3 × 6
matrix

Q =


0.8147 0.9134 0.2785 0.9649 0.9572 0.1419
0.9058 0.6324 0.5469 0.1576 0.4854 0.4218
0.1270 0.0975 0.9575 0.9706 0.8003 0.9157

 .
Now, let us consider the matrix

GQ = (QA)TQ =



16.6417 15.1378 20.0523 24.0504 24.1164 17.1831
24.0178 21.9829 26.1593 32.2128 32.8233 22.0808
30.6784 28.0700 32.7198 40.3917 41.3443 27.5294
38.0545 34.9151 38.8268 48.5541 50.0512 32.4271
23.7370 21.6404 28.2141 34.0462 34.1819 24.1278


.

Clearly, σ(GQA) ≥ 0, and the output generated by applying RNN(ATS2)[1010, A,G = GQ] is

equal to

X =



0.9990 −0.0844 1.0245 −1.7595 −0.6968 0.9428
−0.8849 −0.0042 −0.7783 1.4540 0.5631 −0.7026
1.5164 0.0354 1.3197 −2.4205 −0.9194 1.1878
−0.3676 0.1157 −0.4832 0.7931 0.3405 −0.4576
−1.1124 −0.1118 −0.8261 1.6635 0.6168 −0.7257


. (4.4.4)

120

4.4. Numerical experiments on GNN based on full rank representation

The {2, 4} inverse of A is defined by

A
(2,4)
N (QA)⊥,N (Q) = (QA)T

(
QA(QA)T

)−1
Q,

which coincides with X defined in (4.4.4).
Now, our intention is to solve the same problem using RNN(4.2.4). For this purpose, it

suffices to consider the matrices P1 = (QA)T, Q1 = Q and later A1 = Q1AP1, G1 = AT
1 .

Applying RNN(ATS2)[1012, A1, G1], we obtain the following approximation

(Q1AP1)(−1) =


21.9358 −31.9662 1.7207
−31.9663 46.6893 −2.5770

1.7207 −2.5770 0.1811

 .

of (Q1AP1)−1 = (QA(QA)T)−1
. Now, the matrix P1 (Q1AP1)(−1) Q1 is equal to the matrix X

which is defined in (4.4.4).

Example 4.4.3. The goal of this example is to show global asymptotic stability of RNN(4.2.3).
For this purpose, we use randomly generated initialization V0 of the matrix of activation state

variables V (t). The matrices A,G, P and Q are chosen as in Example 4.4.1.

The RNN(ATS2)[γ,A,G] is not asymptotically globally stable, which means that the solution,

in general, does not converge to the outer inverse A(2)
R(P),N (Q) and depends on choice of the

initial matrix V0. The function RNN(ATS2)[1010, A,G] converges, but generates the incorrect

result: 

1.2571 −0.9957 0.3411 1.0149 0.1232 −0.1224
−1.0682 0.3991 −0.5537 0.2515 0.5429 −1.4664
1.9182 0.0495 2.3513 0.5645 2.4586 0.2087
−0.4413 −0.5021 −0.9267 −0.6737 −1.3316 −0.0051
−1.4994 1.0369 −1.1589 −0.6180 −1.5949 1.2889


.

On the other hand, the RNN(ATS2)[1010, QAP, (QAP)T] converges successfully starting from

the generated initialization V0, and RNN(4.2.3)[1010, A,G] = P∗RNN(ATS2)[1010, QAP, (QAP)T]∗
Q produces the outer inverse generated in Example 4.4.1 using γ = 1010.

Example 4.4.4. In this example, the matrix A is reused from Example 4.4.1 and the matrices

P , Q are randomly generated:

P = rand(5, 3) =



0.9421 0.3532 0.6491
0.9561 0.8212 0.7317
0.5752 0.0154 0.6477
0.0598 0.0430 0.4509
0.2348 0.1690 0.5470


,

121

Chapter 4. GNN for computing outer inverses based on the full rank representation

Q = rand(3, 6) =


0.2963 0.6868 0.6256 0.9294 0.4359 0.5085
0.7447 0.1835 0.7802 0.7757 0.4468 0.5108
0.1890 0.3685 0.0811 0.4868 0.3063 0.8176

 .
The matrix G is defined by G = PQ. The spectrum of GA contains negative values:

σ(GA) = {87.5644,−0.3869,−0.0621, 0.0000, 0.0000} .

This causes divergence of RNN(ATS2), with the incorrect result

1.0e+168



−0.8558 −2.3809 1.1049 4.6212 −2.3984 2.9684
−1.1025 −3.0671 1.4234 5.9531 −3.0896 3.8240
0.1336 0.3717 −0.1725 −0.7215 0.3744 −0.4634
0.7326 2.0380 −0.9458 −3.9557 2.0530 −2.5409
0.4764 1.3253 −0.6150 −2.5723 1.3350 −1.6523


.

Using RNN(ATS2)[1012, QAP, (QAP)T] , it is possible to generate an approximation (QAP)(−1)

of (QAP)−1. Later, γ = 1012 in

RNN(4.2.3)[1012, A, PQ] = P∗RNN(ATS2)[1012, QAP, (QAP)T] ∗ Q leads to the following

approximation of A(2)
R(P),N (Q) = P (QAP)−1Q:

P (QAP)(−1)Q =



0.7174 −0.7519 0.2254 −0.1981 0.0500 0.1226
−1.8441 1.5217 −1.4851 0.0060 −0.1595 0.7803
1.5050 −1.3240 1.0054 −0.1087 0.1292 −0.3699
−0.1352 0.2318 0.1193 0.1430 0.0049 −0.1943
−0.3319 0.3753 −0.0776 0.1210 −0.0142 −0.0667


.

Example 4.4.5. In this example, A,P and Q are randomly generated matrices of the order

m × n, n × s and s ×m, respectively. The matrix G is defined as G = PQ. IEEE arithmetic

representation for Not-a-Number (NaN) denotes the divergence of the method. The symbol

’-’ means a time interval greater than 5e+003. The results arranged in Table 4.1 confirm

that RNN(4.2.4) shows the best performances. The results in Table 4.2 show that increase in

dimensions m and n does not affect the CPU time and values of the residual error in the case

when s remains unchanged.

122

4.4. Numerical experiments on GNN based on full rank representation

Table 4.1: Results for three RNNs generated using on the set of
randomly generated matrices

RNN Size m,n, s CPU Time ‖XAX −X‖2

RNN(ATS2)[1011, A,G] 10, 15, 2 1.5600 3.4837e-006

RNN(4.2.3)[1011, A,G] 10, 15, 2 0.6552 1.4050e-014

RNN(4.2.4)[1013, A,G] 10, 15, 2 0.1716 3.6337e-014

RNN(ATS2)[107, A,G] 10, 15, 5 0.5928 1.7208
RNN(ATS2)[1011, A,G] 10, 15, 5 9.4693 NaN

RNN(4.2.3)[107, A,G] 10, 15, 5 0.5772 0.5497
RNN(4.2.3)[1011, A,G] 10, 15, 5 5.7876 NaN

RNN(4.2.4)[1013, A,G] 10, 15, 5 0.1092 4.7661e-013

RNN(ATS2)[107, A,G] 10, 15, 10 0.7644 4.1438
RNN(ATS2)[1011, A,G] 10, 15, 10 17.2381 NaN

RNN(4.2.3)[107, A,G] 10, 15, 10 0.5772 1.3629
RNN(4.2.3)[1011, A,G] 10, 15, 10 17.0353 NaN

RNN(4.2.4)[1015, A,G] 10, 15, 10 1.1856 5.6842e-006
RNN(4.2.4)[1017, A,G] 10, 15, 10 1.2324 3.9636e-009
RNN(4.2.4)[1019, A,G] 10, 15, 10 1.2948 3.5628e-007

RNN(ATS2)[1011, A,G] 30, 45, 5 2.6530e+ 003 NaN

RNN(4.2.3)[1011, A,G] 30, 45, 5 − NaN

RNN(4.2.4)[1013, A,G] 30, 45, 5 0.1872 3.3026e-011

Table 4.2: Results for three RNN(4.2.4) generated using γ = 1013 on the set of
randomly generated matrices

RNN Size m,n, s CPU Time ‖XAX −X‖2

RNN(4.2.4)[1013, A,G] 90, 135, 15 3.2292 2.7609e-011
RNN(4.2.4)[1013, A,G] 180, 270, 15 2.5116 3.3336e-010
RNN(4.2.4)[1013, A,G] 360, 540, 15 2.5428 2.8120e-011
RNN(4.2.4)[1013, A,G] 720, 1080, 15 2.5116 7.2166e-006
RNN(4.2.4)[1013, A,G] 1040, 2160, 15 1.9500 3.7591e-011
RNN(4.2.4)[1013, A,G] 2080, 4320, 15 3.1512 1.2941e-009

123

Chapter 4. GNN for computing outer inverses based on the full rank representation

124

Chapter 5

ZNN for computing matrix inverse based
on hyperpower iterative methods

This chapter investigates and exploits an analogy between the scaled hyperpower family

(SHPI family) of iterative methods for computing the matrix inverse and the discretization of

Zhang Neural Network (ZNN) models. A class of ZNN models corresponding to the family of

hyperpower iterative methods for computing generalized inverses is defined on the basis of the

discovered analogy. The Simulink implementation in Matlab of the introduced ZNN models

is described in the case of scaled hyperpower methods of the order 2 and 3. Convergence

properties of the proposed ZNN models are investigated as well as their numerical behavior.

5.1 Introduction to ZNN design and known ZNN models

The GNN approach uses the Frobenius norm of the error matrix as the performance criterion
and defines a neural network evolving along the negative gradient-descent direction. In the
time-varying case, the underlying Frobenius norm of the error matrix cannot converge to zero
even after infinite time [48]. Based on this fact, Zhang neural networks (or zeroing neural
networks) (ZNNs) were developed for solving online time-varying problems. ZNN is originally
invented by Zhang in his seminal work [130]. Their dynamics is designed based on an indefinite
error-monitoring function instead of a usual norm-based energy function [131]. In addition,
Zhang neural dynamic is, in general, implicit, whereas dynamic of GNNs is explicit [131].

Five complex-valued ZNN models which are aimed to computation of time-varying com-
plex matrix generalized inverses were proposed and investigated in [48]. ZNN models for
online time-varying full-rank matrix pseudoinversion were introduced and analyzed in [127].
The relationship between the Zhang matrix inverse and the Drazin inverse, discovered in [128],
leads to the same dynamic state equation which was considered in [84] in the time invariant
matrix case. The dynamical equation and corresponding artificial recurrent neural network

125

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

for computing the Drazin inverse of an arbitrary square real matrix, without any restriction
on eigenvalues of its rank invariant powers, were proposed in [85]. A discrete-time model of
ZNN for matrix inversion, which is depicted by a system of difference equations, was investi-
gated in [125]. A general recurrent neural network model for online inversion of time-varying
matrices was presented in [122]. The simulation and verification of such a ZNN were inves-
tigated in [129]. ZNN models for computing online time-varying Moore-Penrose inverse of
a full-rank matrix were generalized, investigated and analyzed in [133]. Two complex Zhang
neural network (ZNN) models for computing the Drazin inverse of arbitrary time-varying com-
plex square matrix were presented in [104]. The design of the ZNNs defined in [104] is based
on corresponding matrix-valued error functions arising from the limit representations of the
Drazin inverse. As a continuation, the paper [67] investigated the computation of the Drazin
inverse of a complex time-varying matrix by means of two ZNN models derived based on two
Zhang functions constructed on the basis of two limit representations of the Drazin inverse.
The finite-time convergence is ensured by means of the Li activation function.

Integration-enhanced noise-tolerant ZNN models (shortly IENTZNN) have been studied
extensively last year. An IENTZNN model for time-varying matrix inversion process was
defined in [32]. Zeroing neural networks which are able to eliminate various kinds of noise and
resolve the redundancy in kinematic control have attracted a great attention last years. Zhang et
al. in [33] designed a noise-tolerant zeroing neural network (NTZNN) design formula from the
viewpoint of control. Corresponding discrete-time models were also defined in [33]. Various
ZNN models applicable in resolving the redundancy of robotic manipulators for kinematic
control in the presence of polynomial type noises were proposed in in [44, 45, 46].

The ZNN model for approximating the time-varying matrix inverse is defined using the
matrix-valued indefinite error function

E(t) = A(t)X(t)− I. (5.1.1)

The starting point in [48, 132] was the fact that the left Moore-Penrose inverse A(t)† satis-
fies A(t)*A(t)A(t)†. Further, on the basis of the assumption that A(t)*A(t) is invertible, the
following matrix-based error function, called ZF(5), is considered

E(t) := A(t)∗A(t)X(t)− A(t)∗, (5.1.2)

where X(t) corresponds to A(t)†. An elegant way to avoid the assumption of the invertibility
of A(t)∗A(t) was presented in [48]. Namely, the authors of [48] defined the complex ZF which
arises from the ZF defined in (5.1.2), and the Tikhonov regularization:

E(t) =
(
A(t)*A(t) + λI

)
X(t)− A(t)*, λ > 0. (5.1.3)

126

5.2. Correlation between iterations and ZNN models

The resulting ZNN model (5.1.3) is termed as complex ZNN-II Model.
In addition, the following complex function was used as the fundamental error-monitoring

function (called ZFL2) in [104]:

E(t) =
(
A(t)l+1 + λI

)
X(t)− A(t)l l ≥ k = ind(A), λ > 0. (5.1.4)

The matrix X(t) in (5.1.4) corresponds to the Drazin inverse A(t)D. Let us mention that the
ZNN-II model in [67] is defined on the basis of the ZF defined in (5.1.4) and upon the Li
activation function.

The leading idea of [105] was to comprise so far known ZNN models for computing gen-
eralized inverses into a unique comprehensive model corresponding to outer inverses in the
time-varying complex matrix case. The ZNNATS2-I model defined in [105] requires two ma-
tricesA(t) ∈ Cm×n

r ,G(t) ∈ Cn×m
s , 0 < s ≤ r, and it is aimed to numerical computations of the

outer inverse A(t)(2)
R(G),N (G). The model is developed using the following two dual fundamental

error-monitoring ZFs, proposed in [105]:

EG(t) =

 (G(t)A(t) + λI)X(t)−G(t), n ≤ m, λ > 0

X(t) (A(t)G(t) + λI)−G(t), n > m, λ > 0.
(5.1.5)

5.2 Correlation between iterations and ZNN models

There exist two categories of the numerical algorithms: direct and iterative methods. The
direct method means that the accurate solutions for the problem are computed in finite steps.
An iterative method for computing A† is a set of instructions for generating a sequence {Xk}
converging to A†. The instructions specify how to select the initial approximation X0, how to
proceed from Xk to Xk+1 for each k, and when to stop, having obtained a reasonable approxi-
mation. Main results can be found at [12, 91, 106].

One of the most important methods for computing the matrix inverse and various general-
ized inverses is the family of hyperpower iterations. These iterations possess an arbitrary order
of the convergence p ≥ 2, and are given by the standard form

Xk+1 = Xk

(
I +Rk + · · ·+Rp−1

k

)
= Xk

p−1∑
i=0

Ri
k, Rk = I − AXk. (5.2.1)

The hyperpower iterative family has been investigated extensively in a number of papers [17,
47, 50, 117].

The basic motivation in [87] was the fact that the scaled Newton method for the usual matrix
inversion appears after the discretization of the Zhang Neural Network (ZNN) designed for the
matrix inversion introduced in [125]. More precisely, we generalize the significant result

127

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

From Zhang neural network to Newton iteration for matrix inversion,
derived in [125], into the more general goal
From Zhang neural network to scaled hyperpower iterations for matrix inversion and vice

versa.
Main goals from [87], reused in this section, can be summarized as follows.
(1) Generalize the discretization from [125] and consequently define the scaled hyperpower

iterative methods (SHPI shortly) of an arbitrary order p ≥ 2.
(2) In addition, our intention is to define a ZNN model (called ZNNCM) whose discretiza-

tion produces the scaled Chebyshev iterative method introduced in [72].
(3) Numerical behavior as well as the convergence properties of the ZNNCM model are

investigated.
(4) A combination of the ZNNCM and the ZNNM model, called the ZNNHM model, is

also defined and considered in numerical testing.
These goals are fulfilled in [87] and in the further discussion we present the main results.

5.3 Scaled Hyperpower iterations as discretized ZNN models

It is assumed that the matrix A is a constant n × n nonsingular matrix. For the sake of
completeness, we restate main steps of the discretization which was defined in [125]. The
matrix-valued error-monitoring function (ZF) of the form

E(X(t), t) := AX(t)− I (5.3.1)

was used to derive the dynamic equation determined by the general pattern

dE(X(t), t)
dt = −ΓH (E(X(t), t)) , (5.3.2)

where Γ ∈ Rn×n is a positive-definite matrix used to scale the inversion process and H(·) :
Rn×n → Rn×n denotes an appropriate matrix-valued activation-function mapping. An appli-
cation of the general pattern (5.3.2) on the Zhang error-monitoring function (5.3.1) in the case
H = I and Γ = γI , where γ > 0 is a scalar-valued design parameter, leads to the following
implicit dynamic equation of ZNN:

AẊ(t) = −γ (AX(t)− I)) . (5.3.3)

Further, assume that the linear activation function H = I is used and the discretization of the
continuous-time model (5.3.3) is performed by using the Euler forward-difference rule

128

5.3. Scaled Hyperpower iterations as discretized ZNN models

Ẋ(t) ≈ (Xk+1 −Xk)/τ,

where τ denotes the sampling time and Xk = X(t = kτ), k = 1, 2, Then the discrete-time
model of (5.3.3) is defined by

AXk+1 = AXk − γ (AXk − I) , (5.3.4)

where γ = τ γ > 0 is the step size that should appropriately be selected for the convergence to
the theoretical inverse A−1. Since A is nonsingular, the implicit discrete-time ZNN model can
be rewritten as

Xk+1 = Xk − γA−1 (AXk − I) . (5.3.5)

According to [122], the state matrix X(t) converges to A−1 in the continuous-time ZNN model
(5.3.3). Hence, it is justifiably to replaceA−1 by its approximationXk. This replacement yields
the following explicit difference equation of the discrete-time ZNN for the nonsingular matrix
inversion:

Xk+1 = Xk − γXk (AXk − I) = Xk (I + γ (I − AXk)) . (5.3.6)

The iterative rule (5.3.6) is exactly of the form of the scaled Newton iteration for computing
outer inverses with prescribed range and null space, introduced in [64, 65]:

Xk+1 = (1 + γ)Xk − γXkAXk, X0 = αG, γ ∈ (0, 1], (5.3.7)

where G ∈ Cm×n
r is a given matrix, α, γ are real constants and G ∈ Cn×m

s is a chosen ma-
trix and 0 < s ≤ r. In the case γ = 1 the iterative process (5.3.7) produces well known
generalization of the Schultz iterative method, intended for computing outer inverses [19, 115].

Charif et all. in [9] developed a new fast online algorithms for motion estimation which is
based on the Horn & Schunck algorithm with the Discrete Zhang Neural Networks (DZNN)
defined by (5.3.6) and Simoncelli’s matched-pair 5 tap filters. A novel implementation of the
multi-dimensional Capon spectral estimator was proposed in [3]. The algorithm is derived
using the discrete Zhang neural network for the online covariance matrix inversion.

In order to extend defined discretization, we start from the continuous-time model which is
based on the error-monitoring function defined by the second and the third term of the hyper-
power iterative process:

EC(X(t), t) := I − AX(t) + (I − AX(t))2 = 2I − 3AX(t) + (AX(t))2 . (5.3.8)

In respect of the general ZNN pattern (5.3.2), the Zhang error-monitoring function (5.3.8) leads

129

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

to the following implicit dynamic equation

ĖC(X(t), t) = −AẊ(t)− AẊ(t) (I − AX(t)) + (I − AX(t))
(
−AẊ(t)

)
= −3AẊ(t) + AẊ(t)AX(t) + AX(t)AẊ(t)

= −ΓH (2I − AX(t) (3I − AX(t))) .

(5.3.9)

The expected convergence ofX(t) toA−1 approves the substitutionAX(t) = I in the left hand
side of (5.3.9), which in the case Γ = γI ,H = I leads to

AẊ(t) = γ (2I − AX(t) (3I − AX(t)))

= −γ
(
− (AX(t))2 + 3AX(t)− 2I

)
,

(5.3.10)

where X(0) is appropriately defined initial point. Further, the discrete-time model of (5.3.10)
based on the Euler forward-difference rule is defined by

AXk+1 = AXk + γ (2I − AXk (3I − AXk)) ,

where γ = τ γ > 0 is the step size. After the replacement of A−1 by Xk, the implicit discrete-
time ZNN model for the usual matrix inversion can be stated as

Xk+1 = Xk

(
I + γ

(
2I − 3AXk + (AXk)2

))
, (5.3.11)

i.e. in the form of scaled hyperpower iterative method of the order 3. This method was proposed
by Srivastava and Gupta in [72] for estimating the Moore-Penrose inverse. The scaled hyper-
power iterative method (5.3.11) of the order 3 is developed by extending the scaled hyperpower
iterative method (5.3.7) of the order 2.

As a consequence, it is reasonable to investigate the ZNN model defined in (5.3.10), initi-
ated by the ZF defined in (5.3.8).

Our intention is to extend just defined principle in the widest sense, which assumes an
arbitrary hyperpower method of the order p ≥ 2. In view of the previously exploited principle,
the corresponding continuous-time model starts from the error-monitoring function defined by

EH(X(t), t) :=
p−1∑
i=1

R(t)i =
p−1∑
i=1

(I − AX(t))i .

The principle of mathematical induction reveals

˙R(t)i = −
i−1∑
l=0

(I − AX(t))lAẊ(t) (I − AX(t))i−1−l .

130

5.4. Neural network architecture of ZNNCM model

Then the general ZNN design model (5.3.2) leads to the following implicit dynamic equation
in the caseH = I:

−
p−1∑
i=1

i−1∑
l=0

(I − AX(t))lAẊ(t) (I − AX(t))i−1−l = −γ
p−1∑
i=1

(I − AX(t))i . (5.3.12)

After the substitution AX(t) = I in the left hand side of the implicit dynamics (5.3.12), one
can verify

AẊ(t) = γ
p−1∑
i=1

(I − AX(t))i . (5.3.13)

The discretization of the ZNN model (5.3.13) corresponding to the Euler forward-difference
rule is given as

AXk+1 = AXk + γ
p−1∑
i=1

(I − AXk)i , γ = τ γ > 0.

The inverse A−1 can be approximated by Xk, so that the implicit discrete-time ZNN model
of (5.3.13), aimed for the matrix inversion, is given as

Xk+1 = Xk

I + γ
p−1∑
i=1

(I − AXk)i
 . (5.3.14)

The iterative rule (5.3.14) is referred as the scaled hyperpower iterative methods (SHPI shortly)
of an arbitrary order p ≥ 2.

In conclusion, it is reasonable to define the ZNN model (5.3.3) as the continuous-time
version of the scaled Chebyshev iterative method, in the same way as the ZNN model (5.3.10)
represents the continuous-time version of the scaled Newton iterative method. A comparison
between these two concurrent ZNN models will be investigated.

5.4 Neural network architecture of ZNNCM model

The graphical editor, customizable block libraries and solvers available in Matlab Simulink
are used for modeling and simulating the proposed dynamic systems. As it was mentioned in
[123], the ZNN modeling could be readily developed, expanded and finally realized by using
Matlab Simulink tool. This fact was our motivation to use the Matlab Simulink tool in the
implementation of defined ZNN models. The ZNN model (5.3.3) will be denoted by ZNNNM.
Also, the ZNN model (5.3.10) is termed as ZNNCM. In addition, we define a hybrid method
which starts from the ZNN model (5.3.3) and finishes with (5.3.10). Finally, GNN denotes the
gradient based neural network from [138] in the nonsingular case, corresponding to the case
G = AT in the RNN1 model.

131

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

The Simulink implementation of the ZNNNM model (5.3.3), restated in the equivalent form

Ẋ(t) = (I − A)Ẋ(t)− γH (AX(t)− I)) . (5.4.1)

is presented in Figure 5.1.

X(t)

AX(t)-I

I-A

H(AX(t)-I)

AX(t)

(I-A)X'(t)

||X-A
-1
||
1

(I-A)X'(t)-γH(AX(t)-I)

A

A

1

s

Integrator

-K-

γ

I

Ι
Matrix
Multip ly

Matrix Multiply

Add

Matrix
Multip ly

Matrix Multiply1

II

purelin

X(t)

In1 Out1

power-sigmoid

Manual Switch

Error

Matrix
1-Norm

Matrix 1-Norm

Figure 5.1: Simulink implementation of the ZNNNM model.

In order to ensure the implementation, (5.3.10) is transformed into the following equivalent
form:

Ẋ(t) = (I − A)Ẋ(t)− γH
(
− (AX(t))2 + 3AX(t)− 2I

)
. (5.4.2)

The Matlab Simulink implementation of the ZNNCM model, based on (5.4.2), is presented in
Figure 5.2.

Two appropriate activation functions, introduced in [42], will be exploited in nodes of two
developed ZNNs. Their definitions will be restated here in order to complete the presentation.
It is assumed that A ∈ Cn×n is written as B + ιC, where ι =

√
−1 denotes the imaginary unit

and B ∈ Rn×n, C ∈ Rn×n are two real matrices. The matrices B,C correspond to real and
imaginary part of the complex entries of A, respectively. Additionally, let F(D) be an odd and
monotonically increasing function element-wise applicable to elements of D = (dkj) ∈ Rn×n

according to the rule F(D) = (f(dkj)), where f(·) is an odd and monotonically increasing
function.

132

5.4. Neural network architecture of ZNNCM model

γΗ((-AX(t))
2
+3AX(t)-2I)

(-AX(t))
2
+3AX(t)-2I3AX(t)

AX(t)

AX(t)

(I-A)X'(t)

AX(t)

2Ι

||X-A
-1
||
1

(Ι-Α)Χ'(t)-γΗ((-AX(t))
2
+3AX(t)-2I)

(AX(t))
2

X(t) 1

s

Integrator

A

Constant

Matrix
Multip ly

Matrix Multiply

I

Constant1

purelin

Matrix
Multip ly

Matrix Multiply1

Matrix
Multip ly

Matrix Multiply2

Matrix
Multip ly

Matrix Multiply3

Matrix
Multip ly

Matrix Multiply4
3

Gain

I

Constant2

2

Gain1

-K-

γ

inv(A)

Constant3

In1 Out1

Power-sigmoid

Manual Switch2

Display2

Matrix
1-Norm

Matrix 1-Norm1

X(t)

Figure 5.2: Simulink implementation of the ZNNCM model.

The type I activation function is defined by

H1(A) = H1(B + ιC) = F(B) + ιF(C). (5.4.3)

Similarly, the type II activation function exploits the Hadamard product U ◦ V = (ukjvkj) of
matrices U = (ukj) and V = (vkj), and it is defined as

H2(A) = H2(B + ιC) = F(Γ) ◦ exp(ιΘ), (5.4.4)

where Γ = |B+ ιC| ∈ Rn×n and Θ = Θ(B+ ιC) ∈ (−π, π]n×n denote element-wise modulus
and the element-wise arguments, respectively, of the complex matrix B + ιC. In sequel, we
use the notationHk as a universal replacement forH1 orH2.

The hybrid method starts using the ZNNCM method and then continues with the ZNNNM
method. The starting point x0 of the ZNNNM method is just the output of the ZNNCM method
and the finishing time of the ZNNCM method is the initial time of the ZNNNM method. The
hybrid method will be denoted by ZNNHM(t0), where t0 denotes the time when the ZNNNCM

133

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

stops and ZNNNM continues. More precisely, the ZNNCM method evaluates in the time inter-
val [0, t0], while the ZNNNM method evaluates in the time interval [t0, t], where [0, t] denotes
the considered time interval of the hybrid method. Since the ZNNNM model is globally ex-
ponentially convergent to the exact time-varying inverse A(t)−1, the output x0 of the ZNNCM
method could be submitted as the initial point of the ZNNNM method.

5.5 Convergence of the ZNNCM model

In this section, it is proven the convergence of the complex neural network model (5.3.10)
based on both the activation functionsH1 andH2.

Theorem 5.5.1. [87] Let the invertible complex matrix A ∈ Cn×n be given. Then the state

matrix X(t) ∈ Cn×n of the complex neural network model (5.3.10) based on the activation

function H1 converges to the matrix inverse A−1, and the solution is stable in the sense of

Lyapunov.

Proof. Let X̃(t) := A−1 −X(t). Then X(t) = A−1 − X̃(t) and ˙̃X(t) = −Ẋ(t). Substituting
the above two equations into (5.3.10) yields

A ˙̃X(t) = γH1

(
−
(
I − AX̃(t)

)2
+ 3

(
I − AX̃(t)

)
− 2I

)
. (5.5.1)

After substituting X(t) = A−1 − X̃(t) in the ZF defined by (5.3.8), one can verify

EC(X̃(t), t) = AX̃(t) + (AX̃(t))2. (5.5.2)

In the view of the definition of activation functionH1(·), taking into accountEC(t) = Re(EC(t))
+ ιIm(EC(t)), the general model Ė(t) = −γH1(E(t)) splits into the following two equations
in the real domain:

Re(ĖC(t)) = −γF(Re(EC(t)))

and
Im(ĖC(t)) = −γF(Im(EC(t))).

In order to verify the convergence, the Lyapunov function candidate is defined as

L(X̃(t), t) = L(t) = ‖EC(t)‖2
F

2 = Tr (EC(t)HEC(t))
2 . (5.5.3)

Then the following identities can be verified:

134

5.5. Convergence of the ZNNCM model

dL(t)
dt =

Tr
(
ĖC(t)HEC(t) + EC(t)HĖC(t)

)
2

= −1
2γTr

{(
F (Re (EC(t)))T − ιF (Im (EC(t)))T

)
(Re (E(t)) + ιIm (EC(t)))

+
(
Re (EC(t))T − ιIm (EC(t))T

)
(F(Re (EC(t))))T + ιF(Im (EC(t)))

}
= −γTr

{
Re (EC(t))TF (Re (EC(t))) + Im (EC(t))TF (Im (EC(t)))

}
.

Since F(C) = (f(ckj)) and f(·) is an odd and monotonically increasing function, it follows
that

Tr
{
Re (EC(t))TF (Re (EC(t))) + Im (EC(t))TF (Im (EC(t)))

}
= Tr

{
Re (EC(t))TF (Re (EC(t)))

}
+ Tr

{
Im (EC(t))TF (Im (EC(t)))

}
≥ 0.

To simplify notation, let us denote (i, j)th element of Re (E(t)) by eij and (i, j)th element of
Im (E(t)) by e′ij . Then

Tr
{
Re (EC(t))TF (Re (EC(t))) + Im (EC(t))TF (Im (EC(t)))

}
=
∑
j

eijf(eij) +
∑
j

e′ijf(e′ij) ≥ 0

and finally
dL(X̃(t), t)

dt

 < 0 if EC(X̃(t), t) 6= 0,
= 0 if EC(X̃(t), t) = 0.

Since X̃(t) = 0 is an equilibrium point of the system (5.5.1), and E(0) = 0 it follows that

dL(X̃(t), t)
dt ≤ 0, ∀X̃(t) 6= 0.

As a consequence of the Lyapunov stability theory, the equilibrium state X̃(t) = 0 is stable.
Since X̃(t) := A−1 −X(t), we have X(t)→ A−1, t→∞ .

Theorem 5.5.2. [87] Let the invertible complex matrix A ∈ Cn×n be given. Then the state

matrix X(t) ∈ Cn×n of the complex neural network model (5.3.10) based on the activation

function H2 converges to the matrix inverse A−1, and the solution is stable in the sense of the

Lyapunov.

Proof. Analogically as in the proof of Theorem 5.5.1, the general model is given by

ĖC(t) = −γH2(E(t)),

135

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

where E(X̃(t), t) = EC(t) is defined in (5.5.2). The definition ofH2(·) implies

H2(EC(t)) = F (|EC(t)|) ◦ exp(ιΘ(EC(t))).

The time derivative of the Lyapunov function candidate (5.5.3) is equal to

dL(t)
dt =

Tr
(
EC(t)HĖ(t) + ĖC(t)HEC(t)

)
2

= −1
2γTr

(
E(t)HH2 (EC(t)) + E(t)H2 (EC(t))H

)
= −1

2γTr
(
EC(t)HH2 (EC(t)) +

(
EC(t)HH2 (EC(t))

)H
)

= −γTr
(
Re

(
EC(t)HH2 (EC(t))

))
= −γTr

{
Re

[
EC(t)HF (|EC(t)|) ◦ exp (ιΘ(EC(t)))

]}
.

Since EC(t) = |EC(t)| ◦ exp(ιΘ(EC(t))), it follows that

dL(t)
dt = −γTr

{
Re

[
exp

(
−ιΘ

(
EC(t)H

)
◦
∣∣∣EC(t)H

∣∣∣) (F (|EC(t)|) ◦ exp (ιΘ (EC(t))))
]}
.

Again, using that F(·) is monotonically increasing, it follows the inequality F(|EC(t)|) > 0,
for E(t) 6= 0, and F(|EC(t)|) = 0, for EC(t) = 0 which implies that

dL(X̃(t), t)
dt ≤ 0, ∀X̃(t) 6= 0.

According to the Lyapunov stability theory, the equilibrium state X̃(t) = 0 is stable and,
X(t)→ A−1, t→∞.

5.6 Simulation results and its comparison

Example 5.6.1. As it was observed in [60], the GNN models are not appropriate for calculating
the inverse of a matrix with a big condition number. So this is a reason to apply the ZNNCM
model to a matrix with a big condition number. The following matrix A is considered for this
purpose:

A =



1 0 0 0 0 0
1 1 1 1 1 1
1 2 4 8 16 32
1 3 9 27 81 243
1 4 16 64 256 1024
1 5 25 125 625 3125


136

5.6. Simulation results and its comparison

with the condition number cond(A) = 5.7689e+04. The theoretical inverse of A is equal to

A−1 =



1 0 0 0 0 0
−137

60 5 −5 10
3 −5

4
1
5

15
8 −77

12
107
12 −13

2
61
24 −

5
12

−17
24

71
24 −

59
12

49
12 −

41
24

7
24

1
8 −

7
12

13
12 −1 11

24 −
1
12

− 1
120

1
24 −

1
12

1
12 −

1
24

1
120


.

Using the scaling parameter γ = 106, the Power-Sigmoid activation function and ode45

solver, after t = 10−5s sec, the ZNNCM model gives the results ZNNCM(A) which is equal to



0.999999999294662 −0.000000000000000 −0.000000000000000
−2.283333331722813 4.999999996473304 −4.999999996473306
1.874999998677495 −6.416666662140734 8.916666660377395
−0.708333332833721 2.958333331246700 −4.916666663198751
0.124999999911833 −0.583333332921884 1.083333332569217
−0.008333333327456 0.041666666637277 −0.083333333274555

0.000000000000000 −0.000000000000000 −0.000000000000000
3.333333330982192 −1.249999999118328 0.199999999858933
−6.499999995415274 2.541666664873933 −0.416666666372777
4.083333330453185 −1.708333332128381 0.291666666460944
−0.999999999294657 0.458333333010054 −0.083333333274555
0.083333333274555 −0.041666666637278 0.008333333327456



with the absolute error ‖X(t)− A−1‖1 = 1.4106399215397e−08. Trajectories of convergence
behavior in 10−5s under zero initial conditions in the ZNNCM model are shown in Figure 5.3.

137

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−5

−8

−6

−4

−2

0

2

4

6

8

10

Time (s)

S
ta

te
 V

ar
ia

bl
es

Figure 5.3: Trajectories in 10−5 seconds under zero initial conditions in the ZNNCM model

Trajectories of the residual errors ‖X(t) − A−1‖1 of the model ZNNCM are illustrated in
Figure 5.4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

E
rr

or

Figure 5.4: Trajectories of the residual errors of the model ZNNCM.

Trajectories of the residual errors ‖X(t)−A−1‖1 of both the ZNNCM and ZNNNM models
are illustrated in Figure 5.5.

The ZNNNM method produces the result with the absolute error ‖X(t)− A−1‖1 =
3.5446017745966e−08 while the GNN model corresponding to the usual matrix inversion, from
[94] does not achieve the convergence and stops with the absolute error equal to
‖X(t) − A−1‖1 = 19.509081114657. So, the ZNNCM model can be used to compute the
inverses of ill-conditioned matrices. This is one more advantage for the ZNNCM model over
the GNN model.

138

5.6. Simulation results and its comparison

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

E
rr

or

Error ZNNNM
Error ZNNCM

Offset=0

Figure 5.5: Trajectories of the residual errors of the models ZNNNM and ZNNCM.

In the subsequent examples, the matrix A is a randomly generated n×n matrix and x(0) is
a vectorization of a given n×n matrix X(0). It is assumed that x(0) is the same for all models
ZNNNM, ZNNCM and GNN in the actual table. The ordered triple (t, n, solver) in headings
of subsequent tables will include the time t, the dimension n of the input matrix and the used
Matlab solver. Let us mention that the best results in all tables are marked in bold.

Example 5.6.2. According to Theorem 5.5.1 and Theorem 5.5.2, the solution of the complex
neural network model (5.3.10) is stable in the sense of the Lyapunov. Therefore, it is desirable
to choose the zero initial state X(0). In this example, X(0) is randomly generated n×n matrix
in order to test behavior of the ZNNCM model. The activation functionH is linear.

Table 5.1: Comparison of the models ZNNNM, ZNNCM and GNN.

(10−9, 10, ode45) (10−11, 10, ode45)
Method γ ‖X − A−1‖1 Method γ ‖X − A−1‖1

ZNNNM 108 9.6055 ZNNNM 108 10.6051
ZNNCM 108 8.6367 ZNNCM 108 10.5938
GNN 108 10.4382 GNN 108 10.6126
ZNNNM 109 3.9053 ZNNNM 109 10.5101
ZNNCM 109 8.7346 ZNNCM 109 10.3980
GNN 109 9.8657 GNN 109 10.5877
ZNNNM 1010 4.8369e−04 ZNNNM 1010 9.6055
ZNNCM 1010 0.0013 ZNNCM 1010 8.6367
GNN 1010 8.4838 GNN 1010 10.4382

139

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

Table 5.1: Comparison of the models ZNNNM, ZNNCM and GNN.

(10−9, 10, ode45) (10−11, 10, ode45)
Method γ ‖X − A−1‖1 Method γ ‖X − A−1‖1

ZNNNM 1011 2.8613e−06 ZNNNM 1011 3.9053
ZNNCM 1011 7.9558e−05 ZNNCM 1011 8.7346
GNN 1011 2.1187 GNN 1011 9.8657
ZNNNM 1012 1.0572e−05 ZNNNM 1012 4.8369e−04
ZNNCM 1012 3.4264e−05 ZNNCM 1012 0.0013
GNN 1012 9.8238e−06 GNN 1012 8.4838
ZNNNM 1013 2.1264e−05 ZNNNM 1013 2.8613e−06
ZNNCM 1013 0.0010 ZNNCM 1013 7.9558e−05
GNN 1013 5.7854e−06 GNN 1013 2.1187
ZNNNM 1014 2.0846e−06 ZNNNM 1014 1.0572e−05
ZNNCM 1014 0.0015 ZNNCM 1014 3.4264e− 05
GNN 1014 3.3838e−06 GNN 1014 9.8238e−06

According to the results arranged in Table 5.1, the following observations could be empha-
sized:
(a) The property "as large as possible" of the scaling parameter γ is valid for ZNNNM and
GNN methods, especially for the GNN method, and it is not applicable in the case of the ZN-
NCM method,
(b) The ZNNCM method produces better results within the smaller time period [0, 10−11] than
in the time period [0, 10−9],
(c) The ZNNCM method produces the best results during the time [0, 10−11] and smaller values
of γ: γ = 108, 109, 1010,
(d) In the case of a nonzero initial state X(0), the ZNNCM method should be used in a short
time [0, 10−11] and with smaller values of γ ≤ 1010.

Example 5.6.3. In this example, X(0) is randomly generated n × n matrix and the activation
functionH is linear.

Table 5.2: Comparison of the models ZNNNM, ZNNCM and ZNNHM.

(10−11, 30, ode45) (10−11, 30, ode15s)
Method γ ‖X − A−1‖1 Method γ ‖X − A−1‖1

ZNNNM 1010 12.6304 ZNNNM 1010 16.3735
ZNNCM 1010 11.9629 ZNNCM 1010 1.8502e+ 03
ZNNHM(10−12) 1010 11.2585 ZNNHM(10−12) 1010 19.4103

140

5.6. Simulation results and its comparison

Table 5.2: Comparison of the models ZNNNM, ZNNCM and ZNNHM.

(10−11, 30, ode45) (10−11, 30, ode15s)
Method γ ‖X − A−1‖1 Method γ ‖X − A−1‖1

ZNNHM(10−14) 1010 11.4939 ZNNHM(10−14) 1010 18.2060
ZNNNM 1011 5.1351 ZNNNM 1011 6.6561
ZNNCM 1011 5.1555e+ 15 ZNNCM 1011 7.6935
ZNNHM(10−12) 1011 4.7521 ZNNHM(10−12) 1011 680.4448
ZNNHM(10−14) 1011 4.6613 ZNNHM(10−14) 1011 7.4102
ZNNNM 1012 6.3565e− 04 ZNNNM 1012 8.2654e− 04
ZNNCM 1012 6.1391e+ 15 ZNNCM 1012 4.7134e− 04
ZNNHM(10−12) 1012 2.7946e+ 11 ZNNHM(10−12) 1012 7.7231e− 04
ZNNHM(10−14) 1012 5.6655e− 04 ZNNHM(10−14) 1012 9.6796e− 04
ZNNNM 1013 6.7814e− 06 ZNNNM 1013 5.4011e− 12
ZNNCM 1013 1.0634e+ 16 ZNNCM 1013 1.7082e− 13
ZNNHM(10−12) 1013 2.7107e− 05 ZNNHM(10−12) 1013 3.7240e− 11
ZNNHM(10−14) 1013 6.2916e− 06 ZNNHM(10−14) 1013 1.9452e− 10
ZNNHM(10−16) 1013 3.5050e− 06 ZNNHM(10−16) 1013 3.0346e− 12

ZNNNM 1014 1.9529e− 05 ZNNNM 1014 3.2919e− 14
ZNNCM 1014 5.1555e+ 15 ZNNCM 1014 8.8654e− 14
ZNNHM(10−12) 1014 7.3399e− 05 ZNNHM(10−12) 1014 3.8212e− 14
ZNNHM(10−14) 1014 7.3399e− 05 ZNNHM(10−14) 1014 3.6538e− 14
ZNNHM(10−16) 1014 6.1610e− 06 ZNNHM(10−16) 1014 4.2286e− 14

The following observations rise from the numerical results arranged in Table 5.2:
(a) The hybrid method ZNNHM produces the best results in the case when the underlying
solver is ode45,
(b) the ZNNNM or CNNCM give the best results in the case when the underlying solver is
ode15s,
(c) The solver ode15s is more appropriate than ode45 with respect to the ZNNCM method,
(d) ZNNCM model is sensitive on the choice of the initial point X0 and the best choice is
X0 = 0.

Example 5.6.4. In the left column of Table 5.3 this example,X(0) is randomly generated n×n
matrix and X(0) n × n zero matrix in the right column. The activation function H is Power
Sigmoid activation function.

141

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

Table 5.3: Comparison of the models ZNNNM, ZNNCM and ZNNHM with Power Sigmoid
activation functionH, defined by the parameter p = 3.

(10−7, 20, ode15s), X0 is arbitrary (10−7, 30, ode15s), X0 = 0
Method γ ‖X − A−1‖1 Method γ ‖X − A−1‖1

ZNNNM 1012 2.7645e− 14 ZNNNM 1012 1.4903e− 12
ZNNCM 1012 4.3998e− 14 ZNNCM 1012 6.1530e− 12
ZNNHM(10−12) 1012 2.3267e− 14 ZNNHM(10−12) 1012 1.6522e− 12
ZNNHM(10−14) 1012 2.7345e− 14 ZNNHM(10−14) 1012 1.7446e− 12
ZNNHM(10−16) 1012 2.9818e− 14 ZNNHM(10−16) 1012 1.6834e− 12
ZNNNM 1013 2.6716e− 14 ZNNNM 1013 1.7769e− 12
ZNNCM 1013 4.5023e− 14 ZNNCM 1013 4.1402e− 12
ZNNHM(10−12) 1013 3.1053e− 14 ZNNHM(10−12) 1013 1.7335e− 12
ZNNHM(10−14) 1013 2.7970e− 14 ZNNHM(10−14) 1013 1.6732e− 12
ZNNHM(10−16) 1013 2.8306e− 14 ZNNHM(10−16) 1013 2.0054e− 12
ZNNNM 1014 2.7645e− 14 ZNNNM 1014 5.3491e− 12
ZNNCM 1014 4.3998e− 14 ZNNCM 1014 5.4503e− 12
ZNNHM(10−12) 1014 2.3267e− 14 ZNNHM(10−12) 1014 1.9956e− 12
ZNNHM(10−14) 1014 2.7345e− 14 ZNNHM(10−14) 1014 2.0058e− 12
ZNNHM(10−16) 1014 2.9818e− 14 ZNNHM(10−16) 1014 2.4750e− 12

Table 5.4: Comparison of the models ZNNNM, ZNNCM and ZNNHM with Power Sigmoid
activation function defined by the parameter p = 3.

(10−10, 30, ode15s), X0 = 0 (10−5, 30, ode15s), X0 = 0
Method γ ‖X − A−1‖1 Method γ ‖X − A−1‖1

ZNNNM 1012 1.2136e− 12 ZNNNM 1012 1.6829e− 12
ZNNCM 1012 1.8007e− 09 ZNNCM 1012 3.7154e− 12
ZNNHM(10−12) 1012 1.2410e− 11 ZNNHM(10−12) 1012 2.3492e− 12
ZNNHM(10−14) 1012 1.8332e− 12 ZNNHM(10−14) 1012 1.3554e− 12
ZNNHM(10−16) 1012 1.8565e− 12 ZNNHM(10−16) 1012 1.8953e− 12
ZNNNM 1013 1.6428e− 12 ZNNNM 1013 1.9011e− 12
ZNNCM 1013 4.4561e− 11 ZNNCM 1013 5.9375e− 12
ZNNHM(10−12) 1013 1.7544e− 12 ZNNHM(10−12) 1013 1.7805e− 12
ZNNHM(10−14) 1013 1.5256e− 12 ZNNHM(10−14) 1013 1.7413e− 12
ZNNHM(10−16) 1013 1.6547e− 12 ZNNHM(10−16) 1013 2.0168e− 12
ZNNNM 1014 1.7526e− 12 ZNNNM 1014 1.9145e− 12
ZNNCM 1014 4.4716e− 12 ZNNCM 1014 4.6704e− 12

142

5.6. Simulation results and its comparison

Table 5.4: Comparison of the models ZNNNM, ZNNCM and ZNNHM with Power Sigmoid
activation function defined by the parameter p = 3.

(10−10, 30, ode15s), X0 = 0 (10−5, 30, ode15s), X0 = 0
Method γ ‖X − A−1‖1 Method γ ‖X − A−1‖1

ZNNHM(10−12) 1014 1.7646e− 12 ZNNHM(10−12) 1014 1.9448e− 12
ZNNHM(10−14) 1014 1.2410e− 12 ZNNHM(10−14) 1014 1.5412e− 12
ZNNHM(10−16) 1014 2.0978e− 12 ZNNHM(10−16) 1014 1.9367e− 12

The following conclusion arises from the results presented in Table 5.3 and Table 5.4:
(a) The ZNNHM method gives best results for appropriately selected intermediate time t0. This
value is, in most cases, equal to t0 = 10−14.

Example 5.6.5. The results produced by the Simulink and based on based on the power sig-
moid activation function are arranged in Table 5.5.

Table 5.5: ZNNNM vs ZNNCM using the power sigmoid activation function.

Method γ ‖X −A−1‖1 Method γ ‖X −A−1‖1

(10−8, 10, ode45), X0 = 0 (10−8, 10, ode15s), X0 = 0
ZNNNM 106 0.99000742007452 ZNNNM 106 0.99000742007452
ZNNCM 106 11.796704121711 ZNNCM 106 11.796704121712
ZNNHM(10−10) 106 0.98921005121423 ZNNHM(10−10) 106 0.98921005121423

(10−5, 10, ode45), X0 = 0 (10−5, 10, ode15s), X0 = 0
ZNNNM 106 1.7721525005302e− 09 ZNNNM 106 1.7721525005302e− 09
ZNNCM 106 8.9282757020914e− 09 ZNNCM 106 8.9286161242264e− 09
ZNNHM(10−8) 106 1.5373390357755e− 09 ZNNHM(10−8) 106 1.5373790308806e− 09

(10−3, 10, ode45), X0 = 0 (10−3, 10, ode15s), X0 = 0
ZNNNM 106 2.7877256580469e− 15 ZNNNM 106 2.776852376599e− 15∗

ZNNCM 106 9.048317650695e− 15 ZNNCM 106 7.549516567451e− 15
ZNNHM(10−5) 106 2.7947546454768e− 15 ZNNHM(10−5) 106 2.140363747233e− 15

The star sign in Table 5.5 means that the ZNNM model stopped the computation with the
message:
"Relative tolerance of 1.0E-15 is too small, setting relative tolerance to 2.8421709430404007E-
14".

143

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

144

Chapter 6

Matlab simulation of the hybrid neural
dynamics for online matrix inversion

A novel kind of a hybrid recursive neural implicit dynamics for real-time matrix inver-

sion has been recently proposed and exploited. It was shown that, comparing a hybrid recur-

sive neural implicit dynamics on the one hand, and conventional explicit neural dynamics on

the other hand, a hybrid model can coincide better with systems in practice and has higher

abilities in representing dynamic systems. More importantly, hybrid model can achieve supe-

rior convergence performance in comparison with the existing dynamic systems, specifically

recently-proposed Zhang dynamics. This chapter presents the Simulink model of a hybrid re-

cursive neural implicit dynamics and gives a simulation and comparison to the existing Zhang

dynamics for real-time matrix inversion. A simulation results confirm a superior convergence

of the hybrid model compared to Zhang model.

6.1 Preliminaries and motivation

A new type of complex-valued recurrent neural networks, called Zhang neural network
(ZNN), was proposed in 2001 and has been extensively exploited in solving various time-
varying complex generalized inverse problems. The design of complex ZNN models arises
from the choice of a complex matrix-valued error-monitoring function, called the Zhang func-
tion (ZF). Computation of the Moore-Penrose inverse of time-varying full-rank matrix by
means of different ZNN models were investigated in [127]. Liao and Zhang in [48] proposed
five different complex ZFs and, accordingly developed and investigated five different complex
ZNN models for computing the time-varying complex pseudoinverse.

In this chapter we present a Matlab Simulink model based on the hybrid recurrent neural
networks for computing inverse of nonsingular matrix [10]. This Simulink model was proposed
in [137].

145

Chapter 6. Matlab simulation of the hybrid neural dynamics for online matrix inversion

The following defining equation of matrix inverse A−1 ∈ Rn×n can be given:

AX(t)− I = 0 (6.1.1)

or
X(t)A− I = 0, (6.1.2)

where I ∈ Rn×n is the identity matrix, and X(t) ∈ Rn×n denotes the unknown matrix to be
inverted which corresponds to the theoretical inverse A−1.

Some known results related to the gradient-based dynamics and implicit Zhang dynamics
as well as improved hybrid model are restated in Section 6.2. In Section 6.3 we present the
corresponding Matlab Simulink model of improved hybrid dynamics along with simulation
examples and comparison.

6.2 Model formulation

We assume invertible condition for matrix inversion : Equation (6.1.1) (or (6.1.2) in dual
case) has a unique solution if the minimal eigenvalue a of matrix ATA is larger than 0.

6.2.1 Gradient-based dynamics

The dynamics of the gradient neural network (GNN) models for computing inverses are
based on the usage of the scalar-valued norm-based error function

ε(t) = ε(X(t)) = 1
2‖E(t)‖2

F , (6.2.1)

where E(t) is an appropriate error matrix and ‖A‖F :=
√

Tr(ATA) denotes the Frobenius
norm of the matrix A and Tr(·) denotes the trace of a matrix. The general design formula is
typically defined along the negative gradient −∂ε(X(t))/∂X of ε(X(t)) until the minimum is
reached. Using the above negative gradient to construct the neural dynamics, we could have
the gradient-based dynamics as follows

dX(t)
dt = −γF

(
∂ε(X(t))
∂X

)
. (6.2.2)

The scaling real parameter γ in (6.2.2) is used to adjust the convergence rate and could be
chosen as large as possible in order to accelerate the convergence. Further, F(C) is an odd and
monotonically increasing function array, element-wise applicable to elements of a real matrix
C = (cij) ∈ Rn×n, i.e. F(C) = (f(cij)), i = 1, . . . ,m, j = 1, . . . , n, wherein f(·) is an odd

146

6.2. Model formulation

and monotonically increasing function.
The dynamic equation of the linear recurrent neural network for the inversion of a real

nonsingular matrix is initiated by the error matrix E(t) = AX(t) − I , and it was proposed in
[94]:

dX(t)
dt = −γATAX(t) + γAT = −γAT (AX(t)− I) . (6.2.3)

The same principle was extended for computing the Moore–Penrose inverse of a full-
column rectangular matrix A ∈ Rm×n

n or a full-row rectangular matrix A ∈ Rm×n
m . Wang

showed in [96] that the model can be used for computing the Moore-Penrose inverse of rank-
deficient matrices under the zero initial condition, V (0) = 0.

6.2.2 Zhang dynamics

On the other hand, the ZNN model for online time-invariant matrix inversion is based upon
the matrix-formed error function E(t) , instead of a scalar valued function. The time derivative
of error function E(t), should be chosen such that each element eij(t) of E(t) converges to
zero, ∀i = 1, . . . , n. A general design rule of Ė(t) is defined

Ė(t) = dE(t)
dt = −γF (E(t)) . (6.2.4)

Substituting E(t) into dynamic system (6.2.4) and choosing F to bi linear function, the follow-
ing Zhang dynamics for online matrix inversion can be obtained:

AẊ = −γAX(t) + γI (6.2.5)

The implicit dynamics were originally proposed for online inversion of a time-varying ma-
trixA(t) in [122]. It was shown in [122] that the Zhang dynamics (6.2.6) globally exponentially
converges to the theoretical inverse A−1, starting from any initial state X(0), with the exponen-
tial convergence rate γ.

6.2.3 Improved ZNN model for matrix inversion

The ZNN model for online time-invariant matrix inversion is based upon the error matrix
E(t) = AX(t)− I , and it is defined using the general design rule

Ė(t) = −γE(t) = −γ(AX(t)− I),

which initiates the implicit dynamics

147

Chapter 6. Matlab simulation of the hybrid neural dynamics for online matrix inversion

AẊ(t) = −γ(AX(t)− I). (6.2.6)

A gradient-based recurrent neural dynamics for real-time inverse of a time-invariant matrix
was proposed by Wang [94] in the form of an explicit dynamic system

Ẋ(t) = −γATAX(t) + γAT. (6.2.7)

The above explicit gradient-based recursive dynamics (6.2.7) can be transformed into an
implicit form

A ˙X(t) = −γAAT(AX(t)− I). (6.2.8)

Recently, a novel kind of recurrent implicit dynamics for real-time matrix inversion was
proposed and investigated in [10, 11]. This hybrid model can be obtain by combining the right
hand side of both Zhang dynamics (6.2.6) and gradient dynamics (6.2.8)

AẊ(t) = −γ(AAT + I)(AX(t)− I). (6.2.9)

Global exponential convergence rate of the implicit dynamics (6.2.9) was investigated in [10,
11].

Theorem 6.2.1. [10] Given nonsingular matrix A ∈ Rn×n, the state matrix A ∈ Rn×n of

the model (6.2.9), starting from any initial state X(0) ∈ Rn×n, achieves global exponential

convergence to theoretical inverse X∗ = A−1. In addition, the exponential convergence rate is

the product of γ and the minimum eigenvalue γ > 1 of ATA+ I .

6.3 Simulation results and its comparison

The graphical editor and customizable block libraries available in Matlab Simulink tool
were used in [137] for simulating and comparing the Zhang dynamic system (6.2.6) and re-
cently proposed hybrid dunamic system (6.2.9). Simulink implementation of (6.2.6) was de-
scribed in [87]. The models (6.2.6) and (6.2.9) will be termed as ZNNNM and EZNNNM .

The Simulink implementation of the hybrid model (6.2.9) is based on the equivalent form
given by

Ẋ(t) = (I − A)Ẋ(t)− γ(AAT + I)(AX(t)− I). (6.3.1)

and is presented in Figure 6.1. For solving differential equations in the models we used
ode15s solver.

148

6.3. Simulation results and its comparison

X(t)

(AAT+I)AX(t)-(AAT+I)

I-A

AT

AX(t)

AAT

(I-A)X'(t)

AAT+I

(I-A)X'(t)-γ ((AAT+I)AX(t)-(AAT+I)))

(AAT+I)AX(t)

||X-A-1||
1

A

A

1/s

Integrator

-K-

γ

I

Ι

Matrix
Multiply

Matrix Multiply
Add

Matrix
Multiply

Matrix Multiply1

II

X(t)

Matrix
Multiply

Matrix Multiply2

u
T

Transpose

Matrix
Multiply

Matrix Multiply3

-C-

Constant3

Display2

Matrix
1-Norm

Matrix 1-Norm1

Time

Scope1

Error ZNNChen

Figure 6.1: Simulink implementation of EZNNNM model.

The next examples will compare performances of both ZNNNM and EZNNNM models.

Example 6.3.1. (a) Consider the following matrix

A=



0.8147 0.1576 0.6557 0.7060 0.4387 0.2760 0.7513 0.8407 0.3517 0.0759
0.9058 0.9706 0.0357 0.0318 0.3816 0.6797 0.2551 0.2543 0.8308 0.0540
0.1270 0.9572 0.8491 0.2769 0.7655 0.6551 0.5060 0.8143 0.5853 0.5308
0.9134 0.4854 0.9340 0.0462 0.7952 0.1626 0.6991 0.2435 0.5497 0.7792
0.6324 0.8003 0.6787 0.0971 0.1869 0.1190 0.8909 0.9293 0.9172 0.9340
0.0975 0.1419 0.7577 0.8235 0.4898 0.4984 0.9593 0.3500 0.2858 0.1299
0.2785 0.4218 0.7431 0.6948 0.4456 0.9597 0.5472 0.1966 0.7572 0.5688
0.5469 0.9157 0.3922 0.3171 0.6463 0.3404 0.1386 0.2511 0.7537 0.4694
0.9575 0.7922 0.6555 0.9502 0.7094 0.5853 0.1493 0.6160 0.3804 0.0119
0.9649 0.9595 0.1712 0.0344 0.7547 0.2238 0.2575 0.4733 0.5678 0.3371



.

This matrix has minimum eigenvalue α = 0.0154 of ATA:. We compare the linear ZNNNM

149

Chapter 6. Matlab simulation of the hybrid neural dynamics for online matrix inversion

EZNNNM model with the gain parameter γ = 106. The initial matrix is chosen by V (0) = 0.

Figure 6.2 (right) shows the trajectories of the error norms ‖A−1−X(t)‖ in the total simulation

time ttot = 10−5. Figure 6.2 (left) shows the trajectories of the error norms ‖A−1 − X(t)‖ in

the total simulation time ttot = 10−6.

0 0.2 0.4 0.6 0.8 1

x 10
−6

0

2

4

6

8

10

12

Time (seconds)

E
rr

or

Error ZNNNM
Error EZNNNM

0 0.2 0.4 0.6 0.8 1

x 10
−5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

E
rr

or

Error ZNNNM
Error EZNNNM

Figure 6.2: Trajectories of the errors ‖A−1 −X(t)‖ of ZNNNM and EZNNNM in
Example 6.3.1.

In general, Figure 6.2 shows that EZNNNM model slightly outperforms the ZNNNM

model. Both models generate almost identical residual norms in the initial phase and then

EZNNNM generates a bit smaller residual norms. According to Figure 6.2, theEZNNNM

model possesses a bit faster convergence.

(b) Now, consider matrix A1 = 5I + A. This matrix has α = 16.6813 which is quite

larger than α in the previous example. We apply the linear EZNNNM model with the gain

parameter γ = 106.

Figure 6.3 (right) shows the trajectories of the error norm ‖A−1 −X(t)‖ in the total simu-

lation time ttot = 10−5. Figure 6.3 (left) shows the trajectories of the error norm ‖A−1−X(t)‖
in the total simulation time ttot = 10−6.

According to Figure 6.3, the EZNNNM model possesses faster convergence.

Example 6.3.2. Consider the matrix

A =
20 6
−1 30


which satisfies α = 386.2656. Elements of the matrixX(t) generated by the modelEZNNNM

are denoted by xEZNNNMij . Similarly, elements of the matrix X(t) generated by the model

150

6.3. Simulation results and its comparison

0 0.2 0.4 0.6 0.8 1

x 10
−6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

E
rr

or

Error ZNNNM
Error EZNNNM

0 0.2 0.4 0.6 0.8 1

x 10
−5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (seconds)

E
rr

or

Error ZNNNM
Error EZNNNM

Figure 6.3: Trajectories of the errors ‖A−1
1 −X(t)‖ of ZNNNM and EZNNNM in

Example 6.3.1.

ZNNNM are denoted by xZNNNMij . Trajectories of the elements of the matrices are presented

in Figure 6.4.

0 0.2 0.4 0.6 0.8 1

x 10
−4

−0.01

0

0.01

0.02

0.03

0.04

0.05

Time (seconds)

X
(t

)

x
11
ZNNNM

x
11
EZNNNM

x
12
ZNNNM

x
12
EZNNNM

x
21
ZNNNM

x
21
EZNNNM

x
22
EZNNNM

x
22
ZNNNM

Figure 6.4: Trajectories of X(t) of ZNNNM and EZNNNM in Example 6.3.2.

Greater value α initiates significantly faster convergence of EZNNNM with respect to

ZNNNM .

Example 6.3.3. This example shows the influence of α on the convergence of the ZNN models.

The gain parameters in the simulation is γ = 106 and the time period is [0, 10−5] s. First,

consider the following randomly generated matrix B:

151

Chapter 6. Matlab simulation of the hybrid neural dynamics for online matrix inversion

B =



0.9631 0.6241 0.0377 0.2619 0.1068
0.5468 0.6791 0.8852 0.3354 0.6538
0.5211 0.3955 0.9133 0.6797 0.4942
0.2316 0.3674 0.7962 0.1366 0.7791
0.4889 0.9880 0.0987 0.7212 0.7150


.

Then we are varying matrix A in the way that value α becomes larger in every step, and

testing both models on such matrix A in the order to find the error norm of the model results.

Table 6.1: Comparison of the models ZNNNM and EZNNNM

A α ‖XZNNNM − A−1‖1 ‖XEZNNNM − A−1‖1

B 0.0149 0.000594 0.000494
B + I 0.1729 0.000143 2.7866e−05
B + 2I 1.9360 3.8564e−05 2.1079e−08
B + 3I 5.6776 2.2102e−05 1.4172e−09
B + 4I 11.4133 1.5414e−05 3.6347−10
B + 5I 19.1467 1.1757−05 1.5278−09
B + 10I 87.8023 5.2761e−06 1.0706e−11
B + 15I 206.4530 3.3656e−06 2.7424e−11
B + 20I 375.1024 2.4667e−06 5.7302e−12
B + 50I 2437 9.4123e−07 8.6352e−14

From the Table 6.1 we can see that when the value of α is grater EZNNNM model gives

better accuracy of the solution related to ZNNNM model in the same given period of time.

Example 6.3.4. In this example we ask the answer for the question: is it possible to compensate

advantage of the EZNNNM model using greater values γ in ZNNNM . For this purpose,

we tested these models on the matrix

A =



5.8147 0.0975 0.1576 0.1419 0.6557
0.9058 5.2785 0.9706 0.4218 0.0357
0.1270 0.5469 5.9572 0.9157 0.8491
0.9134 0.9575 0.4854 5.7922 0.9340
0.6324 0.9649 0.8003 0.9595 5.6787


with the minimal eigenvalue of AAT equal to 20.8356. The maximal possible value in Simulink

model ZNNNM is 107 and in EZNNNM is 106. Figure 6.5 (right) shows the trajectories of

the error norm ‖A−1 −X(t)‖ in the total simulation time ttot = 10−5. Figure 6.5 (left) shows

the trajectories of the error norm ‖A−1 −X(t)‖ in the total simulation time ttot = 10−6.

152

6.3. Simulation results and its comparison

Figure 6.5: Trajectories of the errors ‖A−1
1 −X(t)‖ of ZNNNM and EZNNNM in

Example 6.3.4.

According to Figure 6.3, the EZNNNM model still possesses faster convergence. This

means that greater values γ can not compensate faster convergence rate of the EZNNNM

model with respect to ZNNNM model.

153

Chapter 6. Matlab simulation of the hybrid neural dynamics for online matrix inversion

154

Chapter 7

Conclusion

Generalized inverses arise in various applications such as statistics, linear estimation, least
squares approximation, singular differential and difference equations, singular control, Markov
chains, ill-posed problems, graphics, cryptography, coding theory, incomplete data recovery,
and robotics. One of the main motivation of this dissertation is based on the ability to exploit
the correlation between the dynamic state equations of recurrent neural networks for comput-
ing generalized inverses and integral representations of these generalized inverses. We have
focused particularly on the problem of generalized inverses computation as well as computa-
tion of regular inverses and matrix equations using artificial recurrent neural network approach.
Here we summarize most important contributions.

We have introduced artificial recurrent neural network as a parallel distributed computa-
tional model for computing the generalized inverses and have followed the main principle
which requires solving one representative matrix equation related to the considered general-
ized inverse via dynamic-system approach, defined over a certain norm based error function
E(t). It is necessary to find the minimum for the residual-norm function E(t) and dV (t)/dt =
−γ∂E(t)/∂V . The stability of the neural networks is conditioned by the requirement of the
given matrix spectrum. According to the spectrum requirement, we have studied two types of
the GNNs: GNN for computing generalized inverses with restrictions on a spectrum and GNN
for computing generalized inverses without restrictions on a spectrum. First, we have defined
the recurrent neural network for the Drazin inverse of a singular and the inverse of a nonsingu-
lar matrix and then we have introduced more generalized neural network model for computing
outer inverses with prescribed range and null space. Main generalized inverses, such as the
Moore-Penrose and the weighted Moore-Penrose inverse, the Drazin inverse and the group in-
verse can be derived after appropriate particular choices. In addition, we have analyzed and
proved the stability of such a solutions with regard to Lyapunov stability theory. These neu-
ral network models has proven to be capable of computing the considered generalized inverse.
By reducing the number of interconnections required for the network, the models reduce the

155

Chapter 7. Conclusion

complexity for computing the generalized inverse of a given matrix. These time-consuming
computations occur in large-scale applications. The proposed neural network models are stable
in the large and they are able to converge to the generalized inverse with a high accuracy and in
a short period of time. Through computer-simulated illustrative examples, we have shown the
proposed recurrent neural networks are able to generate generalized inverses of singular ma-
trices at the projected convergence rate. Computer simulations have been done using Matlab
environment.

We have investigated the conditions for the existence of outer inverse with prescribed range
and null space as well as different representations of outer inverses. In the essence, these in-
vestigations showed equivalence between two important representations of outer inverse. Then
we have applied obtained representations and introduced two dynamic state equations and ini-
tiated neural networks: RNN(4.2.3) and RNN(4.2.4). These RNNs are based on the full rank
representation of the outer inverse.

We have observed an analogy between the scaled hyperpower family (SHPI family) of itera-
tive methods for computing the matrix inverse and the discretization of Zhang Neural Network
(ZNN) models. On the basis of the discovered analogy, we have defined a family of ZNN
models corresponding to the family of hyperpower iterative methods. The ZNN model corre-
sponding to the hyperpower method of the order 2 (resp. of the order 3) is denoted as ZNNNM
(resp. ZNNCM). We have described the implementation of the introduced ZNN models in the
case of the scaled hyperpower methods of the order 2 and 3 using Matlab Simulink toolbox.

Derived simulation results indicate that the results derived by the ZNNCM method are not
favorable. But, the ZNNCM model becomes useful in the initialization of the ZNNNM method.
For the time being, it is very difficult to determine or estimate the optimal value of the decisive
time moment t0. These investigations should be interesting topic for further research. In the
current research, we recommend only heuristics and verification. Additionally, it is observable
that ZNNCM is most sensible to the choice of the initial approximation X0.

Also, general conclusion is that an approach to avoid usage of matrix iterations is defined.
The proposed alternative is based on the ZNN model an its Simulink implementation.

We have proposed the Matlab Simulink model of a novel implicit dynamic system (6.2.9)
for online matrix inversion. Compared to Zhang implicit dynamic system (6.2.6), superior
global exponential convergence to the theoretical inverse by hybrid implicit dynamic system
(6.2.9) has been confirmed and justified by several computer simulation results. Tests showed
that, with a greater value of α (i.e. γ = 1 + α), faster convergence and better accuracy of the
solution can be obtained with the hybrid implicit dynamic system related to the Zhang implicit
dynamic system.

156

Bibliography

[1] K. M. Abadir and J. R. Magnus. Matrix Algebra, volume 1. Cambridge University Press,
2005.

[2] A. Ben-Israel and T. N. E. Greville. Generalized Inverses. Springer, second edition,
2003.

[3] A. Benchabane, A. Bennia, F. Charif, and A. Taleb-Ahmed. Multi-dimensional Capon
spectral estimation using discrete Zhang neural networks. Multidimensional Systems

and Signal Processing, 24(3):583–598, 2013.

[4] A. Bjerhammar. A generalized matrix algebra. Lindståhl, 1958.

[5] R. W. Brockett. Dynamical systems that sort lists, diagonalize matrices, and solve linear
programming problems. Linear Algebra and its Applications, 146:79–91, 1991.

[6] J. Cai and G. Chen. On determinantal representation for the generalized inverse A(2)
T,S

and its applications. Numerical Linear Algebra with Applications, 14(3):169–182, 2007.

[7] S. L. Campbell and C. D. Meyer. Generalized Inverses of Linear Transformations, vol-
ume 56. SIAM,Philadelphia, 2009.

[8] S. L. Campbell, C. D. Meyer, Jr, and N. J. Rose. Applications of the drazin inverse to
linear systems of differential equations with singular constant coefficients. SIAM Journal

on Applied Mathematics, 31(3):411–425, 1976.

[9] F. Charif, A. Benchabane, N. Djedi, and A. Taleb-Ahmed. Horn & Schunck meets a
discrete Zhang neural networks for computing 2D optical flow. matrix, 2:2, 2009.

[10] K. Chen. Recurrent implicit dynamics for online matrix inversion. Applied Mathematics

and Computation, 219(20):10218–10224, 2013.

[11] K. Chen and C. Yi. Robustness analysis of a hybrid of recursive neural dynamics for
online matrix inversion. Applied Mathematics and Computation, 273:969–975, 2016.

157

Bibliography

[12] Y. Chen. A cramer rule for solution of the general restricted linear equation. Linear and

Multilinear Algebra, 34(2):177–186, 1993.

[13] A. Cichocki. Neural network for singular value decomposition. Electronics Letters,
28(8):784–786, 1992.

[14] A. Cichocki, T. Kaczorek, and A. Stajniak. Computation of the Drazin inverse of a sin-
gular matrix making use of neural networks. Bulletin of the Polish Academy of Sciences.

Technical Sciences, 40(4):387–394, 1992.

[15] A. Cichocki and R. Unbehauen. Neural networks for computing eigenvalues and eigen-
vectors. Biological Cybernetics, 68(2):155–164, 1992.

[16] A. Cichocki and R. Unbehauen. Neural networks for solving systems of linear equa-
tions and related problems. IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications, 39(2):124–138, 1992.

[17] J.-J. Climent, N. Thome, and Y. Wei. A geometrical approach on generalized inverses
by Neumann-type series. Linear algebra and its applications, 332:533–540, 2001.

[18] R. E. Cline and T. Greville. A Drazin inverse for rectangular matrices. Linear Algebra

and its Applications, 29:53–62, 1980.

[19] D. Djordjević, P. Stanimirović, and Y. Wei. The representation and approximations of
outer generalized inverses. Acta Mathematica Hungarica, 104(1-2):1–26, 2004.

[20] A. J. Getson and F. C. Hsuan. {2}-inverses and their statistical application, volume 47.
Springer Science & Business Media, 2012.

[21] G. H. Golub and C. F. Van Loan. Matrix Computations. Baltimore and London, The
Johns Hopkins, fourth edition, 2013.

[22] N. C. González. On the convergence of semiiterative methods to the Drazin inverse
solution of linear equations in Banach spaces. Collect. Math., 46(3):303–314, 1995.

[23] N. C. Gonzalez, J. Koliha, and Y. Wei. Integral representation of the Drazin inverse.
Electron. J. Linear Algebra, 9:129–131, 2002.

[24] N. C. González, J. Koliha, and Y. Wei. On integral representations of the Drazin inverse
in Banach algebras. Proceedings of the Edinburgh Mathematical Society (Series 2),
45(02):327–331, 2002.

[25] A. Graham. Kronecker Products and Matrix Calculus: with Applications, volume 108.
Horwood Chichester, 1981.

158

Bibliography

[26] C. W. Groetsch. Generalized Inverses of Linear Operators: Representation and Approx-

imation. Marcel Dekker, New York-Basel, 1977.

[27] W. Guo and T. Huang. Method of elementary transformation to compute moore–penrose
inverse. Applied Mathematics and Computation, 216(5):1614–1617, 2010.

[28] N. J. Higham. Functions of Matrices: Theory and Computation. SIAM, Philadelphia,
2008.

[29] F. Hsuan, P. Langenberg, and A. Getson. The {2}-inverse with applications in statistics.
Linear algebra and its applications, 70:241–248, 1985.

[30] X. Hu, C. Sun, and B. Zhang. Design of recurrent neural networks for solving con-
strained least absolute deviation problems. IEEE Transactions on Neural Networks,
21(7):1073–1086, 2010.

[31] Y. Hua, T. Chen, and W.-Y. Yan. Global convergence of oja’s subspace algorithm for
principal component extraction. IEEE Transactions on Neural Networks, 9(1), 1998.

[32] L. Jin, Y. Zhang, S. Li, Integration-Enhanced Zhang Neural Network for real-time-

varying matrix inversion in the presence of various kinds of noises, IEEE Transactions
on Neural Networks And Learning Systems 27 (2016), 2615–2627.

[33] L. Jin, Y. Zhang, S. Li, Y. Zhang, Noise-tolerant ZNN models for solving time-varying

zero-finding problems: a control-theoretic approach, IEEE Transactions on Automatic
Control, 62(2) (2017), 992–997.

[34] J. Jang, S. Lee, and S. Shin. An optimization network for matrix inversion. In Neural

Information Processing Systems, pages 397–401. College Park, MD: AIP, 1988.

[35] T. Kailath. Linear Systems, volume 1. Prentice-Hall Englewood Cliffs, NJ, 1980.

[36] V. N. Katsikis, D. Pappas, and A. Petralias. An improved method for the compu-
tation of the moore–penrose inverse matrix. Applied Mathematics and Computation,
217(23):9828–9834, 2011.

[37] H. K. Khalil. Nonlinear Systems. Prentice Hall (Upper Saddle River, NJ), 1996.

[38] D. L. Kleinman and M. Athans. The design of suboptimal linear time-varying systems.
IEEE Trans. Automat. Contr., AC-13:150–159, 1968.

[39] A. N. Langville and C. D. Meyer. Google’s Pagerank and Beyond: the Science of Search

Engine Rankings. Princeton University Press, Princeton, NJ, 2006.

159

Bibliography

[40] A. N. Langville and C. D. Meyer. Updating Markov chains with an eye on Google’s

PageRank, volume 27. SIAM, 2006.

[41] J. Levine and R. E. Hartwig. Applications of Drazin inverse to the Hill cryptographic
systems, part i. Cryptologia, 4(2):71–85, 1980.

[42] S. Li and Y. Li. Nonlinearly activated neural network for solving time-varying complex
sylvester equation. IEEE transactions on cybernetics, 44(8):1397–1407, 2014.

[43] S. Li, B. Liu, and Y. Li. Selective positive–negative feedback produces the winner-take-
all competition in recurrent neural networks. IEEE Transactions on Neural Networks

and Learning Systems, 24(2):301–309, 2013.

[44] S. Li, H. Wang, M.U. Rafique, A novel recurrent neural network for manipulator control

with improved noise tolerance, IEEE Transactions On Neural Networks And Learning
Systems (2018), 29:5 (2018), 1908–1918.

[45] S. Li, Y. Zhang, L. Jin, Kinematic Control of Redundant Manipulators Using Neural Net-

works, IEEE Transactions On Neural Networks And Learning Systems 28(10) (2017),
2243–2254.

[46] S. Li, M.C. Zhou, X. Luo, Modified primal-dual neural networks for motion

control of redundant manipulators with dynamic rejection of harmonic noises,
IEEE Transactions On Neural Networks and Learning Systems (2017), DOI:
10.1109/TNNLS.2017.2770172.

[47] W. Li and Z. Li. A family of iterative methods for computing the approximate inverse
of a square matrix and inner inverse of a non-square matrix. Applied Mathematics and

Computation, 215(9):3433–3442, 2010.

[48] B. Liao and Y. Zhang. Different complex ZFs leading to different complex ZNN models
for time-varying complex generalized inverse matrices. IEEE Transactions on Neural

Networks and Learning Systems, 25(9):1621–1631, 2014.

[49] Q. Liu and J. Wang. Finite-time convergent recurrent neural network with a hard-limiting
activation function for constrained optimization with piecewise-linear objective func-
tions. IEEE Transactions on Neural Networks, 22(4):601–613, 2011.

[50] X. Liu, H. Jin, and Y. Yu. Higher-order convergent iterative method for computing the
generalized inverse and its application to Toeplitz matrices. Linear Algebra and Its

Applications, 439(6):1635–1650, 2013.

160

Bibliography

[51] X. Liu, Y. Yu, and C. Hu. The iterative methods for computing the generalized inverse
A

(2)
T,S of the bounded linear operator between banach spaces. Applied Mathematics and

Computation, 214(2):391–410, 2009.

[52] X. Liu, Y. Yu, J. Zhong, and Y. Wei. Integral and limit representations of the outer
inverse in banach space. Linear and Multilinear Algebra, 60(3):333–347, 2012.

[53] X. Liu, J. Zhong, Integral representation of the W -weighted Drazin inverse for Hilbert

space operators, Appl. Math. Comput. 216 (2010), 3228–3233.

[54] F.-L. Luo and Z. Bao. Neural network approach to computing matrix inversion. Applied

Mathematics and Computation, 47(2):109–120, 1992.

[55] MacDuffee, Ðą. Ðą. The Theory of Matrices, 1933. Chelsea, New York (1956).

[56] C. D. Meyer, Jr. The role of the group generalized inverse in the theory of finite Markov
chains. SIAM Review, 17(3):443–464, 1975.

[57] S. Miljković, M. Miladinović, P. S. Stanimirović, and Y. Wei. Gradient methods for com-
puting the Drazin-inverse solution. Journal of Computational and Applied Mathematics,
253:255–263, 2013.

[58] H. S. Najafi and M. S. Solary. Computational algorithms for computing the inverse
of a square matrix, quasi-inverse of a non-square matrix and block matrices. Applied

mathematics and computation, 183(1):539–550, 2006.

[59] M. Z. Nashed. Generalized Inverse and Applications. Academic Press, New York, 1976.

[60] S. Osowski. Neural networks in interpolation problems. Neurocomputing, 5(2-3):105–
118, 1993.

[61] R. Penrose, On a best approximate solutions to linear matrix equations, Proc. Cambridge
Philos. Soc. 52 (1956), 17–19.

[62] R. Penrose. A generalized inverse for matrices. In Mathematical proceedings of the

Cambridge philosophical society, volume 51, pages 406–413. Cambridge University
Press, 1955.

[63] L. Perko. Differential Equations and Dynamical Systems. Springer-Verlag, New York,
1991.

[64] M. D. Petković and P. S. Stanimirović. Iterative method for computing the Moore–
Penrose inverse based on Penrose equations. Journal of Computational and applied

Mathematics, 235(6):1604–1613, 2011.

161

Bibliography

[65] M. D. Petković and P. S. Stanimirović. Two improvements of the iterative method for
computing Moore–Penrose inverse based on Penrose equations. Journal of Computa-

tional and Applied Mathematics, 267:61–71, 2014.

[66] M. D. Petković, P. S. Stanimirović, and V. N. Katsikis. Modified discrete iterations for
computing the inverse and pseudoinverse of the time-varying matrix. Neurocomputing,
289:155–165, 2018.

[67] S. Qiao, X.-Z. Wang, Y. Wei, Two finite-time convergent Zhang neural network mod-

els for time-varying complex matrix Drazin inverse, Linear Algebra Appl. (2017),
https://doi.org/10.1016/j.laa.2017.03.014.

[68] V. Rakočević and Y. Wei, The representation and approximation of the W-weighted
Drazin inverse of linear operators in Hilbert space. Appl. Math. Comput., 141:455–470,
2003.

[69] P. Robert. On the group-inverse of a linear transformation. Journal of Mathematical

Analysis and Applications, 22(3):658–669, 1968.

[70] N. Samardzija and R. Waterland. A neural network for computing eigenvectors and
eigenvalues. Biological Cybernetics, 65(4):211–214, 1991.

[71] B. Simeon, C. Führer, and P. Rentrop. The Drazin inverse in multibody system dynamics.
Numerische Mathematik, 64(1):521–539, 1993.

[72] S. Srivastava and D. Gupta. A third order iterative method for A†. International Journal

of Computing Science and Mathematics, 4(2):140–151, 2013.

[73] P. S. Stanimirovic. Block representations of {2},{1, 2} inverses and the Drazin inverse
of matrices. Indian Journal of Pure and Applied Mathematics, 29:1159–1176, 1998.

[74] P. S. Stanimirović. Limit representations of generalized inverses and related methods.
Applied mathematics and computation, 103(1):51–68, 1999.

[75] P. S. Stanimirović, M. Ćirić, I. Stojanović, and D. Gerontitis. Conditions for existence,
representations, and computation of matrix generalized inverses. Complexity, 2017,
2017.

[76] P. S. Stanimirović and D. S. Cvetković-Ilić. Successive matrix squaring algorithm for
computing outer inverses. Applied Mathematics and Computation, 203(1):19–29, 2008.

[77] P. S. Stanimirović, D. S. Cvetković-Ilić, S. Miljković, and M. Miladinović. Full-rank
representations of {2, 4},{2, 3}-inverses and successive matrix squaring algorithm. Ap-

plied Mathematics and Computation, 217(22):9358–9367, 2011.

162

Bibliography

[78] P. S. Stanimirović, D. Pappas, V. N. Katsikis, and I. P. Stanimirović. Full-rank repre-
sentations of outer inverses based on the QR decomposition. Applied Mathematics and

Computation, 218(20):10321–10333, 2012.

[79] P. S. Stanimirović and M. D. Petković. Gauss-jordan elimination method for computing
outer inverses. Applied Mathematics and Computation, 219(9):4667–4679, 2013.

[80] P.S. Stanimirović, M. Petković, Gradient neural dynamics for solving matrix equations
and their applications, Neurocomputing 306 (2018), 200–212.

[81] P. S. Stanimirović, M. D. Petković, and D. Gerontitis. Gradient neural network with non-
linear activation for computing inner inverses and the Drazin inverse. Neural Processing

Letters, 1–25, 2017.

[82] P.S. Stanimirović, M. Ćirić, I. Stojanović, D. Gerontitis, Conditions for existence, repre-

sentations and computation of matrix generalized inverses, Complexity, Volume 2017,
Article ID 6429725, 27 pages, https://doi.org/10.1155/2017/6429725.

[83] P. S. Stanimirović and M. B. Tasić. Computing generalized inverses using LU factoriza-
tion of matrix product. International Journal of Computer Mathematics, 85(12):1865–
1878, 2008.

[84] P. S. Stanimirovic, I. Zivkovic, and Y. Wei. Recurrent neural network for computing the
Drazin inverse. IEEE Transactions on Neural Networks and Learning Systems, 26(11)
(2015), 2830–2843.

[85] P. S. Stanimirović, I. S. Živković, and Y. Wei. Recurrent neural network approach based
on the integral representation of the Drazin inverse. Neural Computation, 27 (2015),
2107–2131.

[86] P. S. Stanimirović, I. S. Živković, and Y. Wei. Neural network approach to computing
outer inverses based on the full rank representation. Linear Algebra and its Applications,
501:344–362, 2016.

[87] I. Stojanović, P.S. Stanimirović, I. Živković, D. Gerontitis, X.-Z. Wang, ZNN models

for computing matrix inverse based on hyperpower iterative methods, Filomat 31(10)
(2017), 2999–3014.

[88] N.S. Urquhart, Computation of generalized inverse matrtices which satisfy specified con-

ditions, SIAM Review, 10 (1968), 216–218.

[89] G. Wang, Y. Wei, and S. Qiao. Generalized Inverses: Theory and Computations. Devel-
opments in Mathematics 53. Springer, Singapore and Beijing, 2018.

163

Bibliography

[90] G. Wang and Z. Xu. Solving a kind of restricted matrix equations and Cramer rule.
Applied Mathematics and Computation, 162(1):329–338, 2005.

[91] H. Wang, M. Wei, and X. Liu. Several representations of {2}-inverses. Arabian Journal

for Science and Engineering, 36(6):1161, 2011.

[92] J. Wang. Electronic realisation of recurrent neural network for solving simultaneous
linear equations. Electronics Letters, 28(5):493–495, 1992.

[93] J. Wang. Recurrent neural networks for solving systems of complex-valued linear equa-
tions. Electronics Letters, 28(18):1751–1753, 1992.

[94] J. Wang. A recurrent neural network for real-time matrix inversion. Applied Mathematics

and Computation, 55(1):89–100, 1993.

[95] J. Wang. Recurrent neural networks for solving linear matrix equations. Computers and

Mathematics with Applications, 26(9):23–34, 1993.

[96] J. Wang. Recurrent neural networks for computing pseudoinverses of rank-deficient
matrices. SIAM Journal on Scientific Computing, 18(5):1479–1493, 1997.

[97] J. Wang and H. Li. Solving simultaneous linear equations using recurrent neural net-
works. Information Sciences, 76(3):255–277, 1994.

[98] J. Wang and G. Wu. Recurrent neural networks for LU decomposition and Cholesky
factorization. Mathematical and Computer Modelling, 18(6):1–8, 1993.

[99] L.-X. Wang and J. M. Mendel. Three-dimensional structured networks for matrix equa-
tion solving. IEEE Transactions on Computers, 40(12):1337–1346, 1991.

[100] L.-X. Wang and J. M. Mendel. Parallel structured networks for solving a wide variety
of matrix algebra problems. Journal of Parallel and Distributed Computing, 14(3):236–
247, 1992.

[101] X.-Z. Wang, H. Ma, and P. S. Stanimirović. Nonlinearly activated recurrent neural net-
work for computing the drazin inverse. Neural Processing Letters, 46(1):195–217, 2017.

[102] X.-Z. Wang, H. Ma, and P. S. Stanimirović. Recurrent neural network for computing the
W-weighted Drazin inverse. Applied Mathematics and Computation, 300:1–20, 2017.

[103] X.-Z. Wang, P. S. Stanimirović, and Y. Wei. Complex Zfs for computing time-varying
complex outer inverses. Neurocomputing, 275:983–1001, 2018.

164

Bibliography

[104] X.-Z. Wang, Y. Wei, and P. S. Stanimirović. Complex neural network models for time-
varying drazin inverse. Neural Computation, 28(12):2790–2824, 2016.

[105] X.-Z. Wang, P.S. Stanimirović, Y. Wei, Complex ZFs for computing time-varying com-

plex outer inverses, Neurocomputing 275 (2018), 983–1001.

[106] Y. Wei. A characterization and representation of the generalized inverse A(2)
T,S and its

applications. Linear Algebra and its Applications, 280(2):87–96, 1998.

[107] Y. Wei. Index splitting for the Drazin inverse and the singular linear system. Applied

Mathematics and Computation, 95(2):115–124, 1998.

[108] Y. Wei. Recurrent neural networks for computing weighted Moore-Penrose inverse.
Applied Mathematics and Computation, 116(3):279–287, 2000.

[109] Y. Wei. Integral representation of the generalized inverse A(2)
T,S and its applications. In

Recent Research on Pure and Applied Algebra, pages 59–65, 2003.

[110] Y. Wei. The representation and approximation for the weighted Moore–Penrose inverse
in Hilbert space. Applied Mathematics and Computation, 136(2):475–486, 2003.

[111] Y. Wei. Recent results on the generalized inverse A(2)
T,S . In Linear Algebra Research

Advances, pages 231–250, 2007.

[112] Y. Wei and D. S. Djordjević. On integral representation of the generalized inverse A(2)
T,S .

Applied mathematics and computation, 142(1):189–194, 2003.

[113] Y. Wei, Integral representation of the W-weighted Drazin inverse, Appl. Math. Comput.
144 (2003), 3–10.

[114] Y. Wei and G. Wang, The perturbation theory for the Drazin inverse and its applications,
Linear Algebra Appl. 258 (1997), 179–186.

[115] Y. Wei and H. Wu. The representation and approximation for Drazin inverse. Journal of

Computational and Applied Mathematics, 126(1):417–432, 2000.

[116] Y. Wei and N. Zhang. A note on the representation and approximation of the outer
inverse A(2)

T,S of a matrix A. Applied mathematics and computation, 147(3):837–841,
2004.

[117] L. Weiguo, L. Juan, and Q. Tiantian. A family of iterative methods for computing
Moore–Penrose inverse of a matrix. Linear Algebra and Its Applications, 438(1):47–
56, 2013.

165

Bibliography

[118] Y. Xia, T. Chen, and J. Shan. A novel iterative method for computing generalized inverse.
Neural computation, 26(2):449–465, 2014.

[119] H. Yanai, K. Takeuchi, Y. Takane, Projection Matrices, Generalized Inverse Matrices,

and Singular Value Decomposition, Springer, New York, Dordrecht, Heidelberg, Lon-
don, 2011.

[120] C. Yonglin and Z. Bingjun. On g-inverses and the nonsingularity of a bordered matrix A B

C 0

. Linear Algebra and its Applications, 133:133–151, 1990.

[121] Y. Yu and Y. Wei. The representation and computational procedures for the generalized
inverse A(2)

T,S of an operator A in Hilbert spaces. Numerical Functional Analysis and

Optimization, 30(1-2):168–182, 2009.

[122] Y. Zhang and S. S. Ge. Design and analysis of a general recurrent neural network model
for time-varying matrix inversion. IEEE Transactions on Neural Networks, 16(6):1477–
1490, 2005.

[123] Y. Zhang, X. Guo, W. Ma, K. Chen, and B. Cai. Matlab Simulink modeling and sim-
ulation of Zhang neural network for online time-varying matrix inversion. In Network-

ing, Sensing and Control, 2008. ICNSC 2008. IEEE International Conference on, pages
1480–1485. IEEE, 2008.

[124] Y. Zhang, D. Jiang, and J. Wang. A recurrent neural network for solving sylvester
equation with time-varying coefficients. IEEE Transactions on Neural Networks,
13(5):1053–1063, 2002.

[125] Y. Zhang, W. Ma, and B. Cai. From Zhang neural network to Newton iteration for matrix
inversion. Circuits and Systems I: Regular Papers, IEEE Transactions on, 56(7):1405–
1415, 2009.

[126] Y. Zhang, Y. Shi, K. Chen, and C. Wang. Global exponential convergence and stability
of gradient-based neural network for online matrix inversion. Applied Mathematics and

Computation, 215(3):1301–1306, 2009.

[127] Y. Zhang, Y. Yang, N. Tan, and B. Cai. Zhang neural network solving for time-varying
ful-rank matrix Moore-Penrose inverse. Computing, 97(1):97–121, 2011.

[128] Y. Zhang, B. Qiu, L. Jin, D. Guo, Infinitely many Zhang functions resulting in various

ZNN models for time-varying matrix inversion with link to Drazin inverse, Information
Processing Letters 115 (2015), 703–706.

166

Bibliography

[129] Y. Zhang, C. Yi, and W. Ma. Simulation and verification of Zhang neural network
for online time-varying matrix inversion. Simulation Modelling Practice and Theory,
17(10):1603–1617, 2009.

[130] Y.Zhang, B.Mu, H.Zheng, Link between and comparison and combination of Zhang neu-

ral network and quasi-Newton BFGS method for time-varying quadratic minimization,
IEEE Trans. Cybern. 43 (2013), 490–503.

[131] Y. Zhang, C. Yi, D. Guo, J. Zheng, Comparison on Zhang neural dynamics and gradient-

based neural dynamics for online solution of nonlinear time-varying equation, Neural
Comput. & Applic. 20 (2011), 1–7.

[132] Y. Zhang, Z. Li, K. Li, Complex-valued Zhang neural network for online complex-valued

time-varying matrix inversion, Appl. Math. Comput. 217 (2011), 10066–10073.

[133] Y. Zhang, Y. Yang, N. Tan, B. Cai, Zhang neural network solving for time-varying full-

rank matrix Moore-Penrose inverse, Computing 92 (2011), 97–121.

[134] B. Zheng and R. Bapat. Generalized inverse A(2)
T,S and a rank equation. Applied mathe-

matics and computation, 155(2):407–415, 2004.

[135] B. Zheng and G. Wang. Representation and approximation for generalized inverse A(2)
T,S

Revisited. Journal of Applied Mathematics and Computing, 22(3):225–240, 2006.

[136] J. Zhong, X. Liu, G. Zhou, and Y. Yu. A new method for computing the Drazin inverse.
Filomat, 26(3):597–606, 2012.

[137] I. S. Živković and P. S. Stanimirović. Matlab simulation of the hybrid of recursive
neural dynamics for online matrix inversion. Facta Universitatis-Series Mathematics

And Informatics, 32(5):799–809, 2017.

[138] I. S. Živković, P. S. Stanimirović, and Y. Wei. Recurrent neural network for computing
outer inverse. Neural computation, 28(5):970–998, 2016.

167

Bibliography

168

Appendix A

Biography

Ivan Živković was born on March 20, 1983 in Majdanpek. He completed 12. September

elementary school and Mile Arsenijević - Bandera general-education high school in Majdanpek.

In the academic year 2002/2003 he entered the Faculty of Sciences and Mathematics in
Niš, Department of Mathematics and Informatics. He received the M.Sc. degree from this
faculty in 2009 with the grade point average of 9.11/10 and grade 10/10 on his diploma thesis
Object-oriented implementation of NARX neural network training using Kalman Filter.

He enrolled for his Doctoral Academic Studies in the academic year 2009/2010 at the De-
partment of Computer Science, the Faculty of Sciences and Mathematics in Niš. He has passed
all the foreseen exams with the highest grade and has authored or co-authored five scientific
papers published in international journals with IF and one paper in a domestic journal.

He was a Research Associate with the Mathematical Institute of the Serbian Academy
of Sciences and Arts, Belgrade, Serbia, from 2011 to 2017, working on the interdisciplinary
project Development of new information and communication technologies, based on advanced

mathematical methods, with applications in medicine, telecommunications, power systems,

protection of national heritage and education (No. III 044006), funded by the Ministry of
Education, Science and Technological Development of the Republic of Serbia.

He is currently a software developer at Accordia Group, LLC, New York-based company.

List of papers

• Stanimirović, Predrag S., Ivan S. Živković , and Yimin Wei. "Recurrent neural network
for computing the Drazin inverse." IEEE transactions on neural networks and learning

systems 26.11 (2015): 2830-2843.

• Stanimirović, Predrag S., Ivan S. Živković, and Yimin Wei. "Recurrent neural network
approach based on the integral representation of the Drazin inverse." Neural computation

169

Appendix A. Biography

27.10 (2015): 2107-2131.

• Živković, Ivan S., Predrag S. Stanimirović, and Yimin Wei. "Recurrent neural network
for computing outer inverse." Neural computation 28.5 (2016): 970-998.

• Stanimirović, Predrag S., Ivan S. Živković, and Yimin Wei. "Neural network approach
to computing outer inverses based on the full rank representation." Linear Algebra and

Its Applications 501 (2016): 344-362.

• Stojanović, I., Stanimirović, P. S., Živković, I. S., Gerontitis, D., & Wang, X. Z. (2017).
ZNN models for computing matrix inverse based on hyperpower iterative methods. Filo-

mat, 31(10), 2999-3014.

• Živković, Ivan S., and Predrag S. Stanimirović. "MATLAB SIMULATION OF THE
HYBRID OF RECURSIVE NEURAL DYNAMICS FOR ONLINE MATRIX INVER-
SION." Facta Universitatis, Series: Mathematics and Informatics (2018): 799-809.

170

Appendix B

Dissertation documentation

171

Appendix B. Dissertation documentation

172

