UNIVERSITY OF NIS
FACULTY OF SCIENCES AND MATHEMATICS

Ivan S. Zivkovié¢

RECURRENT NEURAL NETWORKS
FOR SOLVING
MATRIX ALGEBRA PROBLEMS

DOCTORAL DISSERTATION

Nis, 2018.

YHUBEP3UTET Y HUIITY
[TPUPOJHO-MATEMATHUYKU OAKVIITET

NBan C.) KuBkoBuh

PEKYPEHTHE HEYPOHCKE MPE/KE
3A PEHIABAIBE ITPOBJIEMA
JIMHEAPHE AJIT'EBPE

JOKTOPCKA NMCEPTALIJA

Hum, 2018.

Doctoral
Supervisor:

Title:

Abstract:

Scientific
Field:
Scientific
Discipline:

Key Words:
UDC:

CERIF
Classification:

Creative
Commons
License Type:

Data on Doctoral Dissertation

PhD, Predrag S. Stanimirovi¢, Full professor, Faculty of Science and
Mathematics, University of Nis§

Recurrent neural networks for solving matrix algebra problems

The aim of this dissertation is the application of recurrent neural
networks (RNNs) to solving some problems from a matrix algebra
with particular reference to the computations of the generalized
inverses as well as solving the matrix equations of constant (time-
invariant) matrices. We examine the ability to exploit the correlation
between the dynamic state equations of recurrent neural networks for
computing generalized inverses and integral representations of these
generalized inverses. Recurrent neural networks are composed of
independent parts (sub-networks). These sub-networks can work
simultaneously, so parallel and distributed processing can be
accomplished. In this way, the computational advantages over the
existing sequential algorithms can be attained in real-time
applications. We investigate and exploit an analogy between the
scaled hyperpower family (SHPI family) of iterative methods for
computing the matrix inverse and the discretization of Zhang Neural
Network (ZNN) models. A class of ZNN models corresponding to the
family of hyperpower iterative methods for computing the generalized
inverses on the basis of the discovered analogy is defined. The Matlab
Simulink implementation of the introduced ZNN models is described
in the case of scaled hyperpower methods of the order 2 and 3. We
present the Matlab Simulink model of a hybrid recursive neural
implicit dynamics and give a simulation and comparison to the
existing Zhang dynamics for real-time matrix inversion. Simulation
results confirm a superior convergence of the hybrid model compared
to Zhang model.

Computer science

Acrtificial neural networks, dynamical systems, control systems

| Artificial neural networks, dynamical systems, generalized inverses

| 004.832:[512.64+517.98+519.857

P170: Computer science, numerical analysis, systems, control

CC BY-NC-ND

MMoxaum 0 TOKTOPCKOj IMcepTANUjH

Menrop: Hp penpar C. Ctanumuposuh, penosuu npodecop, [IpupoaHo-
MaTeMaTU4Ku Gakynrer, YHuBep3uter y Humry

Hacnos: PexypeHTHe HeypOHCKE MpeXKe 3a pelaBame mpodiemMa JInHeapHe
ainredpe

[IpenmeT oBe nucepraiyje jecte mpoydyaBame NMPUMEHA PEKYPEHTHUX
HEYPOHCKHX MpeXxa Ha HeKe Ipobieme MaTpuyHe anredpe, ca
MOCEOHMM OCBPTOM Ha Mpo0JIeM H3padyHaBamba TeHepaTuCcaHuX
WHBEp3a U MaTPUYHUX jeaHaunHa. McnuTyje ce MoryhHocT ymorpebe
Kopenanuje u3mel)y jeTHaunHa JMHAMUYKOT CTamba PEeKypEHTHUX
HEYPOHCKHX MPEXa 3a M3pauyHaBamke YONIITCHUX HHBEP3a U
MHTETPAIHUX Perpe3eHTalllja YOITeHnx naBep3a. Jledhunucane
Pesnme: PEKYpPEHTHE HEYPOHCKE MPEXE CacTaBJbEHE Cy OJ1 HE3aBHCHUX JIEI0Ba
(moampeska). OBe moaMpexRe MOTY PaJIMTH UCTOBPEMEHO, T1a CE TUME
MOJKe IMOCTUNH MmapaienHa u JucTpudyrupana oopana. Ha oBaj HaunH
MOYE C€ OCTBAPHUTHU IPEAHOCT y OP3UHH U3pauyHaBamba Hall
noctojehuM CeKBEHIIMjaIHUM anroputMuma. Mcrpaxyje ce u
aHayiorvja uzMel)y uTepaTUBHUX METO/a 32 U3pauyHaBambe
peryiapHHX HHBEp3a U AUCKpeTu3aluje moaena JKaHropux
HEYpPOHCKHX Mpexa. Ha ocHOBY oTKpuBeHe aHajoruje, oapehyje ce
kJaca JKaHroBuX HEYpPOHCKHX Mpeka Koja OJroBapa MmopoIuiy
UTEPAaTUBHUX METOJIa 32 U3padyHaBahE YONIIITCHUX HHBEP3A.
Omnmucana je Matlab Simulink ummiemenTanmja yBeaeHux Mojena
CKaJIMpaHUX UTEepaTUBHUX MeToaa pena 2 u 3. [IpeacrassbeH je
Matlab Simulink monen xuGpuaHe peKypeHTHE UMILTHIIUTHE
JMHAMHUKE, U J1aTa je cuMyJalyja 1 KoMmnapaiyja ca mocrojehom
JXKanroBom quHaMHKOM 32 onpehuBame MaTpuuHEe HHBEP3HjE Y
peatHOM BpeMeHy. Pesynrtatu cumynanuje moTBplyjy CynepuopHy
KOHBEPreHIHjy XubpuaHor Mmozena y nopehemy ca XKanrosum
MOJICJIOM.

Hayuna o6nacrt: Pauynapcke Hayke

Hayuna Bemrauke HeypoHCKe Mpeke, TUHAMUYKU CUCTEMU, CUCTEMHU
JUCIUTUIMHA: ylpaBJbama

Bemrauke HeypoHCKe Mpexe, TMHAMUYKUA CUCTEMH, YOIIIITEHH
Kibyune peun: HWHBEP3U

YIK: | 004.832:[512.64+517.98+519.857

CERIF

. P170: Computer science, numerical analysis, systems, control
Kiacudukanyja:

Tun nunenne
Kpeatusne CC BY-NC-ND
3ajeTHULIC:

Mpunor 4/1

- MATEMATUYKU OAKYNTET

nPUPOOHO
HALL
KIibYYHA JOKYMEHTALUWJCKA NH®OPMALIMJA
PenHu 6poj, PBP:
WpeHtudmkaumonun 6poj, UBP:
Twun pokymeHTauuje, TO: MOHorpaCbCKa
Twn sanuca, T3: TeKCTyanHun / rpadudkm
BpcTa pana, BP: AOKTOpCKa Auceprtauumja
AyTop, AY: NeaH C. >Kuskosuh
MewTop, MH: Mpeppar. C. CtaHumupoBuh
Hacnos paaa, HE: PEKYPEHTHE HEYPOHCKE MPEXXE 3A PELLIABAHSE
MPOBJIEMA NIMHEAPHE AJIT'EBPE
Jesuk nybnukauuje, JIM: €HIMeckKu
Jesuk nssopa, JU: EeHrneckm
3emrba nybnukosama, 3MM: Cp6|/|ja
Yxe reorpadpcko nogpydje, YII: Cpbuja
FoauHa, IFO: 2018.
Wspasay, U3: ayTOPCKM PENPUHT
Mecto u agpeca, MA: Huw, Buwerpagcka 33.
D 0 sy _| 172 CTP TPCD. MpUKaH
Hay4yHa o6nact, HO: padyHapcke Hayke
Hayuna aucuunnura, HA: BelTa4yke HEeypOHCKe Mpexe, JUHaMNYKN CUCTEMU, CUCTEMM
ynpaBrbakba
MpeameTHa onpenHnLa/KbyuHe peun, MO: | BelTauke HEYPOHCKe Mpexe, AUHAMUYKM CUCTEMMU, YOMLUTEHU
NHBEP3U
004.832:[512.64+517.98+519.857

oubnnoTteka

yOoK

Yysa ce, YY:

Mpeomet oBe ancepTtauumje jecte NpoyvyaBsawe NpuMeHa

BaxkHa HanomeHa, BH:

PEKYPEHTHNX HEYPOHCKNX Mpexa Ha Heke npobreme MaTpuyHe

M3Bopa, U3:

anrebpe, ca noce6bHMM OCBPTOM Ha npobnem nspavyHaBawa
reHepanucaHnx MHBep3a U MaTpU4HKX jegHadmHa. Mcnutyje ce

mMoryhHocT ynoTtpebe kopenauuje namehy jegHaunHa
ANHAMUYKOr CTaka PEKYPEHTHUX HEYPOHCKMX Mpexa 3a

n3pavyHaBare YONLITEHNX MHBEP3A U UHTErpasiHux
penpeseHTauuja yornwTeHUX MHBEpP3a.

08. 05. 2017.

Hatym npuxsaTtanwa Teme, OMM:

Oatym onbpane, OO:

O: MpeaceaHuk:

YnaH:

UnaHosu komucuje, K

YUnaH, MeHTOop:

O6pasay Q4.09.13 - N3pare 1

Mpwunor 4/2

NMPUPOOHO - MATEMATUYKU OAKYIITET
HULLU

<
nppo™

KEY WORDS DOCUMENTATION

Accession number, ANO:

Identification number, INO:

Document type, DT:

monograph

Type of record, TR:

textual / graphic

Contents code, CC:

doctoral dissertation

Author, AU: lvan S. Zivkovi¢

Mentor, MN: Predrag S. Stanimirovi¢

Title, TI: RECURRENT NEURAL NETWORKS FOR SOLVING MATRIX
ALGEBRA PROBLEMS

Language of text, LT: English

Language of abstract, LA: English

Country of publication, CP: Serbia

Locality of publication, LP: Serbia

Publication year, PY: 2018

Publisher, PB:

author’s reprint

Publication place, PP:

Ni§, ViSegradska 33.

Physical description, PD:

(chapters/pages/ref./tables/pictures/graphs/appendixes)

172 p. ; graphic representations

Scientific field, SF:

Computer science

Scientific discipline, SD:

Artificial neural networks, dynamical systems, control systems

Subject/Key words, S/IKW:

Artificial neural networks, dynamical systems, generalized inverses

uc

004.832:[512.64+517.98+519

Holding data, HD:

library

Note, N:

Abstract, AB:

The aim of this dissertation is the application of recurrent
neural networks (RNNSs) to solving some problems from a
matrix algebra with particular reference to the computations of
the generalized inverses as well as solving the matrix equations
of constant (time-invariant) matrices. We examine the ability to
exploit the correlation between the dynamic state equations of
recurrent neural networks for computing generalized inverses
and integral representations of these generalized inverses.

Accepted by the Scientific Board on, ASB: 08.05.2017.

Defended on, DE:

Defended Board, DB: President:

Member:

Member, Mentor:

O6paszay, Q4.09.13 - N3pare 1

Acknowledgements

The research presented in this PhD thesis could not be performed without the assistance,
patience and support of many individuals. First and foremost, I would like to express the
deepest appreciation to my thesis advisor, Professor Predrag Stanimirovi¢ for mentoring me
during the course of my undergraduate and graduate studies. He helped me through extremely
difficult times over the course of the analysis and the writing of the thesis and I sincerely thank
him for his confidence in me.

I would additionally like to thank Professor Yimin Wei for his support in both the research
and especially the revision process of our joint papers. Further, I would like to thank Professor
Igor Stojanovi¢, Dimitrios Gerontitis and Xue-Zhong Wang for the excellent cooperation.

I would also like to extend my appreciation to Professor Branimir Todorovi¢ for introducing
me to the field of the artificial neural networks and inspiring me to choose this area.

This research would not be completed without the assistance of my friend Alexandar Vuko-
jevi¢ who provided several illustrations that found their place in this dissertation. In particular,
I would like to thank Nina Mili¢ for her work on the text. Her knowledge and understanding of
the written word has allowed me to fully express the concepts behind this research.

I would like to extend my deepest gratitude to all of my friends and to all colleagues from
Accordia Group, LLC.

Finally, special thanks goes to my parents, my mother Sladjana and my father Srbislav,
without whose love, support and understanding I could never have completed this doctoral

degree.

Contents

Contents

List of Figures

List of Tables

1 Introduction

1.1

1.2

1.3

1.4

1.5

1.6

Basic notions from matrix theory L.
1.1.1 Full rank and Jordan decomposition
1.1.2 Singular value decomposition
1.1.3 Idempotent matrices and projectors
Main classes of generalized inverses
1.2.1 The inverse of a nonsingular matrix
1.2.2 Solvability of linear systems
1.2.3 Definitions and main properties of generalized inverses
Motivation and organization of the dissertation
1.3.1 GNNvsZNNdynamics
Review of known GNNmodels
1.4.1 GNN forregularinverse
1.4.2 GNN for computing the Moore-Penrose inverse
1.4.3 GNN for computing the weighted Moore-Penrose inverse
1.4.4 GNN dynamics for solving matrix equations
Review of known ZNNmodels
1.5.1 ZNN for computing regular inverse
1.5.2 ZNN for computing Moore-Penrose inverse
1.5.3 ZNN for computing the Drazin inverse
1.5.4 ZNN for computing outer inverse

Outline of the dissertation v v v i e

iv

vii

2 GNN for computing generalized inverses with restrictions on spectrum 35

2.1 GNN for computing the DrazinInverse 35
2.1.1 Preliminaries and motivation 35

2.1.2 Neural network architecture for computing Drazin inverse 36

2.1.3 Illustrative examples for GNND model 48

2.1.4 Application of the GNND model 57

2.2 GNN models for computing outer inverse 60
2.2.1 Preliminaries and motivation 60

2.2.2 Neural network architecture 61

2.2.3 Particular cases of GNNGA and GNNAG model 66

2.2.4 Illustrative examples for GNNGA model 67

2.3 GNN for computing the I/'-weighted Drazin inverse 72
2.3.1 About W-weighted Drazininverse 72

2.3.2 Specific case for W-weighted Drazininverse 73

3 GNN for computing generalized inverse without restriction on spectrum 79
3.1 Globally convergent GNN for computing Drazin inverse 79
3.1.1 Preliminaries and motivation 79

3.1.2 Neural network architecture 80

3.1.3 lustrative examples L L L 86

3.2 Globally convergent GNN for computing outer inverse 96
3.2.1 Preliminaries and motivation 96

3.2.2 Neural Network Architecture 97

3.2.3 lustrative Examples 98

3.3 Globally convergent GNN for computing W-weighted Drazin inverse 102
3.3.1 Dynamic equation with global convergence 102

3.3.2 Convergence and stability analysis of GNNDWO 104

4 GNN for computing outer inverses based on the full rank representation 107
4.1 Preliminaries and motivationo 107
4.2 On the existence and representations of outer inverses 110
4.3 Neural networks based on full rank representation of outer inverses 112
4.3.1 Neural network RNN(4.2.4)basedon (4.24) 112

4.3.2 Neural network RNN(4.2.3) basedon (4.2.3) 115

4.3.3 Relationships between different RNNs 116

4.4 Numerical experiments on GNN based on full rank representation 117

ZNN for computing matrix inverse based on hyperpower iterative methods 125

5.1 Introduction to ZNN design and known ZNN models 125
5.2 Correlation between iterations and ZNN models 127
5.3 Scaled Hyperpower iterations as discretized ZNN models 128
5.4 Neural network architecture of ZNNCM model 131
5.5 Convergence of the ZNNCM model 134
5.6 Simulation results and its comparison 136
Matlab simulation of the hybrid neural dynamics for online matrix inversion 145
6.1 Preliminaries and motivation 145
6.2 Model formulation 146

6.2.1 Gradient-based dynamics Lo 146

6.2.2 Zhangdynamics 147

6.2.3 Improved ZNN model for matrix inversion 147
6.3 Simulation results and its comparison 148
Conclusion 155
Biography 169

Dissertation documentation 171

List of Figures

1.1

2.1
22
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
33
34
3.5
3.6
3.7

4.1
4.2

5.1
5.2
5.3
54
5.5

Behavior of the four basic types of activation functions 24
Architecture of the RNN for computing the Drazin inverse 47
Convergence behavior of the RNN in 107 seconds for Example 2.1.1 49
Convergence behavior of the RNN in 107 seconds for Example 2.1.2 51
Convergence behavior of the RNN in 10~ seconds for Example 2.1.3 52
Convergence behavior of the RNN in 107 seconds for Example 2.1.4 54
Convergence behavior of the RNN in 107 seconds for Example 2.1.5 55
Convergence behavior of the RNN in 1077 seconds for Example 2.1.9 59
Architecture of the RNN for computing outer inverse incase m >n 66
Architecture of the RNN for computing outer inverse incase m <n 67
Convergence behavior of the RNN in 10~7 seconds for Example 2.2.1 69
Convergence behavior of the RNN in 1077 seconds for Example 2.2.2 70
Convergence behavior of the RNN in 107 seconds for Example 2.2.3 71
Architecture of the RNN for computing the Drazin inverse 85
Convergence behavior of the RNN in 107 seconds for Example 3.1.1. 87
Convergence behavior of the RNN in 107 seconds for Example 3.1.2. 88
Convergence of ||V (t)— AP|| for three different values vy =~. 89
Convergence behavior of the RNN in 1077 seconds for Example 3.1.3. 91
Convergence behavior of the RNN in 107 seconds for Example 3.1.4. 92
Divergence of the RNN in 10~7 seconds for Example 3.2.1 99

Convergence behavior of the RNN [138] in 10~7 seconds for Example 4.4.1 . . 119
Convergence behavior of the RNN(4.2.4) in 10~" seconds for Example 4.4.1 . . 120

Simulink implementation of the ZNNNM model. 132
Simulink implementation of the ZNNCM model. 133
Trajectories in 10~° seconds under zero initial conditions in the ZNNCM model 138
Trajectories of the residual errors of the model ZNNCM. 138
Trajectories of the residual errors of the models ZNNNM and ZNNCM. 139

6.1
6.2

6.3

6.4
6.5

Simulink implementation of EZNNNM model. 149
Trajectories of the errors [|[A™! — X (¢)|| of ZNNNM and EZNNNM in
Example 6.3.1. L 150
Trajectories of the errors ||A;! — X (¢)|| of ZNNNM and EZNNNM in
Example 6.3.1. e 151
Trajectories of X (t) of ZNNNM and EZNN N M in Example 6.3.2. 151

Trajectories of the errors ||A;' — X (¢)|| of ZNNNM and EZNNNM in
Example 6.3.4. 153

List of Tables

2.1
22
2.3
2.4
2.5

3.1
32

4.1
4.2

5.1
5.1
5.2
5.2
5.3

54

54

5.5

6.1

Numerical comparison test with FF[14] 50
Numerical comparison test with [94] 56
Numerical comparison test with [136] 56
Comparison test with [S7] inthecase b =bcor, « -« « o v v v v o v oo oL 58
Comparison test with [S7] inthecase b =bgep - - -« - -« o o o o o oL 58
Numerical comparison test with [84] for Example 3.1.1 96
Numerical comparison test with [84] for Example 3.1.2 96

Results for three RNNs generated using on the set of randomly generated matrices 123

Results for three RNN(4.2.4) generated using v = 10" on the set of randomly

generated Matrices L. e e 123
Comparison of the models ZNNNM, ZNNCM and GNN. 139
Comparison of the models ZNNNM, ZNNCM and GNN. 140
Comparison of the models ZNNNM, ZNNCM and ZNNHM. 140
Comparison of the models ZNNNM, ZNNCM and ZNNHM. 141
Comparison of the models ZNNNM, ZNNCM and ZNNHM with Power Sig-

moid activation function #, defined by the parameterp=3. 142
Comparison of the models ZNNNM, ZNNCM and ZNNHM with Power Sig-

moid activation function defined by the parameterp=3. 142
Comparison of the models ZNNNM, ZNNCM and ZNNHM with Power Sig-

moid activation function defined by the parameterp =3. 143
ZNNNM vs ZNNCM using the power sigmoid activation function. 143

Comparison of the models ZNNNM and EZNNNM 152

vil

Chapter 1
Introduction

The idea of an inverse of a singular matrix seems to have been first presented by Moore in
1920. But, no efficient investigation of the subject was made by the mid 1950s when the inves-
tigation of generalized inverses progressed. The study of generalized inverses has progressed
significantly since its rebirth in the early 1950s. Roger Penrose, unfamiliar with previous work,
reclassified the Moore "reciprocal inverse" in 1955. He concluded that Moore inverse could be
represented by four equations (known as Moore-Penrose equations). Another well known kind
of generalized inverses is the Drazin inverse, named after Michael P. Drazin (1958). A major
extension of this field came in the fifties, when C. R. Rao and J. Chipman exploited the relation

between generalized inverses, least squares, and statistics.

Various papers have arisen both in theory of generalized inverses and its applications. The
reason for developing a generalized inverse matrix is to get a matrix that can fill in as the
inverse in some sense for a more extensive class of matrices than invertible matrices. Now, it is
difficult to give even an approximate number of articles devoted to the theory, computation and
application of generalized inverses. It is justifiably to say that the theory of generalized inverses
extensively grows and becomes an important part of pure and computational mathematics as
well as important part of many applicable scientific areas, such as computer science, electrical

engineering, etc.

Now, generalized inverses cover an extensive variety of mathematical fields, for example,
matrix theory and operator theory. They show up in various applications such as linear esti-
mation, differential and difference equations, Markov chains, graphics, cryptography, coding
theory, incomplete data recovery, and robotics. A special case of the Drazin inverse, called
Group inverse, has found application in characterizing the sensitivity of the stationary proba-
bilities to perturbations in the underlying transition probabilities. Finally, the group inverse has

recently proven to be fundamental in the analysis of Google’s PageRank search engine.

Chapter 1. Introduction

1.1 Basic notions from matrix theory

According to the standard notation, C(R) denotes the field of complex (real) numbers.
Further, C™*"(R™*") denote the vector-space of m x n complex (real) matrices over C(R),
Crm(R™ ™) the class of m x n complex (real) matrices of rank and C"(R") the vector-space
of n-tuples of complex (real) numbers over C(R). The identity matrix of an appropriate order
is denoted by I. For any A € C™*™, the range of A is defined by R(A) = {y € C™ : y = Ax
for some x € C"}, and N(A) = {z € C" : Ax = 0} represents the null space of A. The
transpose, conjugate transpose and the rank of A € C™*" are denoted by AT, A*, rank(A)
respectively. A matrix A is Hermitian if its conjugate transpose, A*, equals A. The maximal
number of linearly independent columns of a matrix A is called rank of A and denoted by
rank(A). The trace of a square matrix A € C™*" is denoted by Tr(A) and defined as the sum
of its diagonal entries: Tr(A) = aj; + -+ + ann-

Definition 1.1.1. A square matrix A € C"*" (A € R™") is said to be:
(a) Hermitian (self-adjoint) if A* = A (AT = A),
(b) normal, if A*A = AA* (ATA = AAT),
(c) lower-triangular, if a;; = 0 for i > j,
(d) upper-triangular, if a;; = 0 for i < j,
(e) positive semi-definite, if Re (z*Ax) > 0 for all x € C",
(f) positive definite, if Re (x*Ax) > 0 forall z € C" \ {0}.

The notion Re (2) (resp. Im (2)) means the real (resp. imaginary) part of a complex number

zZ.

Definition 1.1.2. Let A € C™*". A real or complex scalar \ which satisfies the equation
Arv =X r <= (A—- M)z =0,

is the eigenvalue of A, and x € C" is the eigenvector of A corresponding to \.

Definition 1.1.3. Let A € C"*"™ and) is an eigenvalue of A. A vector x € C" is called
generalized eigenvector of A of a grade p corresponding to \, or A\-vector of A of a grade p if

it satisfies the equation
(A= X)Px =0.

Matrix index is another important characteristics of matrices. This notion has been fre-

quently used in numerical linear algebra.

2

1.1. Basic notions from matrix theory

Proposition 1.1.1. For every A € C™ " there exists an integer k such that rank(A1) =
rank(A").

Definition 1.1.4. Let A € C"*" be a given square matrix. The index of A is denoted by
ind(A) = k and defined as the smallest integer k satisfying rank(A*1) = rank(AF).

Note that ind(A) = 0 if A is regular and otherwise ind(A) > 1.

1.1.1 Full rank and Jordan decomposition

The simplest matrix decompositions are LU and Cholesky factorization (decomposition)

These notions are given in Proposition 1.1.2.

Proposition 1.1.2. (LU and Cholesky factorization) For every regular square matrix A € C™*"
there exists lower triangular matrix L and upper triangular matrix U such that A = LU and
liy = 1 foreveryi = 1,2,... n. This factorization is known as LU factorization. Moreover
if A is Hermitian and positive definite, it holds that U = L*, and the implied factorization
A = LL* is called Cholesky factorization.

The full rank factorization is one of most important notions in the matrix theory.

Definition 1.1.5. (Full rank factorization) A full rank factorization of an arbitrary matrix A €
C™*™ is defined as the decomposition A = P(), where the matrix P € C™*" is full column

rank matrix and () € C™*™ is full row rank matrix.

Proposition 1.1.3. Let A € C™*" such that A is of neither full column rank nor full row rank.

Then, there exists at least one full rank factorization A = P(Q) of the matrix A.

For each matrix there exists a basis of generalized eigenvectors with respect to which a ma-
trix can be represented in the Jordan form. The Jordan decomposition is stated in the following

proposition.

Proposition 1.1.4. (The Jordan decomposition) Let the matrix A € C™"*" have p distinct eigen-
values {\1, Xz, ..., \,}. Then A is similar to a block diagonal matrix J with Jordan blocks on

its diagonal, i.e., there exists a nonsingular matrix P such that

Jo(AM) 0 ... 0
apapip| O k) 0
0 0 ... Ju\)

Chapter 1. Introduction

where the Jordan blocks Jy,()\;) are defined by

0 N\

and the matrix J is unique up to a rearrangement of its blocks.

The following definition and proposition give us an alternative way to obtain even simpler
decomposition than the Jordan decomposition, but with respect to different basis of C™.
A square matrix 7’ of the order n is symmetric and positive semidefinite (abbreviated SPSD
and denoted by) > 0) if
vITv >0 forall v € R™.

The matrix 7" is symmetric and positive definite (abbreviated SPD and denoted by @) > 0) if
vITv >0 forall v € R, v # 0.

Recall that a symmetric matrix 7' is positive definite if and only if all its eigenvalues are non-

negative.

Proposition 1.1.5. If T' € R"*" is symmetric PSD matrix, then the following statements are

equivalent:
(@) T = MM?T, for an appropriate matrix M satisfying M € R™* k> 1.
(b) vITv > 0 forallv € R, v # 0.
(c) There exist vectors v;, i = 1,...,n € R (for some k > 1) such that Ti; = vaUj for all

1,7 =1,...,n. The vectors v;, i = 1,...,n are called a Gram representation of T'.

(d) All principal minors of 'T' are non-negative.

Proposition 1.1.6. Let T' € C™"*" is symmetric. Then T' > 0 and it is nonsingular if and only
if ' = 0.

1.1.2 Singular value decomposition

Besides the Jordan decomposition, the Singular Value Decomposition (or SVD for shortly)

is another important decomposition which is based on the eigenvalues.

Definition 1.1.6. Let A € C™*", 4 € C™, v € C™ o > 0 be such that

Av =ou, A*u=ov. (1.1.1)

1.1. Basic notions from matrix theory

Then o is called the singular value of A, and the vectors u and v are left and right singular

vectors of A respectively.
According to (1.1.1),
A*Av = 0%, AA*u = d*u
which implies that o is the eigenvalue of A*A and AA*.
Proposition 1.1.7. Let A € C™*™ and {\1, Ao, ..., \,} be the nonzero eigenvalues of AA* (i.e.

A*A). There are exactly p non-zero singular values of A, denoted by o;(A), i = 1,...,p, and

they are equal to:

cri(A):\/):-, i=1,...,p.

Moreover, it can be shown that the singular values are positive stationary values ! of the
(vector) function f(z) = ||Az||/| =]

Theorem 1.1.1. (Singular Value Decomposition) Let A € C"*". Then there are unitary ma-
trices U € C™*™ and V' € C"*" such that

> O
A=U /a8 (1.1.2)
O O
where
01
Y= = diag(o1, 09, ...,0,), gi:\/x
o,

and Ay > Xy > -+ > \. > 0 are the nonzero eigenvalues of A* A.

Proof. Since A*A € C*" is Hermitian positive semidefinite, its eigenvalues are nonnegative.

Let the eigenvalues of A*A be 07,02, ..., 02, where
0p>09>:-20,>0= 0,41 = -+ = 0, Letvy,ve,...,v, be a set of orthonormal
eigenvectors for 07,03, ..., 02, and let
‘/1 = [U17U27 cee avr]a ‘/2 - [UT+17,U7”+2’ cee 7Un]a
and

Y = diag(oy,09,...,0.).

Then
VEAT AV =32, Vi =(A"A)V, =0

IStationary point of the function f : R® — R is every point 7o € R"™ which satisfies V f(x¢) = 0, while
f (o) is the corresponding stationary value.

Chapter 1. Introduction

and consequently
SIVFATAVIES T =1, AV, =0.

Now let
U, = AV, L

Then U;U; = I, that is the columns of U; are orthonormal. Let U; be chosen so that U =
[Uy Us)] is unitary. Then

AV — UfAV, UFAV,
_U;AVl Us AV,
[z yan o
| Us(hD) 0)
e
|0 o]
Thus (1.1.2) holds. [
Remark 1.1.1. The quantities o1 > o9 > --- > o, > 0 are the nonzero singular value of A

and (1.1.2) is called the singular value decomposition of A.

Lemma 1.1.1. Let Aand B = A+ E € C™*" have singular values o1(A) > oy(A) > -+ >
on(A) and 01(B) > 09(B) > -+ > 0,(B) respectively. Then

0i(A) = | Ells < 0:(B) < 03(A) + |Ellyy i = 1,2, n. (1.13)

1.1.3 Idempotent matrices and projectors

Idempotent matrices and projectors are very important notions and appear in numerous

problems concerning various generalized inverses.

Lemma 1.1.2. Let E € C"*" be idempotent. Then E possesses the following properties:

(a) E* and I — F are idempotent.

(b) The eigenvalues of E are 0 and 1. The multiplicity of the eigenvalue 1 is equal to rank(E).
(c) rank(E) = Tr(E).

dEI-FE)=(—-E)E=0.

() Fx =z ifand only if v € R(E).

(H) F € E{1,2}.

() N(E) = R(I - E).

The transformation denoted by Py, 5, carries any x € C" into its projection on L along

1.2. Main classes of generalized inverses

M. The transformation P, 5/ is called the projector on L along M, or, oblique projector. It is

known that the projector is a linear transformation.

Proposition 1.1.8. For every idempotent matrix E € C"", the subspaces R(E) and N (E)
are complementary and satisfy

E = Pr(e)N(E)-

1.2 Main classes of generalized inverses

1.2.1 The inverse of a nonsingular matrix

A matrix has an inverse only if it is square, and even then only if it is nonsingular, or, in
other words, if its columns (or rows) are linearly independent. It is well known that every

nonsingular matrix A has a unique inverse, denoted by A~!, such that
AATT=ATTA=1T.

We mention a few of the numerous properties of the inverse matrix:

(AT =4,
(A7) = (AT,
(A7) = (A7),

(AB) ' =B1'A"1,

It will be recalled that a real or complex number A is called an eigenvalue of a square matrix

A, and a nonzero vector z is called an eigenvector of A corresponding to A, if
Ax = dz.

Another property of the inverse A~! is that its eigenvalues are the reciprocals of those of A.

1.2.2 Solvability of linear systems

One of the most familiar application of matrices is to the solution of systems of simultane-

ous linear equations. Let
Ax =1 (1.2.1)

7

Chapter 1. Introduction

be such a system, where b is a given vector and x is an unknown vector. If A is nonsingular,

there is a unique solution for x given by
r=A"'h.

In the general case (when A may be singular or rectangular) there may sometimes be no solu-
tions or multiple solutions.

The consistent system of linear equations
Az =b (A€ C™" m<n, be R(A))
has many solutions. The inconsistent system of linear equations
Az =0 (A€ C™" b¢& R(A))

has no solution.
When (1.2.1) has many solutions, we may desire not just one solution but characterization
of all solutions. It has been shown [4, 62] if X is any matrix satisfying AX A = A, then Az = b

has solution if and only if
AXb =0,

in which case the most general solution is
r=Xb+ (I — XAy,

where y is arbitrary.

1.2.3 Definitions and main properties of generalized inverses

The problem of the generalized inverses computation is closely related with the following

four equations, called the Penrose equations:
(1) AXA=A (2) XAX =X (3) (AX)"=A4AX (4) (XA)"=XA.

For a subset S C {1,2, 3,4}, the set of all matrices obeying the conditions contained in S
is denoted by A{S}. Any matrix from A{S} is called an S-inverse of A and it is denoted by
AS), By A{S}, we denote the set of all S-inverses of A with rank s.

In 1955 Penrose showed for every finite matrix A (square or rectangular) of real or complex

elements, there is a unique matrix X satisfying the all four equations.

Theorem 1.2.1. [62] For any matrix A € C™*" there exists a single element in the set

8

1.2. Main classes of generalized inverses

A{1,2,3,4}, called the Moore-Penrose inverse of A and denoted by A'.
Proof. Let X,Y € A{1,2.3,4}. Then

X = X(AX)* = XX*A* = X(AX)"(AY)"
= XAY = (XA (YA)'Y = AY*Y
= (YA)Y =Y,

which completes the proof. []

If A is nonsingular, it is clear that X = A~! satisfies the four Penrose equations. Since the
Moore—Penrose inverse is unique, it follows that the Moore-Penrose inverse of a nonsingular
matrix is the same as the ordinary inverse.

In this way, we come to the notion of {, j, ..., k}-inverses, where i, j, k € S. For example,
for a given matrix A € C™*", if there exists a matrix such that it satisfies only the first Penrose
equation, then this matrix is called an {1}-inverse of the matrix A and it is denoted by A,
Similarly, if the generalized inverse satisfies the first and the third Penrose equations, it is an
{1, 3}-inverse of A, denoted by A(*) while the corresponding set is denoted by A{1, 3}.

For a given subspaces 7" and S from C" by Pr ¢ we denote a projector from C" on 7" along
S.If S = T4, i.e., if S is orthogonal complement of T, then Pr is orthogonal projector from
C™ on T'. The matrix which corresponds to a linear map which is a projector, is idempotent
matrix. The matrix which corresponds to a linear map which is an orthogonal projector is a

Hermitian idempotent matrix.

Properties and representations of {1}-inverses

Lemma 1.2.1. Let A € C"*", and let E € C"*™ and P € C*" be matrices which transform
A into the form

I, K
FAP = .
O
Then the n X m matrix
I, K
X=P I FE (1.2.2)

is an {1}-inverse (or inner inverse) of A, for arbitrary block L € ng”’)x(m’”.

Lemma 1.2.2. For a given matrix A € C**" the following statement are valid:

1
(a) ()\A)(l) = ATA(l)’ where \ € C and)\T _ { 87 \ . :

Chapter 1. Introduction

(b) AAW is a projection from C™ on R(A), i.e., AAY) = Pg(4) s where S € C™ is such that
R(A)+ S =C"

() I — AW A is a projection from C" on N'(A), i.e., I — AVA = Py a7 where T € C" is
such that T + N'(A) = C";

(d) rank(AM) > rank(A);

(e) AN A = I, ifand only if r = n;

() AAW = I, ifand only if r = m;

() If X € A{1}, then X € A{1,2} if and only if rank(A) = rank(X);
(h) (A*A)WA* € A{1,2,3};

(i) A*(AA)D) € A{1,2,4};

(G) ALY AACS) = Af,

The next results establish the extremely important relationship between {i, j, . .., k }-inverses
and the solutions of a linear matrix equation [2, 89].

Lemma 1.2.3. Let A € C™*", B € CP*1, D € C"™*9, Then the matrix equation
AXB=D
is consistent if and only if it holds
AAYDBYB =D

?

for some AV BY). In this case, the general solution is
X =AYDBW 4y — AW AY BBW
for arbitrary Y € C"*P.
Corollary 1.2.1. Let A € C™" and AY) € A{1}. Then
A{1} = {AW 4+ 7 — AWAZAAD | Z € C™™Y.

Corollary 1.2.2. Let A € C™*" and
Az = b, (1.2.3)

10

1.2. Main classes of generalized inverses

where A € C™" and b € C™. Then the system (1.2.3) is consistent if and only if for some AM)
it holds
AAMY = b,

in which case the general solution of the system (1.2.3) is
=AYb+ (I — AV A)y,

for arbitrary y € C".

Lemma 1.2.4. The matrix equations
AX =B, XD=F
have a common solution if and only if each equation separately has a solution, i.e.,

AAYB =B, EDWD=E, (1.2.4)

Y

and

AE = BD.

In this case,
X =AYB + EDW — AWAEDM

is a common solution of both equations, for arbitrary AV and DV,

Lemma 1.2.5. Let the equations given in (1.2.4) have a common solution X, € C"™*". Then

the general solution of these equations is given by
X =Xo+ (I —ADA)Y (I - DDW),

for arbitrary AV € A{1}, DY) € D{1}, Y € C™*",

Proposition 1.2.1. Let A € C™*", X € C™™. Then X € A{l} if and only if, for all
b e R(A), x = Xb is a solution of the system (1.2.3).

Proposition 1.2.2. The identity AB(AB)Y A = A holds if and only if rank(AB) = rank(A).
Similarly, B(AB)Y AB = B is valid if and only if rank(AB) = rank(B).

Proposition 1.2.3. Let A € C™ " and let AV be an arbitrary element of A{1}. Further,
denote by R(A) = L and N'(A) = M. Then AAY) and AWM A are idempotent and

AAW = Ppg, AVA = Pry,

11

Chapter 1. Introduction

where S is a subspace of C™ complementary to L, and T is a subspace of C" complementary
to M.

Properties and representations of {1, 2}-inverses

It is known that the existence of a {1}-inverse of a matrix A implies the existence of its

{1, 2}-inverse. This fact is verified in Lemma 1.2.6.
Lemma 1.2.6. Let Y, Z € A{1}. Then X =Y AZ € A{1,2}.

According to Lemma 1.2.6, for any L € C7)*0m=") the n x m matrix X defined in
(1.2.2) belongs to A{1,2} if and only if X is given in the form (1.2.2).

Lemma 1.2.7. (Bjerhammar 1958) [4] For a given A and X € A{l}, it follows that X €
A{1,2} if and only if rank(X) = rank(A).

Lemma 1.2.8. Any two of the following three statements imply the third:

X € A{1},
X € A{2},
rank(X) = rank(A).

Proposition 1.2.4. If A and X are {1, 2}-inverses of each other, then

AX = Prayn(x), XA = Prix)na)-

Basic properties of the Moore-Penrose inverse

The most important result related to the Penrose equations is the statement that there always
exists a unique matrix which satisfies the four Penrose equations. This result was shown by
Penrose [61] in 1955. This matrix is called the Moore-Penrose inverse and denoted by Af,

The concept of a generalized inverses of an arbitrary matrix A € C™*" is originally due
to Moore, in 1920, (called by him the "general reciprocal"). His definition was essentially as

follows.

Definition 1.2.1. I[f A € C™*", then the generalized inverse of A is the matrix X € C"*"™ such
that

Moore proved the existence and the uniqueness of the solution of such defined generalized

inverse by proving the following result.

12

1.2. Main classes of generalized inverses

Proposition 1.2.5. For every A € C™*" there exists a unique matrix X € C"*™ satisfying
(1.2.5).

Rado proved the equivalence of Moore’s and Penrose’s definitions of the generalized in-
verse, and today this inverse is known as Moore-Penrose pseudoinverse (shortly M-P inverse

or pseudoinverse).

Although {1}-inverses and {1, 3}-inverses provide a solution of a given matrix equation,
the Moore-Penrose inverse most resemble to the ordinary inverse. This statement is justified by
its uniqueness and the properties listed in the following two lemmas. Also, since the Moore-
Penrose inverse is {1}-inverse, we should take into account that the properties from Lemma

1.2.2 are also valid for the Moore-Penrose inverse.

Proposition 1.2.6. (Penrose 1955) [61] Let A € C™ ™ and b € C™*'. The minimal-norm least-
squares solution of the system Ax = b is given by v* = A'b. All other least-squares solutions
are given by

v=Ab+ (I, — ATA)z, zeC"

Lemma 1.2.9. Let A € C™*" be an arbitrary matrix. The Moore-Penrose inverse A possesses

the following properties:
(a) (AN = A, (AT)* = (A")T;
(b) (AA")T = (A%)TAT, (A*A)T = AT(A)T;
(c) ATAA* = A* = A*AAT;
(d) AT = (A*A)TA* = A*(AA%)T;
(e) N(AAY) = N(AT) = N(4*) = R(A)
() R(AA) = R(AAD) = R(A), rank(AAD) = rank(AM A) = rank(A);
(2) AAY = Priasyaa) and ATA = Pray van.

Lemma 1.2.10. Let A € C™*" be an arbitrary matrix. Then the matrix A can be written in the

form
A~ | O R R(4) : (1.2.6)
O 0O N(A) N(A%)
where Ay is invertible. Hence,
; ATl O R(A) R R(A*)
O O N(A*) N(A)

13

Chapter 1. Introduction

The representation (1.2.6) of can be easily obtained from the Singular value decomposition
(SVD) of A. More precisely, the SVD decomposition of A assumes that the matrix A; is a
diagonal matrix whose entries are the singular values of A.

If the vector b in the system (1.2.3) satisfies b ¢ R(A), then it is necessary to search for
an approximate solution by trying to find a vector which minimizes the norm of the vector
Ax —b.

Definition 1.2.2. Let A € C"*" and b € C™. A vector & € C" which satisfies the minimization

problem
|AZ — b]|* = min || Az — b||*. (1.2.7)
zeCn

is called a least-squares solution of the system (1.2.3).
The next lemma gives a characterization of all least-squares solutions of the system (1.2.3).

Lemma 1.2.11. The vector x is a least-squares solution of the system (1.2.3) if and only if x is

a solution of the normal equation, defined by
A*Ax = A"b. (1.2.8)

The following proposition, restated from [2], shows that ||Az — b|| is minimized by the
vector v = A3b. This statement establishes very important relation between the set of {1, 3}-

inverses and the least-squares solutions of the system (1.2.3).

Proposition 1.2.7. Let A € C™", b € C™. Then |Ax — b|| is smallest when x = A",
where A13) € A{1,3}. Conversely, if X € C"™ has the property that, for all b, || Az — b|| is
smallest when © = Xb, then X € A{1,3}.

Since AM3) inverse of a matrix is not unique, as a consequence, a system of linear equations
has many least-squares solutions in general. However, among all least-squares solutions of a

given system of linear equations, there exists only one such solution of minimum norm.

Definition 1.2.3. Let A € C"™*" and b € C™. A vector &, which satisfies the minimization

problem
|| (1.2.9)

H:IC"H2 = min
zeCn

is called a minimal-norm solution of the system (1.2.3).

The next proposition, restated from [2], establishes a relation between {1, 4}-inverses and

the minimum-norm solutions of the system (1.2.3).

Proposition 1.2.8. Ler A € C™*", b € C™. If Ax = b has a solution for x, the unique solution
x for which ||x|| is smallest is given by x = AMYb, where AMY € A{l1,4}. Conversely, if

14

1.2. Main classes of generalized inverses

X € C™™ s such that, whenever Ax = b has a solution, x = Xb is the solution of minimal-
norm, then X € A{1,4}.

Joining the results from Proposition 1.2.7 and Proposition 1.2.8 we are coming to the most

important property of the Moore-Penrose inverse.

Corollary 1.2.3. (Penrose 1955) [61] Let A € C™*", b € C™. Then, among the least-squares
solutions of Ax = b, A'b is the one of minimum-norm. Conversely, if X € C"™ ™ has the

property that, for all b, Xb is the minimal-norm least-squares solution of Az = b, then X = Al

In the essence, Lemma 1.2.3 shows that A'b is the minimal-norm least-squares solution of
the linear system Az = b. This fact caused a dramatic increase of the interest in the generalized
inverses theory.

Further, the next proposition characterizes the set of all least-squares solutions of a given

system of linear equations.

Proposition 1.2.9. (Nashed 1970, 1976) [59] If A € C™*™ has a closed range R(A), then the
set S of all least-squares solutions of the system Ax = b is given by

S =AM N(A) = {ATb+ (I — ATA)y| y € C"},
where NV (A) denotes the null space of A.

Some additional properties of AT and A™") can be found for example in [2, 89].

The Moore-Penrose inverse can be computed using arbitrary {1}-inverse.

Proposition 1.2.10. (Yanai, Takeuchi, Takane 2011) [119] The Moore-Penrose inverse Al can

be expressed by an arbitrary inner inverse, as
Af = ATA (AT AATA) " AT
— AT (44m)V 4 (a7 4)" A7,

The singular value decomposition is very important notion in developing RNN models and

even in numerical linear algebra.

Lemma 1.2.12. Let A € C"*" and let A = UXV™* be the singular value decomposition of A
where U € C™ ™ and V' € C™*" are unitary matrices and A = diag(oq,09,...,0,), 0; =
Viand \y > Xg > -+ > N\, > 0 are the nonzero eigenvalues of A*A. If

diag(oy,09,...,0,) O O

O O

by
A=U Vi=U Viecm

15

Chapter 1. Introduction

then

¥t 0O
O O

diag(1/0y,1/09,...,1/0,) O
@) O

Al =V U=V Uu* e cvm,

Moreover, let S1, Sy, S3 be arbitrary r x m —r, n —r X r, and m — r X n — r matrices,

respectively. Then an inner inverse of A is given by

A0 — diag(1/oy,1/09,...,1/0,) 51 Ut e enxm,
S S
Theorem 1.2.2. Let A € C"*™, let
¥ O
A=U V* (1.2.10)
O O

be the singular value decomposition (SVD decomposition) of A, where U € C™ ™ and V' €
C" ™ are unitary matrices and > = diag(oy,09,...,0,), 0; = V/Ajand A\ > Ag > -+ >
A, > 0 are the nonzero eigenvalues of A*A. Then o1 > 09 > --- > o, > 0 are the nonzero

singular value of A and
1

|All2 = o1, ||AT]l2 = — (1.2.11)
Proof. From (1.2.10), we have
2 0
AA=V V*.
@)

Thus the eigenvalues of A*A are 07 = \;(A*A), i =1,2,...,nand
[A]3 = [[A*All2 = M (A" A)| = oF.

So ||A||2 = o1 holds. It is easy to verify that

¥ 1 0
At =V U*. (1.2.12)
O
Hence the non-zero singular values of A are
1 1 1
Or Or—1 01

1
Thus ||AT|l = — holds. [
o

r

16

1.2. Main classes of generalized inverses

Next lemma shows that the full rank factorization of a matrix A leads to an explicit formula
for its Moore-Penrose inverse A'. This formula is known as the full rank representation of the
Moore-Penrose inverse. As usual, by Agl and Azl we denote a right and a left inverse of A,

respectively.

Lemma 1.2.13. (MacDuffe, 1956) [55] Let A € C"*" and A = PQ, P € C"*", Q € C[*" be
its full rank factorization. Then it holds

In addition, Q) is right invertible and P is left invertible:

Q' = Q'QQ), Pl = (PP

Definition 1.2.1. For a given matrix A € C™*", its weighted Moore—Penrose inverse ARL N €

Cr*™ satisfies the following matrix equations:
T _ T T _ AT
AynA=A, Ay yAAy Ny = Ay ns

(AA}L\/[,N)# = AAJ][W,N? (A;r\/[,NA)# = A}RLNA

where M and N are the symmetric positive definite matrices of order m and n, respectively,
and A* = N=YATM. In particular, when M and N are the identity matrix I, A}rw’ N reduces

to the Moore— Penrose inverse Af.

A non-zero matrix that is of neither full column rank nor full row rank can be expressed as
the product of a matrix of full column rank and a matrix of full row rank. We call this a full

rank factorization.

Theorem 1.2.3. [89] Let A € C™*",r > 0. Then there exist matrices P € C"*" and () €
Cr ™ such that
A = PQ. (1.2.13)

Definition 1.2.2. Let A € C"*" be a given matrix. The smallest nonnegative integer k for
which the condition
rank (A1) = rank(A4*) (1.2.14)

holds is called the index of A, and it is denoted by ind(A) = k.

17

Chapter 1. Introduction

Further we will supplement the four Penrose equations by the following equations applica-

ble only to square matrices:
(1F) AEX = Al 1 >ind(A), (5) AX = XA.

Definition 1.2.3. The Drazin inverse of a square matrix A € C"*" is the unique matrix X €
C™ " which fulfills the matrix equation (2) in conjunction with (1%) and (5) and it is denoted
by X = AP (for more details see [89)).

Definition 1.2.4. The Drazin inverse in the case ind(A) = 1 is called the group inverse and is
denoted by X = A7,

Definition 1.2.5. The outer inverse of A € C"*" with prescribed range T and null space S is
the matrix X which satisfies the equation (2) and two additional properties: R(X) = T and
N (X) = S, and is denoted by AEFQ,)S,

It is well known that the Moore-Penrose inverse A’ and the weighted Moore-Penrose in-
verse AM ~» the Drazin inverse AP and the group inverse A% can be presented as particular
generalized inverses Ag)s for appropriate choice of the matrices T = R(G) and S = N (G).

For example, the next statements are valid for a rectangular matrix A (see [2]):

_ 4@ f_ 40
At = AQ o wiary Abrn = ARlasy ariany (1.2.15)

where M, N are positive definite matrices of appropriate orders and A* = N~'A*M. For a

given square matrix A the next identities (see [2, 89]) are satisfied:

)
R(AF),N(Ak)? AP = AR(A),N’(A)7 (1.2.16)
where k£ = ind(A).

The outer generalized inverses with prescribed range and null-space are very important
in matrix theory. The {2}-inverses have application in the iterative methods for solving the
nonlinear equations [2] as well as in statistics [20, 29]. In particular, outer inverses play an
important role in stable approximations of ill-posed problems and in linear and nonlinear prob-
lems involving rank-deficient generalized inverses [59, 134].

Outer inverses with prescribed range and null space are useful in solving the restricted sys-

tem of linear equations. This application is based on the following essential result from [12]:

Proposition 1.2.11. [12] Let A € C™ " be of rank r, let T be a subspace of C", and let the
condition

be AT, dim (AT) = dim (7))

18

1.3. Motivation and organization of the dissertation

be satisfied. Then the unique solution of
Ar=0b, z€T

is given by

for any subspace S of C™ satisfying AT & S = C™.

For other important properties of generalized inverses see [2, 89].

1.3 Motivation and organization of the dissertation

The aim of this dissertation is the application of recurrent neural networks (RNN shortly)
to solving some problems from a matrix algebra with particular reference to the computations
of the generalized inverses as well as solving the matrix equations of constant (time-invariant)
matrices.

The main efforts in the generalized inverse computation can be divided into two main types:
numerical algorithms and continuous-time algorithms. The numerical algorithms can be di-
vided into two categories: direct and iterative methods. The singular value decomposition
(SVD) algorithm is the most known between the direct methods [2]. Also, other types of ma-
trix factorizations has been exploited in computation of generalized inverses, such as the QR
decomposition [36, 78], LU factorization [83]. Methods based on the application of the Gauss-
Jordan elimination process to an appropriate augmented matrix were investigated [27, 79]. The
SVD algorithm is more accurate and is thus the most commonly used method, but it requires
a large amount of computational resources. The iterative methods, such as the orthogonal
projection algorithms, the Newton iterative algorithm, and the higher-order convergent itera-
tive methods [74, 47, 64, 19, 76] are more suitable for implementation. The Newton iterative
method is developed for block matrices in [58]. This algorithm has a fast convergence rate,
but it requires an initial condition for its convergence. All iterative methods, in general, require
initial conditions which are ultimate, rigorous and sometimes cannot be fulfilled easily. A lot of
iterative methods whose main objective is a numerical iterative computation of outer inverses
with prescribed range and null space have been developed. An overview of these methods
can be found in [19, 31, 51, 64, 76, 115, 121]. Iterative methods for computing generalized
inverses assume certain conditions for their convergence and the convergence is theoretically
established in the real variable case only. To overcome this disadvantage, an iterative algorithm
was proposed in [118].

Lately, neural networks have shown a huge potential as parallel distributed computational

models for solving many computationally challenging problems, such as various types of con-

19

Chapter 1. Introduction

strained optimization problems [30, 49], or the WTA (Winner-Take-All) competition phenom-
ena [43]. A quite a number of results related to the application of neural networks in solving
a variety of matrix algebra problems have been published recently. Different types of neural
networks have been introduced to solve systems of linear algebraic equations. The authors
of the papers [16, 97] designed recurrent neural networks for solving simultaneous linear alge-
braic equations. Wang in [92, 93, 95] proposed a gradient neural network to solve simultaneous
linear equations. In [95], it was verified that proposed recurrent neural networks are asymp-
totically stable in the large and capable of computing inverse matrices and solving Lyapunov
matrix equations. Two three-dimensional structured networks for solving linear equations and
the Lyapunov equation were developed in [99]. Neuron-like network architectures for comput-
ing eigenvalues and eigenvectors of real matrices were investigated in [15, 70]. Two recurrent
neural networks for computing LU decomposition and Cholesky factorization were presented
in [98]. A variety of other matrix algebra problems have been solved by using neural networks,

see for example [5, 13, 100].

In many real-time systems, real-time solutions of generalized inverses are usually imper-
ative. An example of such applications in robotics is the solution to the manipulator inverse
kinematics problem in real-time motion control of kinematically redundant robots. Reported
results show that neural network architectures are more suitable for real-time applications than
the conventional numerical algorithms. Thereinto, the neural approach is now regarded as
a powerful alternative for scientific computing because of its parallel distributed nature and
convenience of hardware implementation. A number of nonlinear and linear recurrent neural
network models have been developed for the inversion and generalized inversion of square and
full-rank rectangular matrices (for more details, see e.g. [34, 54, 94, 95]). Various recurrent
neural networks for computing generalized inverses of rank-deficient matrices were designed in
[96, 108]. Three recurrent neural networks for computing the weighted Moore—Penrose inverse
of rank-deficient matrices are presented in [108]. A neural network approach to compute the
Drazin inverse AP was developed in [14]. The approach from [14] is based on a feed-forward
multi-layer neural network, the gradient optimization technique and the standard back propaga-
tion learning algorithm. A new type of complex-valued Zhang neural network (ZNN), based on
a complex Zhang function, is proposed and investigated in [48]. ZNN models for online time-
varying full-rank matrix Moore-Penrose inversion are generalized, investigated and analyzed
in [127].

We will briefly present some of the latest results that were published at the time of writing
this dissertation. In [75] the authors proposed conditions for the existence and representations
of {2}, {1,2}, and {1}-inverses along with a new computational framework for these general-
ized inverses. Proposed representations are applicable to the complex constant matrices. Four

nonlinear gradient-based recurrent neural networks for computation of the Drazin inverse for

20

1.3. Motivation and organization of the dissertation

real constant matrices, based on the limiting representations of the Drazin inverse, are investi-
gated in [101]. The global convergence performance of defined neural networks is ensured by
any monotonically increasing odd activation function. In [102] two gradient-based recurrent
neural networks for computing the W-weighted Drazin inverse of a real constant matrix are
presented. Complex neural network models for time-varying Drazin Inverse computation are
considered in [104]. The proposed network models are based on limit representations of the
Drazin inverse and error-monitoring functions, which exploit Tikhnov regularization method.
In [81] two gradient-based recurrent neural networks for generating various inner inverses, in-
cluding the Moore-Penrose and the Drazin inverse are investigated in detail. Extension of the
ZNN algorithmic conceptual framework, which was used for the computation of the regular
matrix inverse, pseudoinverse, and the Drazin inverse, to the class of time-varying complex
outer inverses with prescribed range and null space can be found in [103]. Moreover, the same
paper investigates a hybrid combination of ZNN and GNN models for computing outer in-
verses of real constant matrices. In [66] the authors give a general scheme of discretization
for transforming continuous-time ZNN models for matrix inversion and pseudoinversion into
corresponding discrete-time iterative methods. This iterative scheme arises from the 4th order
Adams-Bashforth method and is systematically examined.

However, numerical calculation of outer generalized inverses for the real constant matrices
using the gradient-based recurrent neural network approach is insufficiently studied. Wei in
[109] derived integral representation for the generalized inverse Ag)s in an efficient way and
defined corresponding dynamic equation. But, the established dynamic equation is defined
intuitively, starting from defined integral representation and using an analogy with the previous

considerations.

1.3.1 GNN vs ZNN dynamics

According to the number of results related to the computation of inverses, generalized in-
verses and other matrix algebra problems, we could split neural network models into two main
types: more traditional gradient-based neural networks (or termed gradient neural networks,
GNN) usually aimed at constant (i.e. time-invariant) matrices and recently proposed new types
of neural networks called Zhang neural networks (i.e. ZNN) introduced to generalize to the
solution of online time-varying problems. The ZNN differs from conventional gradient-based

neural networks designed intrinsically for static problems solving in several important things.

e The design of GNN models are based on the elimination of the norm-based scalar-valued
error function which could only be positive or at least lower-bounded. In contrast, the
design of ZNN models are based on the elimination of every entry of the matrix-valued

error function, which could be positive, negative, bounded or even unbounded. The

21

Chapter 1. Introduction

matrix-valued error function could make the resultant ZNN models monitor and force
every entry of the error to zero. Thus, more information are used for network learning
and better performance can be achieved for the ZNN model, as compared to the GNN

model.

e The ZNN models exploit the time-derivative information of problem matrix during real-
time solving process. This is the reason why ZNN models could globally exponentially
converge to the theoretical solution of the time-varying problem. In contrast, GNN mod-
els have not exploited such important information, and thus may not be effective in solv-
ing such a time-varying problem. In essence, the ZNN method is based on a prediction

thought, while the GNN method belongs to a conventional tracking approach.

e The GNN models are depicted in explicit dynamics, i.e., in the general form X (t) = .. .,
which are usually associated with classic Hopfield-type recurrent neural networks. In
contrast, the ZNN models are depicted in implicit dynamics (e.g., X (t)A(t)AT(t) =
...), which frequently arise in analog electronic circuits and systems due to Kirchhoff’s
rules [124]. In addition, the implicit dynamic equations could preserve physical param-
eters in the coefficient matrices. They could describe the usual and unusual parts of a
dynamic system in the same form. Thus, implicit systems have higher abilities in rep-
resenting dynamic systems, as compared to explicit systems. If needed, the implicit

dynamic systems could be transformed to explicit dynamic systems.

1.4 Review of known GNN models

In order to complete our motivation, we survey necessary known results of other authors
regarding regular and generalized inverses computation using both GNN and ZNN types of
recurrent neural networks. These results served as the starting point for the research presented
in this dissertation. In addition to the results, the related sources are listed.

When it comes to creating GNN models, the dynamics of neural network is based on the
usage of the scalar-valued norm-based error function £(t) = e(V (t)) = 3| E(t)||3 where E(t)
is an appropriate error matrix, ||A||r := y/Tr(ATA) denotes the Frobenius norm of the matrix
A and Tr(-) denotes the trace of a matrix (see [21]). The general design formula is usually

defined along the negative gradient —Je (V' (t))/0V of e(V(t)), until the minimum is reached:

d‘git):_vf (&gfv(m) (1.4.1)

Here, V/(t) is the matrix of activation state variables, ¢ € [0, 00) is a time parameter and 7y is

a positive scaling constant whose values must be harmonized with the chosen time interval.

22

1.4. Review of known GNN models

Further, F(R) is an odd and monotonically increasing function array, element-wise applica-
ble to elements of a real matrix R = (r;;) € R™", ie., F(R) = (f(riy)), i = 1,...,m,
j=1,...,n, wherein f(-) is an odd and monotonically increasing function. One of the main
motivation for investigating GNNs for generalized inverses computation is based on the ability
to exploit the correlation between the dynamic state equations of recurrent neural networks for

computing generalized inverses and integral representations of these generalized inverses.

Remark 1.4.1. Theorem 5.5.1 needs an activation function H,(-) which involves a monotoni-
cally increasing odd function F (-). The following widely used real-valued linear and nonlinear
functions satisfy this requirement.

Linear function
f(z) == (1.4.2)

Bipolar-sigmoid function

f(2) = 1 +exp(—q) 1—exp(—qz)

T 1—exp(—q) 1+ exp(—qz)’ ¢>2 (14.3)
Power-sigmoid function
P, ifjz| > 1
flz) = { iZ’;ﬁEigﬁ . ;zgé:gg’ otherwise q>2, p=3. (1.4.4)
Smooth power-sigmoid function
Flo) = Lor LEoxp(C0) Tmow(zen) g0y (1.4.5)

2 1 —exp(—q) 1+ exp(—qx)

For illustration and comparison, the four types of activation functions f are illustrated in
Figure 1.1. Note that other new activation functions can be generated readily based on these
basic types.

1.4.1 GNN for regular inverse

Wang in [94] proposed the dynamic equation of the linear recurrent neural network for
computing the inverse of a nonsingular matrix A. This dynamics is initiated by the error matrix
E(t) = AV (t) — I. Since

O(V(t)) _ 1O|AV(t) — 1|5
o2 oV
and using the general design rule (1.4.1) with linear activation function /, dynamics can be

= AT (AV(t) - 1),

23

Chapter 1. Introduction

linear function A
== bipolar sigmoid fuction

Smooth power-sigmoid function B
A power sigmoid function N

Figure 1.1: Behavior of the four basic types of activation functions

described as follows:

dV (¢
dzE) = —yATAV (t) + vAT, V(0) = V4, (1.4.6)
It is proven in [94] that the GNN model (1.4.6) is asymptotically stable in the large and

the steady-state matrix of the recurrent neural network is equal to the inverse matrix of A, i.e.,
lim V(t) = A™!, for arbitrary V(0).
t—o00

1.4.2 GNN for computing the Moore-Penrose inverse

Recurrent neural network defined in (1.4.6) can be used for computing the Moore—Penrose
inverse of a full-column rank rectangular matrix A € R"*", by simply allowing the activation
state matrix to be rectangular. In the full-row rank case, A € R"*", the recurrent neural

network
dV (t)

dt

which is dual with respect to (1.4.6), can be also used to compute the Moore—Penrose inverse

= —V(t)AAT +~AT, V(0) = V, (1.4.7)

of A. The closed-form solution of the state matrix can be described as follows (96]):

v { exp(—yATAH)V (0) + v exp(—yATAt) [fexp(yATAT)ATdr, m>n,

V(0) exp(—yAATE) + yAT exp(—yAATE) [fexp(yAATT) AT, m<n.
In the case of a full-rank rectangular A, Wang in [96] derived the following representation

24

1.4. Review of known GNN models

of AT, which is independent of V(0):

tli}m vexp(—yATAt) [lexp(yATAT)AT dr, m > n,

At = (1.4.8)

tli)rn yAT exp(—yAA™t) [Jexp(yAATT)dTr, m < n.

Moreover, Wang in [96] proposed three recurrent neural networks for computing the Moore—
Penrose inverse of rank-deficient matrices. The first recurrent neural network has the dynamic

equation
dv() | —MV(H)ATA+MAT, V(0)=0, m=>n,
— = 1.4.9
de —V(t)AAT™M+A"M, V(0)=0, m < n, (149
where M is a positive diagonal matrix satisfying M € R™" if m > n and M € R™ ™ if

m < n.

Representation of the Moore—Penrose inverse given in (1.4.8) corresponds to the following
integral representation of the Moore—Penrose inverse for bounded linear operators, introduced
in [26]:

Al = /Oooexp(—ATAT)AT dr, (1.4.10)

The global exponential convergence of Gradient neural network (1.4.7) in the case when A

is nonsingular as well as its global stability when A is singular is verified in [126].

1.4.3 GNN for computing the weighted Moore-Penrose inverse

Wei in [108] introduced the following dynamic state equation of the first recurrent neural
network (called NV /N1) for computing the weighted Moore—Penrose inverse of a rank—deficient

matrix:
dv(t) —DA*AV (t)+DA*, V(0)=0, m > n, 141D
dt —V(t)AAED+A'D, V(0)=0, m < n,

where D is a positive diagonal matrix of proper dimensions and A% = N~*ATM (M and N are

chosen positive definite matrices). The simplest choice for D is D = I, where v > 0 [108].

Corresponding integral representation of the weighted Moore—Penrose inverse of a linear

operator between Hilbert spaces was introduced in [110]:

Al = /ooexp(—A#AT)A# dr. (1.4.12)
’ 0

25

Chapter 1. Introduction

1.4.4 GNN dynamics for solving matrix equations
GNN for solving the matrix equation AXB = D

A gradient-based neural dynamical design corresponding to the matrix equation AX B = D
was investigated in [80]. The model is based on the matrix-valued error function E(t) =
D — AV (t)B. The model defined in [80] is termed asd GN N (A, B, D) and defined as follows:

dgf) = V(t) = vA"F(D — AV (1)B)B". (14.13)

Convergence properties of GNN (A, B, D) design are considered in [80].
Theorem 1.4.1. [80] Assume that real matrices A € R™*", B € RP*? and D € R™*4 satisfy
AAYDBWYB = D, (1.4.14)

for some inner inverses AV and BY. If an odd and monotonically increasing array activa-
tion function F(-) based on an elementwise function f(-) is used, then the neural state matrix
V(t) € R"*? of the GN N (A, B, D) model (1.4.13) asymptotically converges to the solution of
the matrix equation AXB = D, i.e., AV(t)B — D ast — +oo, for an arbitrary initial state
matrix V (0).

Theorem 1.4.2. [80] Assume that the real matrices A € R™*", B € RP*? and D € R™*4

satisfy
AA'DB'B = D. (1.4.15)

Then the activation state variables matrix V (t) of the model GNN (A, B, D), defined by
(1.4.13), is convergent as t — +00 and has the equilibrium state

V(t) -V =A"DB" + V(0) — ATAV(0)BBf! (1.4.16)

for every initial state matrix V (0) € R"*P,

GNN for solving the matrix equation AXA = A

GNN model for solving the matrix equation AV (t)A = A, arising from the error function
e(t) = 3||A — AV (t)Al|, was investigated in [81]. Then the nonlinear GN N (A, B, D) model
becomes the GNN (A, A, A) model, defined in [81] as the following GNN-MP model:

dV(t)

- YATF (A — AV (t)A) AT = yATF (E(t)) AT, V(0) arbitrary. (1.4.17)

26

1.4. Review of known GNN models

GNN for solving the matrix equation BXCAB = B

Solution \7\/(0) of the matrix equation
BXCAB =18
which is derived by the GNN (B, CAB, B) model
V(t) = BYF(B — BV(t)CAB)(CAB)" (1.4.18)

gives VV(O) € (CAB){1}. Then X = BV C gives various representations of outer inverses
according to Urguhart formula. The Urquhart formula was originated in [88] and later extended
in [89, Theorem 1.3.3] and [2, Theorem 13, P. 72].

Proposition 1.4.1. Let A € R™", B € R™P, C € R™™ and X := BVC = B(CAB)VC,
where (CAB)WY is a fixed but arbitrary element of (CAB){1}. Then

(1) X € A{1} ifand only if rank(CAB) = r;

(2) X € A{2} and R(X) = R(B) if and only if rank(C AB) = rank(B);

(3) X € A{2} and N (X) = N(C) if and only if rank(CAB) = rank(C);

4) X = Ang),f\/(C) if and only if rank(CAB) = rank(B) = rank(C
%)X = A%i@),/\/(()) if and only if rank(C' AB) = rank(B) = rank(C

);
)

=r.

The following application of the GN N (A, B, D) model is motivated by the results from
[82] and the Urquhart formula.

Corollary 1.4.1. Assume that A € R™", B € R™* and C € R>™ satisfy B(CAB)ICAB =
B.

(i) If an odd and monotonically increasing function f(-) is used to define the array activation
function F(-), then the state matrix V(t) € R"** of the GNN(B,CAB, B) model (1.4.18)
satisfies BV (t)CAB — B ast — 400, for an arbitrary initial state matrix V(0). When

t — 400, the matrix V (t) is convergent and its limiting value VV(O) satisfies
Vi) = B'B(CAB)" + V(0) — B'BV(0)CAB(CAB)' € (CAB)", (1.4.19)

for every initial matrix V (0) € R**L,

(ii) The following statements are valid:
(1) The condition rank(C' AB) = r initiates

X = BVV(O)O S A{l}.

27

Chapter 1. Introduction

(2) The condition rank(C' AB) = rank(B) implies
X = BVy(0)C € A{2}r(p)x-
(3) The condition rank(C' AB) = rank(C') implies
X = BVy(0)C € A2} nv(0).
(4) If the conditions rank(C'AB) = rank(B) = rank(C) are satisfied, then
X 1= BV)C = ARl vicy-
(5) If the conditions rank(C'AB) = rank(B) = rank(C') = r are satisfied, then
X 1= BV()C = Ap(vicy-

GNN for solving the matrix equation GAX = Gor XAG =G

The GNN(GA, I, G) model is defined for solving the matrix equation GAX = G is based
on the error matrix F(t) = GAV (t) — G, where A € R™" is given and G € R*™, 0 <
s < r, is appropriately chosen matrix. This model is applicable in generating the outer inverse

Agza), N (@) Corollary 1.4.2 can be derived as a consequence of Theorem 1.4.2.

Corollary 1.4.2. Assume that the real matrices A € R"*", G € R*™ satisfy 0 < s < r and
rank(GA) = rank(G). Then the following statements hold.
(i) The unknown matrix V (t) of the model GNN(GA, I, Q)

dV(t)

o = v (GAT (GAV(t) — G), V(0) arbitrary (1.4.20)

is convergent when t — +o0co and has the limit value
Viro) = (GA)'G + V(0) — (GA)'GAV(0), (1.4.21)

for every initial matrix V (0) € R™*™,

(i) In particular, V(0) = 0 initiates Vo = (GA)IG = Aﬁ’(ZLG)A)lN(G).

Corollary 1.4.3. Assume that the real matrices A € R7"*", G € R satisfy 0 < s < r and
rank(AG) = rank(G). Then the following statements hold.
(i) The unknown matrix V (t) of the dynamical model GNN (I, AG, G) satisfies

dv(#)

5 = 7 (VDAG = G) (AG)", V(0) arbitrary, (1.4.22)

28

1.4. Review of known GNN models

it is convergent when t — 400 and has the limit value
Vo) = G(AG)" + V(0) = V(0)AG(AG)', (1.4.23)

for every initial matrix V(0) € R™™,
(ii) In particular, Vo = G(AG)T = A§\2/7(30))7N(AG)J-‘

The authors of [138] omitted the constant term (G A)T from (1.4.20) and the constant term
(AG)™ from (1.4.22), and considered two dual linear GNN models, defined as follows:

dt

W — _y (V(HAG —G), V(0)=0, if m<n.

(1.4.24)

{dvm = —y (GAV(t) - G), V(0)=0,if m>n,

The application of the dynamic equation (4.1.1) is conditioned by the properties of the spectrum
of the matrix GA or AG:

{a«?A><:{zr Re (2) : (1.4.25)

0(AG) C {z: Re(z)

More precisely, the first GNN approach used in [138] fails in the case when Re (0(GA)) con-
tains negative values. Clearly, the model (4.1.1) is simpler than the models (1.4.20) or (1.4.22),
but it loses global stability. An approach to resolve the requirement (4.1.7) and recover global
stability was proposed in [138], and it is based on the replacement of G by Gy = G(GAG)TG
in (4.1.1). But, this approach requires additional matrix multiplications during the computation
of the matrix G in (4.1.1) instead of the matrix G.

GNN for solving the matrix equation A*AX = A*

Particularly, the GNN model for computing the Drazin inverse AP was proposed in [84].
This model can be derived removing the first constant term in GN N (A* A, A*), k > ind(A),

and it is defined as

dv (1)

4&f:_7@HWﬁynM)kzmamgwm:0 (1.4.26)

Accordingly, an application of the model (1.4.26) is conditioned by
Re(Ag?“) >0,j=1,...,n, (1.4.27)

where o(A) = {\y,..., A\, } is the spectrum of A, and m > ind(A) [84]. One method to
resolve the limitation (4.3.11) is proposed in [84], and it is based on the possibility to find an
appropriate power k such that (4.3.11) holds. Another possibility to ensure the nonnegativity

29

Chapter 1. Introduction

of the spectrum of the form (4.3.11) was proposed in [85], and it is based on the usage of the
T
matrix A* (A%“) Ak k= ind(A).

GNN for computing 1/ -weighted Drazin inverse

. The W-weighted Drazin inverse of A € R"™*" corresponding to W & R™"*™, denoted by

A, satisfies the matrix equation
(AW T2 Ay, = (AW)'A, (1.4.28)

which initiates the dynamical system GN N ((AW)*2 I, (AW)!A) defined by

dV(t

d§> == ((AW)H?)T ((AW)*2V () = (AW)'A), 1>k, V(0)arbitrary, (1.4.29)
where & = max{ind(AW),ind(W A)}. The dynamical system (1.4.29) is usable in approxi-
mating A, since Namely, the limit value VV(o) of the matrix of activation state variables V()

in (1.4.29) satisfies VV(O) =Agw.

T
After omitting the constant term ((AW)’“) , the dynamic equation (1.4.29) becomes the
GNN model defined in [102]:
dV(t)

5 =7 ((AW)*2V () = (AW)'A), 1>k, V(0) arbitrary. (1.4.30)

1.5 Review of known ZNN models

On the other hand, the ZNN model for online time-invariant matrix inversion is based upon
the matrix-formed error function E(t) instead of a scalar valued function £(¢). The time deriva-
tive of error function £/(t), should be selected in such a way that each element e;;(t) of E(t)

converges to zero, Vi = 1,...,n . A general design rule of E(¢) is defined as follows

E(t) = dEdit) = —F (E(t)). (1.5.1)

Again, F(C) is an odd and monotonically increasing function array, and + is a positive scaling

constant.

1.5.1 ZNN for computing regular inverse

Matrix error function can be defined as F(t) = AX(t) — I. Substituting it into dynamic
system (1.5.1) and choosing F to be the linear function, the following Zhang dynamics for

30

1.5. Review of known ZNN models

computing regular inverse of a non singular real constant matrix can be can be obtained:
AX = —yAX(t) + 71, (1.5.2)

where X (t) is the matrix of activation state variables. The implicit dynamics were originally
proposed for online inversion of a time-varying matrix A(¢) in [122]. It was shown in [122] that
the Zhang dynamics globally exponentially converges to the theoretical inverse A~1, starting

from any initial state X (0), with the exponential convergence rate ~.

1.5.2 ZNN for computing Moore-Penrose inverse

The starting point in [48, 132] was the fact that the left Moore-Penrose inverse A(t) sat-
isfies A(t)"A(t)A(t)". Further, on the basis of the assumption that A(t)" A(#) is invertible, the
following matrix-based error function, called ZF(5), is considered

where X (t) corresponds to A(¢)". An elegant way to avoid the assumption of the invertibility
of A(t)*A(t) was presented in [48]. Namely, the authors of [48] defined the complex ZF which

arises from the ZF defined in (5.1.2), and the Tikhonov regularization:
E(t) = (A(t) A(t) + M) X(1) = A@t)", A> 0.

The resulting ZNN model (5.1.3) is termed as complex ZNN-II Model.

1.5.3 ZNN for computing the Drazin inverse

In addition, the following complex function was used as the fundamental error-monitoring
function (called ZFL2) in [104]:

E(t) = (A@)" + M) X(t) = A(t)' 1 > k = ind(A), X > 0.

The matrix X (¢) in (5.1.4) corresponds to the Drazin inverse A(#)P. Let us mention that the
ZNN-II model in [67] is defined on the basis of the ZF (5.1.4) and upon the Li activation

function.

1.5.4 ZNN for computing outer inverse

The starting point in generating the ZNNATS2-I model arises from Lemma 1.5.1 from
[105].

31

Chapter 1. Introduction

Lemma 1.5.1. Let A(t) € C™™ be given and G(t) € CI*™ be an arbitrary matrix whose
rank satisfies 0 < s < r. Assume that X (t) := A(t)R(G N(G) exists. Then both the matrix

identities

are satisfied.

The leading idea of [105] was to comprise so far known ZNN models for computing gen-
eralized inverses into a unique comprehensive model corresponding to outer inverses in the
time-varying complex matrix case. The ZNNATS2-I model defined in [105] requires two ma-
trices A(t) € CmX” G(t) € C*™, 0 < s < r, and it is aimed to numerical computations of the
outer inverse A(t) R(G).N(G)- The model is developed using the following two dual fundamental

error-monitoring ZFs, proposed in [105]:

Eq(t) = (GOA() + M) X(E) - G(t), n<m, A>0
| X (ADG(E) + ML) — G(t), n > m, A> 0.

1.6 Outline of the dissertation

In the following three chapters we introduce and study gradient-based recurrent neural
networks (GNNs) for computing the generalized inverses of a constant real matrix in real-
time. Recurrent neural networks are composed of independent parts (sub-networks). These
sub-networks can work simultaneously, so parallel and distributed processing can be accom-
plished. In this way, the computational advantages over the existing sequential algorithms can
be attained in real-time applications. The proposed GNNs can be easily implemented in an
electronic circuit. The number of neurons in the neural network is the same as the number
of elements in the output matrix, which represents the requested solution. We consider the
conditions that guarantee the stability of the defined GNNs as well as its convergence toward
the inverse. We show the efficacy of the proposed neural network models through illustrative
computer simulation and examples of application to the practical engineering problems.

Chapter 2 presents GNNs with dynamics conditioned by the properties of the spectrum of

a certain matrix. The chapter is based on the results published in papers:

[84] Predrag S. Stanimirovic¢, Ivan S. Zivkovié, and Yimin Wei. "Recurrent neural network for

computing the Drazin inverse." IEEE transactions on neural networks and learning systems 26.11

(2015): 2830-2843.

[138] Ivan S. Zivkovié, Predrag S. Stanimirovi¢, and Yimin Wei. "Recurrent neural network for

computing outer inverse." Neural computation 28.5 (2016): 970-998.

32

1.6. Outline of the dissertation

Chapter 3 resolves the drawback of the GNN models from Chapter 2, at the cost of increas-

ing the number of matrix operations. The results presented are based on the papers:

[85] Predrag S. Stanimirovié, Ivan S. Zivkovié, and Yimin Wei. "Recurrent neural net-
work approach based on the integral representation of the Drazin inverse." Neural com-
putation 27.10 (2015): 2107-2131.

[138] Ivan S. Zivkovié, Predrag S. Stanimirovié¢, and Yimin Wei. "Recurrent neural

network for computing outer inverse." Neural computation 28.5 (2016): 970-998.

Chapter 4 emphasizes the equivalence between two well known general representations
of outer inverses with prescribed range and null space of a given matrix. Two dynamic state
equations, corresponding to particular expressions related to these representations, are defined.
In this way, two gradient based neural networks, initiated by introduced dynamic equations,
are exploited in generating the class of outer inverses. The results corresponding to the most
common generalized inverses are obtained in particular cases. Simulation results are presented

at the end of the chapter. The chapter is based on the results from:

[86] Predrag S. Stanimirovié, Ivan S. Zivkovié, and Yimin Wei. "Neural network ap-
proach to computing outer inverses based on the full rank representation." Linear Algebra
and Its Applications 501 (2016): 344-362.

In Chapter 5 we investigate and exploit an analogy between the scaled hyperpower family
(SHPI family) of iterative methods for computing the matrix inverse and the discretization of
Zhang Neural Network (ZNN) models. We define a class of ZNN models corresponding to
the family of hyperpower iterative methods for computing generalized inverses on the basis of
the discovered analogy. The Matlab Simulink implementation of the introduced ZNN models
is described in the case of scaled hyperpower methods of the order 2 and 3. Convergence
properties of the proposed ZNN models are investigated as well as their numerical behavior.

This chapter is based on the paper:

[87] Igor Stojanovié, Predrag S. Stanimirovi¢, Ivan S. Zivkovié, Dimitrios Gerontitis,
Xue-Zhong Wang, ZNN models for computing matrix inverse based on hyperpower iter-
ative methods. Filomat, 31(10) (2017), 2999-3014.

In Chapter 6 our goal is to compare a novel kind of a hybrid recursive neural model with
implicit dynamics and a conventional neural model with explicit dynamics. Through the sim-
ulation results we show the hybrid model can coincide better with systems in practice and has
higher abilities in representing dynamic systems. More importantly, hybrid model can achieve
superior convergence performance in comparison with the existing dynamic systems, specif-

ically ZNN dynamics. We present the Matlab Simulink model of a hybrid recursive neural

33

Chapter 1. Introduction

implicit dynamics and give a simulation and comparison to the existing Zhang dynamics for
real-time matrix inversion. Simulation results confirm a superior convergence of the hybrid

model compared to the classical Zhang model. The chapter is based on the following paper:

[137] Ivan S. Zivkovié, and Predrag S. Stanimirovi¢. "Matlab simulation of the hybrid
of recursive neural dynamics for online matrix inversion." Facta Universitatis, Series:
Mathematics and Informatics (2018): 799-809.

34

Chapter 2

GNN for computing generalized inverses

with restrictions on spectrum

This chapter presents a gradient-based recurrent neural networks (GNNs) for computing
the generalized inverses of a real constant matrix in a real time. These models are created of
a certain number of independent sub-networks, which can operate in parallel. In this way, the
computational advantages over the existing sequential algorithms can be attained in real-time
applications. The GNNs introduced are convenient for an implementation in an electronic cir-
cuit. The conditions that guarantee the stability of the defined GNNs as well as its convergence
toward the inverse are considered. In addition, illustrative examples and examples of appli-
cation to the practical engineering problems are discussed in order to show the efficacy of the

proposed neural networks.

2.1 GNN for computing the Drazin Inverse

2.1.1 Preliminaries and motivation

We repeat the definition of the Drazin inverse, for the sake of the completeness (for more
details see [2, 89]). Let A € C™*" and ind(A) = k. Then the matrix X € C"*" satisfying

ATIX = Al 1> ind(A), (2.1.1)
XAX = X, (2.1.2)
AX = XA (2.1.3)

is called the Drazin inverse of A, and it is denoted by X = AP.
If A is nonsingular, then ind(A) = 0 and AP = A~ Otherwise, if A is singular, then
ind(A) > 1. Also, in the case ind(A) = 1 the Drazin inverse becomes the group inverse

35

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

X = A [69].
In [24, 115] Castro, Koliha and Wei derived a simple integral representation of the Drazin
inverse AP for matrices A € C™*" (and more generally elements of a Banach algebra) for

which the nonzero eigenvalues of A™*! lie in the open right half plane for some m > ind(A):
AP — / exp(—A™H) A™ dr, (2.1.4)
0

In the current section we present the main results from [84]. Developed GNN design rep-
resent a continuation of the results derived in [94, 96, 108] from the usual inverse and the
pseudoinverse to the Drazin inverse. A dynamic state equation of the neural network corre-
sponds to the integral representation (2.1.4). We also provide the conditions which must be
imposed to the spectrum of A which ensure the stability of the neural network. A specific neu-
ral network approach to compute the Drazin inverse AP was developed in [14]. The approach
from [14] is based on a multi-layer neural network arising from the system of matrix equations
(2.1.1)-(2.1.3).

2.1.2 Neural network architecture for computing Drazin inverse
Dynamic state equation for computing the Drazin inverse

We will assume A € R™*", i.e., our investigation will be limited to the real square matrices.

Let’s observe the matrix equation (2.1.1). We can rewrite it as follows

ATy — A™ =, (2.1.5)

where m > ind(A), and V' € R™" denotes the unknown matrix corresponding to AP. To
solve (2.1.5) for V' via dynamic-system approach, we can define a scalar-valued norm based

error function: 41 2
A - A

2

Note that the minimal value E(f) = 0 of the residual-error function E(¢) is achieved in a

E(t)

, m > ind(A).

minimizer V' = V/(f) if and only if V(f) is the exact solution of (2.1.5). A computational
scheme could be designed to evolve along a descent direction of this error function E(t), until
the minimum FE/(7) is reached. The typical descent direction of F(¢) is defined by the negative
gradient —0FE(t)/0V of E(t). The gradient of E with respect to V' € R"*" could simply be
derived as (see, for example, [25, Chapter 5])

OE(t)

S = () (A v () — A (2.1.6)

36

2.1. GNN for computing the Drazin Inverse

As a consequence, the GNN model for computing the Drazin inverse is given by

W _) (amet)" (am 1) — am)

dt (2.1.7)

m > ind(A), V(0) = V4.

The GNN dynamics (2.1.7) will be termed as GNNAD.
The first term (Am“)T in the right hand side of (2.1.6) can be considered as a constant fac-
tor. Therefore, the gradient direction of E(t) is also defined by (A™ 1V (t) — A™), so (A™+1)"

can be removed.

According to design formula dV (t)/dt = —y0E(t)/0V, and by excluding the constant
term from (2.1.6), the authors in [84] defined the dynamic equation of a gradient recurrent
neural network as follows

dV (t)

—L =y (AT () - A™)

dt (2.1.8)

m > ind(A), V(0) = 1,.

The reason for this definition could be the fact that if we find the equilibrium state V' = V (f)
for dynamic system (2.1.8), then it is clear that the minimum for the residual-norm function

E(t) is also achieved, because the following is satisfied

dv
— =0 2.19
i ()
at the equilibrium state V. Thus,
—y (A" — A™) =0, (2.1.10)

and, therefore (2.1.5) holds.

Here, V (t) is a matrix of activation state variables, ¢t € [0,+00), 7 is a positive scaling
constant which should be established as large as the hardware permits, or selected appropriately

for simulative and/or experimental purposes {94, 97]).

The recurrent neural network defined in (2.1.8) is a linear dynamic system in a matrix form.
According to the linear systems theory [35], the closed-form solution of the state matrix can be

described as follows:

37

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

t
V(t) = exp(—yA™ M)V (0) + ’)/eXp(—’}/Am+1t)/eXp(’yAerlT)Am dr. (2.1.11)
0

To analyze the convergence and stability of a neural network it is necessary to know the

eigenvalues of A™.

Proposition 2.1.1. [1, Page 164] If = is an eigenvector corresponding to an eigenvalue A\ € C
of the matrix A € R™ ", then x is an eigenvector of A™ associated with the eigenvalue \", for

any integer m > (.
According to Proposition 2.1.1 the following useful result is obtained in [84].

Lemma 2.1.1. [84] Let A € R"*" be given singular matrix and o(A) = {\1,..., \,} be the
spectrum of A, and m > 0. Suppose that the condition

Re(A7*1) >0, j=1,2,...,n (2.1.12)
is satisfied. Then the following holds:
tlg& exp(—yA™) = 0. (2.1.13)
Proof. The Jordan normal form of the matrix A™*! is defined by [2, 7]
A" = Pdiag[Jy, Ja, ..., Jp) P71,

where P is invertible matrix and diag operator denotes a block diagonal matrix whose Jordan

blocks Ji, k = 1,2, ..., p lie on the main diagonal and are equal to

Jr = Je(AP)
[amtl
m+1 .
—)\k‘ : E RnkXTLk‘
S
)\Z“Ll

The matrix exponential of —yA™* 't is defined by (see [21, Chapter 11], [28])
exp(—yA™) = Pdiag [exp(—vtJ1),exp(—tS), . .., exp(—tJ,)| P~ .

38

2.1. GNN for computing the Drazin Inverse

By applying known results from [28], it is not difficult to conclude

exp(—tJy) =
[—t (—yt)"k 1 T
I = ... (;Zk_l)!
m+1 1 R
exp(—ytAl ™) t : (2.1.14)
1
k=1,2,...,p.
The power A\]"™ of the eigenvalue)\, is a complex number

1
AP = g + 10,

where 2 denotes the imaginary unit and uy, v, mean the real and imaginary part of \}**!, re-

spectively. According to the assumption (2.1.12) the inequality
— Re()\?“) = —yu, <0

is valid for each \; € o(A). Since real parts of all eigenvalues contained in the spectrum

o (A™*1) are nonnegative, it follows that

lim exp(—ytAT™) - (—1)' =
lim exp(t(—yue) (cos(~yogt) + vsin(=yuit)) - (~7)

0,

foreach [, 0 <[< ng — 1. Therefore, according to (2.1.14), tle exp(—~ytJy) is the zero matrix
foreach k = 1,2, ..., p. This further implies that tlim exp(—yA™*t1t) is the zero matrix. []
—00

Now, equation (2.1.11) and Lemma 2.1.1 imply the following representation for tli}m V(t) =
V:

t
V= tli}m 7exp(—7Am+1t)/ exp(yA™) A™ dr. (2.1.15)
o0 0

It can be verified, based on the definition and properties of matrix exponential, that the
closed-form solution of V in (2.1.15) represents the Drazin inverse, and it is independent of the

parameter .

39

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

Theorem 2.1.1. [84] Let A € R™" be given matrix, o(A) = {\1,..., \,} be the spectrum
of A, and m > ind(A). Suppose that the condition (2.1.12) is satisfied. Then the limiting

expression (2.1.15) produces the Drazin inverse AP, i.e.,
V = AP.

Proof. Applying several elementary transformations and using basic properties of the Drazin

inverse, one can verify

¢
V = lim ’yexp(—”yAmHt)/ exp(yA") A" dr
o0 0
t
= lim exp(—yA™) / exp(yA™)y A™ dr
o0 0

¢
[llm exp(— Am+1t)/exp(7Am+17')(’yAmH)dT]AD
0

¢
[hm exp(—yA™) / d (exp(yAmJrl 7') AP
0
T=t
[im exp(—yA™t) exp(yA™ 1)] AP
7=0

{hm exp(—yA™) {exp(vAmHt) —])} } AP

AP,

t—o00

[[— lim exp(—yA™*t)

According to Lemma 2.1.1, we conclude
V = AP,

which completes the proof. [

The equation (2.1.11) can be simplified by forcing the first matrix term in the right-hand
side to be zero by setting zero initial states, i.e. V' (0) = 0. In light of the above discussion, the
dynamic state equation of the recurrent neural network for computing the Drazin inverse can

be described as follows:

W (4w - am).

m > ind(A), V(0) =0, (2.1.16)

where 7 is a positive real constant. The model (2.1.16) will be termed as GNND model.

Now we are investigating the stability of the equilibrium state V. Before the main result,
which shows that the equilibrium state is stable in the sense of Lyapunov, we restate two auxil-

iary results.

40

2.1. GNN for computing the Drazin Inverse

Proposition 2.1.2. [38] If C, D are two n X n real symmetric positive semidefinite matrices.
Then
Amin(C) Tr(D) < Tr(C'D) < Apax(C) Tr(D), 2.1.17)

where Apin(A) (resp. Amax(A)) denote the smallest (resp. the largest) eigenvalue of A.

Lemma 2.1.2. [1] Let M and N be two positive semi-definite matrices. Then the following

statements hold.:
(a) Tr(MN)>0.
(b) Tr(M)=0<= M =0.

In Lemma 2.1.3 we show that the Hermitian part of a square real matrix M, defined by
H(M) = 1 (M +M")
2 J

possesses a useful property with respect to the trace function.

Lemma 2.1.3. [84] Let M and N be two real square matrices of the order n. If the matrix N

is symmetric, then the following equality is valid:
Ter(MN) =Tr(H(M)N). (2.1.18)

Proof. Let us denote (ij)th element of M (resp. N) by m;; (resp. n;;). By applying definition

of the trace function and several algebraic transformations, we obtain:

=D > H(M)yny

=1 j=1

;(ﬁ:imw nji + szﬂ nﬂ)'

i=1j=1 =1 j=1

Since the matrix /V is symmetric, we further have

Tr(H(M)N (szij ni oYY my ”ij)
=1 75=1 j=1li=1
1 [& -
= - (Z (MN)ii + > (M)
2 \io j=1
= Tr(MN),

which was our initial intention. [

41

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

Theorem 2.1.2. [84] Let A € R™™™ be given singular matrix and o(A) = {1, ..., \,} be the
spectrum of A. Suppose that (2.1.12) holds. Then the gradient-based neural network model
GNND, defined in (2.1.16), is stable in the sense of Lyapunov.

Proof. To prove stability we use the Lyapunov’s method [63, Chapter 2.9]. We construct the

following Lyapunov function candidate

2 2

m+ly, _ Am||2 Tr Am+1v_AmT AmFLy _ gm
B = ATV A (() ()

Clearly, the inequality £(t) > 0 holds. Applying the matrix calculus (see, for example [25,

Chapter 5]) on E(t), we derive the following transformations:

OE(t) LOTe[VT(A™)TA™IY] LTe[VT(A™)TA™] 19Te[(A™)TA™ V]

ov 2 ov 2 ov 2 ov

_ ; { {(Am-i-l)TAm—&—l} + [(Am-i—l)TAm—i-l}T} VvV — (Am+1)TAm

— (Aerl)TAerlV _ (Aerl)TAm
—_ (Aerl)T(AerlV - Am)

Thus, the time derivative of E(¢) is equal to

T
4B() _ 5 ((02" av
dt ov dt
— Tr<(Am+1V_Am)TAm+1 (_'Y (Am+1V—Am)))
— —’yTr (Am+1 (Am+1v _ Am) (Am-‘rlv o Am)T>]
From the identity (2.1.18) of Lemma 2.1.3 we further get

dE<t> _ m+1 m+1 m m+1 m T
dt——yTr(H(A) (A — A (A - aAm))

Since the eigenvalues of a square matrix are equal to the eigenvalues of its transpose, then the
assumption (2.1.12) implies that the nonnegativity Re ()\;7‘“) > 0 1is valid for each)\;-”“ €
o (H(A™*"1)). Moreover, since H(A™!) is symmetric, it is positive semi-definite. The matri-
ces H(A™ 1) and (A" — A™) (A™H1V — A™)T are both positive semi-definite, so that the

trace of their product is nonnegative, according to Lemma 2.1.2, part (a). Therefore,
dE(t) <0,
dt —

so the gradient-based neural network GNND is stable. []

42

2.1. GNN for computing the Drazin Inverse

Corollary 2.1.1. [84] Let A € R™*" be given nonsingular matrix and (2.1.12) holds. Then the
GNND neural network (2.1.16) is globally asymptotic stable in the sense of Lyapunov.

Proof. For the sake of simplicity, we use the following notations:
C = H<Am+1)’ D= (AerlV o Am) (AerlV . Am)T .

By the Lyapunov stability theory, the gradient-based neural network (2.1.16) is asymptotically
stable if the inequality dE/(¢)/dt < 0 is satisfied for any non-equilibrium state V', and
dE(t)

— 9
dt

only for dV'(t)/dt = 0 (at the equilibrium state V). In our case, it is necessary to verify
Tr(CD)=0<= D =0.

If D = 0 holds, applying Lemma 2.1.2, part (b), we obtain Tr(D) = 0. Further, from
(2.1.17) Tr(C'D) = 0 immediately follows.

On the other hand, let us assume Tr(C'D) = 0. An application of Proposition 2.1.2 leads to
Amin(C) Tr(D) < 0. Nonsingularity of C' (i.e., Ayin(C) # 0) in conjunction with Tr(D) > 0
further implies Tr(D) = 0. Since D is positive semidefinite, we obtain D = 0 and further
dV (t)/dt = 0.

Moreover, the Lyapunov function E(V (¢)) is radially unbounded, therefore according to
Theorem 4.2 [37, Chapter 4.1, page 124] the gradient-based neural network (2.1.16) is globally
asymptotic stable. [

According to the Theorem 2.1.1, we can conclude that our goal is to find the integer m such

that the matrix A™*! has nonnegative real parts of eigenvalues, i.e.,
(T(Am+1) C {z: Re(z) > 0}. (2.1.19)

Conditions ensuring that the non-zero spectrum of A™*! lies in the open left/right half of
the complex plane as an equivalent to the condition that the non-zero spectrum of A lies in
the union of m + 1 angular regions are found in [24]. Therefore, the authors in [24] found
conditions for the arguments of eigenvalues. If the required conditions are not satisfied, the
Drazin inverse can not be generated. We develop a different approach: find corresponding

conditions for the matrix exponent k, such that A**! satisfies (2.1.19).

There are several cases for selecting the parameter m which guarantee nonnegativity of real
parts for all eigenvalues of the matrix A™*!. These cases are discussed in Theorem 2.1.3 from

[84]. Before the main results, we present several supporting facts and notations.

43

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

Lemma 2.1.4. [84] Let A € R"*" be given matrix, \; € 0(A) and k be a fixed positive integer.
Then the condition Re ()\f) > 0 is ensured in the following cases:

Cl. \; e RT.
C2. \; e R7, kiseven.

C3. A and k satisfy
0, = Arg\; = ig, ke{dl: €Nt (2.1.20)

where Arg denotes the argument of a complex number.

C4. \; satisfies
N eCn{z=r;e¥: 0<|p;| <7} (2.1.21)

and the parameter k satisfies

4s —1 = 4s+1
—<k<——, s€ Ny, (2.1.22)
2 sl 2 gl

Proof. The proof in the cases C1-C3 is evident. In the case C4 it follows that
Aj = aj by = ;e =r;(cos(p;) +esin(p;))

where

ri = |\l = /aj + b,

-1, a; =0,b; =0

5 a; =0,b; >0
A S a; = 0,b; < 0

arctan (%) . a; # 0.

The real part of

A? = r;-“ (cos(k ;) +vsin(k ¢;))

is equal to
Re()\f) = rf cos(kg;).

Therefore, Re ()\f) > 0 is satisfied in the case cos(k |¢;|) > 0, or equivalently
—g+257r< kgl < g+257r, s € Ny.

Therefore, the condition (2.1.22) in conjunction with v > 0 implies ¥ Re (/\f) > 0. The length
of the interval (2.1.22) which gives bounds for possible values of £ is equal to 7/|p;| so that

44

2.1. GNN for computing the Drazin Inverse

the condition
B (2.1.23)
\%’ \

must be satisfied. Therefore, necessity of (2.1.21) and (2.1.22) is verified. [J

Theorem 2.1.3. [84] Let A € R™*™ be a given matrix of index k =ind(A) whose eigenvalues
are 0(A) ={\;, 7 = 1,2,...,n}. For each \; we consider the set of possible values of the
exponent m which ensure Re(\]") > 0. The set M is defined by M = [I,400], | > ind(A),
foreachj = 1,2,...,n. Let M3 be the set of values of the parameter m defined by applying the
restrictions imposed in the case C2 from Lemma 2.1.4 on the basis of known value \; € o(A).
Similarly, by Mg, M Z we denote the sets of admissible values of the parameter m defined by
applying the cases C3 and C4 from Lemma 2.1.4, respectively.

Therefore,
Mj={m=20:1ecN"}, M ={m=4l:1cN"},
4 41 —1 A1+ 1
Mg:{m; ik NS Th L Y NO}
2 eyl 2 il

Later, the set of positive integers corresponding to \; we denote by U;. It is easy to conclude
U; = Mg orlU; = Mg orlU; = Mi. The recurrent neural network defined by (2.1.16) is stable

and the steady-state matrix of the recurrent neural network is equal to AP, i.e.,

lim V(t) = AP

t—o00

in the following cases:

Case 1. 0(A) C R, m > ind(A).

Case 2. 0(A) C R, \; < 0 for at least one index j and m satisfies m > ind(A), m + 1 is even.
Case 3. The spectrum of A satisfies

c(A)cCn{z=re?:0<|f| <}, (2.1.24)

and the parameter m satisfies (2.1.25):
m+1_mm(ﬂa@mMﬁ>, (2.1.25)
j=1
where U; = Mf in the case \j > 0.

Proof. 1t is necessary to ensure the existence of the condition (2.1.19). Also, to ensure the
existence of AP, the condition m > ind(A) must be satisfied in all cases. The proof in Case
1 and Case 2 is obvious from Lemma 2.1.4, since from Proposition 2.1.1 we have o(A™"!) =
{)\3-"“, j=1,2,...,n}.InCase | and Case 2 the conditions (2.1.19) are satisfied. According

45

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

to Lemma 2.1.4, the condition (2.1.24) ensures Re(A}”) > 0. Finally, (2.1.24) and (2.1.25)
ensure (2.1.19). [

The choice of m in accordance with the condition (2.1.25) in conjunction with v > 0
ensures that the nonzero spectrum of the matrix A™*! from (2.1.8) lies in the open right half of

the complex plane.

Network configuration of GNND model

Similarly with the recurrent neural networks for matrix inversion {94, 96]), neural network
is composed from a number of independent sub-networks. Each sub-network represents a

column vector of V(t). Let us define v;(t) (resp. af") as the jth column vector of V(t) (resp.

A™), for j = 1,2,...,n. The dynamics of the jth sub-network can be expressed as follows:
de (t) _ m+1 m
o= (A™ () — a). (2.1.26)

The dynamics defined in (2.1.26) indicates that each sub-network is basically similar to the
recurrent neural network presented in [97]. Let W be the connection weight matrix. The
connection weight matrix —yA™"! is identical for each sub-network (i.e., W = —yA™!) and

the biasing threshold vector for the jth sub-network is

m __ m m
va; —‘{7auw-~~f7anj-

Elements of the matrix W (resp. V') are denoted by w;; (resp. v;;). Figure 2.1 depicts the
architecture of the proposed recurrent neural network for computing the Drazin inverse.

Elements of unknown matrix V' (¢) are computed using

dvy & -
by = =2 = S w4+ a6, § = 1,2, n. (2.1.27)
dt o
Elements of the column v; = {vy;,...,v,;} are generated in the jth sub-network.

Since the connection weight matrix of the neurons in each sub-network is identical, the
proposed recurrent neural network can also be realized by a single sub-network with time-
sharing threshold vectors. In each time slot, sub-network biased by the corresponding threshold
vector generates one column vector of the Drazin inverse. Therefore, the spatial complexity of

the neural network can be reduced by a factor of n.

The main advantage of the neural network approach to matrix inversion lies in its potential
of hardware realization. The state dynamics equation (2.1.16) indicates that the proposed recur-

rent neural network is convenient for an implementation in an electronic circuit. The proposed

46

2.1. GNN for computing the Drazin Inverse

wi Wi
on C()[:T\ —V/l VI/VI/J on on UJ”T\ —f’m—V/nV/nJ
M neuron 11 M neuron In
21 w21 w21
a)zzT\ -\}Jl W/Vz[i a)zzi\) wzzT\ —Vz;z-V:nV_’ni
Wan i W2 y W2n M
neuron 21 neuron 22 S neuron 2n
Wi Whni Wl
@ ‘\}ul Vn[Vnl @ -\5”: Vn: Vn2 M\ -Vnn -sz Vin
Wi - Qo M W ﬂ
neuron nl neuron n2 neuron nn

Figure 2.1: Architecture of the RNN for computing the Drazin inverse

electronic neural network consists of n? neurons - processing elements. The neurons can be
implemented by electronic devices which represent three-operational amplifiers: a summing
amplifier, an integrating amplifier, and an inverting amplifier. In [94], Wang gave a detailed de-
scription of implementing a mathematical model of recurrent neural network into an electronic
neural network. In the same paper, it is also shown that, since the process of finding inverse is
parallel and distributed, the convergence rate of the electronic neural network is independent
of the order of input matrices. In this way, the electronic neural network has an advantage over
traditional sequential procedures for large-scale matrix inversion. Also, as discussed in [94],
the convergence rate of the linear recurrent neural network (2.1.16) is directly proportional to
the smallest nonzero eigenvalue of the connection weight matrix. Specifically, the time needed
for the recurrent neural network to converge is approximately 5/|Apin (W)], where Ay, (W) is
the minimum nonzero eigenvalue of the connection weight matrix W = —yA™ "1, As will be
shown through illustrative examples in Section 2.1.3, the recurrent neural network defined by
the dynamic equation (2.1.16) is indeed able to generate the Drazin inverse of singular matrices

at the projected convergence rate.

Remark 2.1.1. The positive real scaling constant vy should be chosen as large as possible in
order to speed up the process of computation. Since v multiplies the time parameter t, it is
clear that the term

: _ m+1
Jim exp(—yA™")

from (2.1.13) will vanish faster with larger .

47

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

Remark 2.1.2. Since the computation of ind(A) requires knowledge of powers A¥, its compu-
tation could be difficult, especially for large-scale matrices. In view of its importance in the
computation of the Drazin inverse, we present a speedy/simplified method to obtain integer |
satisfying | > ind(A). Our idea is to calculate matrix powers A% k> 1, and find first | = 2F
satisfying rank(A') = rank(A%), where the rank of a matrix is computed using the built-in
function rank in Matlab. It is clear that | selected in such a way satisfies | > ind(A). Then we
use Mf = [l, +00| and apply Theorem 2.1.3. More precisely, we compute the matrix power A2
using square and multiply method: calculate A> = A- A, A* = A%. A? etc., until the condition
rank(A2") = rank(A2""") is satisfied.

2.1.3 [Illustrative examples for GNND model

In order to check the validity and performance of the neural network approach in the com-
putation of the Drazin inverse some computer simulations have been done. In all examples
it is assumed that AP denotes the exact Drazin inverse of A and A% denotes its approximation
derived from our NN approach. In the case ind(A) = 1, the exact group inverse of A is denoted
by A# and A9 denotes its approximation. All the tests are performed on AMD Athlon 3000+
machine, with 1GB RAM.

Example 2.1.1. Let us consider two singular matrices from [14]:

1 0 -1
Ai=10 1 0
0 -1 0
and
1 00
A,=11 1 0
010

Both matrices have the same index: ind(A,) = ind(Ay) = 1. It is easy to check that the exact

group inverse of matrix Ay is

1 —2 —1
A¥=10 1 o
0 -1 0

The computer simulation was done on the basis of the system of differential equations (2.1.16)
and the neural network with the architecture shown in Figure 2.1. Since ind(A;) = 1 and
o(A) = {1,1,0}, we can choose m = 1, so the weighted matrix A7""' = A? has the same
eigenvalues o(A?) = {1,1,0}. For the learning rate y chosen as v = 107 the weighted ma-
trix —yA™ = —107 - A? has the eigenvalues {—10000000, —10000000, 0}. Because all the

48

2.1. GNN for computing the Drazin Inverse

eigenvalues are non-positive, neural network defined by (2.1.16) is stable. The convergence

behavior of the network in 1075 seconds is illustrated in Figure 2.2.

o 1 o 0 o 0
g 1)11 g V12 g U13
€ 05 g g 05
2 2 2
o g g
»n 9 n _ n _
0 0.5 1 0 0.5 1 0 0.5 1
Time (s) X 10—6 Time (s) X 10—6 Time (s) X 10—6
o 1 o 1 o 1
8 V21 g Vo9 2 V23
g o g o5 g o
)))
g I I
n _1 (4] 0) _
0 0.5 1 0 0.5 1 0 0.5 1
Time (s) M 10—6 Time (s) X 10—6 Time (s) X 10—6
o 1 [0 o 1
ﬁ V31 § V32 @ V33
g o g -05 g o
2 2 g
I IS S
w _ (42} _ w _
0 0.5 1 0 0.5 1 0 0.5 1
Time (s) X 10—6 Time (s) X 10—6 Time (s) X 10—6

Figure 2.2: Convergence behavior of the RNN in 107¢ seconds for Example 2.1.1

The approximation of the exact group inverse A# with the accuracy of 1074, given by

0.9999 —2.0001 —0.9999
A= 0 0.9999 0o |,
0 —09999 0

was obtained after 10~% seconds. Figure 2.2 also shows that the states of the neural network
are stabilized after approximately 5/(10000000) = 0.0000005 seconds.

Similarly, the approximation of the group inverse A#

0.9999 0 0
A = [-1.0002 0.9999 0
—2.0002 —0.9999 0

is generated after 10=% seconds. In Table 2.1 we arrange numerical results concerning the
accuracy of approximations generated by our method and the feed-forward neural network
approach (denoted by FF) from [14). The matrix 2-norm || - || is computed by the Matlab

function norm (). We can see that more accurate results are provided using the recurrent neural

49

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

network approach compared to the feed-forward neural network approach.

Table 2.1: Numerical comparison test with FF[14]
Matrix | ~ | time(s) | A9 — AS|| |FE(A)—AS||
Ay 107 1076 1.099466084 - 1074 | 0.022568085212
Ag 107 107% | 3.397199551 - 10~ | 0.042300935109

Example 2.1.2. Consider the matrix from [136]

2 —-16 56 —56 0 56
0 1 6 -6 0 6
. 0 0 4 -4 01 39
0 0 0 0 01 -0.1
0 O 0 0 01 0.1
0 0 0 0 0 0

with ind(A) = 3. The exact Drazin inverse of A is equal to

[0.5000 0.8000 —1.9000 1.9000 0 —1.9000]
0 1.0000 —1.5001 1.5001 0 —1.5001
AP — 0 0 0.2500 —0.2500 0 0.2500
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

The eigenvalues of A are {2,1,4,0,0.1,0}. Since the matrix A* has all eigenvalues nonneg-
ative, we can select k = ind(A) = 3. We choose v = 107, so the connection weight matrix
W = —107 - A* has all non-positive eigenvalues. Trajectories for zero initial conditions are
depicted in Figure 2.3 and they show convergence behavior in 1075 seconds.

The matrix produced by our algorithm is

0.5000 0.8000 —1.9000 1.9000 0 —1.9000]

0 1.0000 —1.5000 1.5000 0 —1.5000

Al=1| o 0 02500 —0.2500 0 0.2500
0 0 0 O 0 0
0 0 0 O 0 0

50

2.1. GNN for computing the Drazin Inverse

2
V14
1.5F Vas
T V22
V12
/
2 05} V11
§ \ V33 U35
o 0
s |
[
T |/ V34
B o5/
1}
Va3 U
_15}+ 23 V25
V13 V15
_2 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s) x107°

Figure 2.3: Convergence behavior of the RNN in 1075 seconds for Example 2.1.2

Example 2.1.3. Consider the matrix from [115], given by

1 -1 0 0 0
-1 1 0 0 0
A -1 -1 1 -1 0 0
-1 -1 -1 1 0 0
-1 -1 -1 0 2 -1
-1 -1 0 -1 -1 2

The spectrum of A is equal to 0(A) = {3,2,2,1,0,0}. Using m = ind(A) = 2 and v = 107,

the method produces the following approximation of the Drazin inverse after 10~7 seconds;

[0.2500 —0.2500 0 0 0 0 |
~0.2500 0.2500 0 0 0 0
| 0 0 02500 —0.2500 0 0
0 0 —0.2500 0.2500 0 0

0 0 —0.4166 —0.5833 0.6666 0.3333

0 0 —0.5833 —0.4166 0.3333 0.6666]

The convergence behavior of the network in 10~7 seconds is graphically illustrated in Figure
2.4.

51

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

0.8

0.6

0.4

Us55 V66

Us6 V6s

0.2

/-

V11 V22 V33 V44 |

State variables

R

-0.2 V12 V21 V34 V437
0.4 U53 V64 |
Us4 V63
_06 Il Il Il Il L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s) x10°°

Figure 2.4: Convergence behavior of the RNN in 107 seconds for Example 2.1.3

The exact Drazin inverse of A is equal to

AD

Example 2.1.4. The following randomly generated matrix

[0.4447
0.6154
0.7919
0.9218
0.7382
0.1763

[1
4

PN

o O o O

0.4057
0.9355
0.9169
0.4103
0.8936
0.0579

O O O O mi=
PN
Hl I ae o o
[~ Bfer i

—_
N

0.3529
0.8132
0.0099
0.1389
0.2028
0.1987

| o O

e L

g

|
v

—_
[\

0.6038
0.2722
0.1988
0.0153
0.7468
0.4451

W= whn O O O O
who w~r O O O O

0.9318
0.4660
0.4186
0.8462
0.5252
0.2026

is nonsingular. Therefore, it satisfies ind(A)=0 and A~' = AP.

0.6721]
0.8381
0.0196
0.6813
0.3795
0.8318]

We want to show that for

appropriate choice of m, our neural network produces a good approximation of the inverse

A=Y The eigenvalues of A generate the set

{3.0601,0.6701, —0.6206 + 0.10812, —0.6206 — 0.10812,0.3905, —0.1170}.

We need to find such m > ind(A) which ensures that all eigenvalues of A™"! has nonnegative

52

2.1. GNN for computing the Drazin Inverse

real parts. Firstly, we have M! = [0,4+00],7 = 1,...,6. The eigenvalues \i, Ao and X5 are
positive, so that Uy = M|} = Uy, = M} = Us = M} = [0, +00|. Since we have one eigenvalue
(X\¢) that is negative, this means that our m corresponding to \g need to be even. Therefore,
Us = MS = {2,4,6,...}. Further, we have two complex conjugate eigenvalues (A3, \4). Since
it holds cosa = cos(—a) and cos(m —) = cos(m + «), we have Re(z™™') > 0 for the
same m such Re(2™*1) > 0. In our case, this means that M} = M. The real part of 3 is
a = —0.6206 < 0, so this eigenvalue lies in the second quadrant of the complex plane. We

have

b
p = arctan <) = —9.88100° = 180° — 9.88100° = 170.119°.
a

So, g = 1.05805. Therefore, the sets Us = M} = Uy = M are defined as:

4s —1 ds+1 7w
—<mAl<
2yl 2 ol

s € Np. (2.1.28)

For s = 1, we have

2 -1.05805 <m+1< 2 - 1.05805,

i.e., 1.5870 <m + 1 < 2.645125. So, m + 1=2, and m=1. For such choice of m, the matrix

A™H = A2 has all eigenvalues with positive real parts. Indeed, the eigenvalues of the matrix
A? are
{9.3643, 0.4490, 0.3735 + 0.1341z,

0.3735 — 0.13412, 0.1525, 0.0137}.

The neural network gives the following solution after 10~7 seconds, for v = 10*°:

[_3.0746

0.1593 —5.2799 3.2284 5.3347 —2.6300]
1.7626 0.0864 5.4113 —2.5822 —4.2963 2.4363
2 _ —1.4431 1.4461 —5.4049 1.7459 4.1102 —3.4690
—0.5694 —0.3461 —2.4723 0.3365 3.0550 —0.8025
2.2305 —0.3552 1.6884 —0.6080 —2.0921 —-0.0317
0.6351 —0.1135 2.9452 —0.9536 —2.9387 2.8558
The exact inverse of the matrix A is
-—3.0746 0.1594 —5.2799 3.2284 5.3347 —2.6300_
1.7626 0.0864 5.4113 —2.5822 —4.2963 2.4364
AP _ 4l —1.4430 1.4461 —5.4049 1.7459 4.1102 —3.4690 '
—0.5694 —0.3461 —2.4723 0.3365 3.0550 —0.8024
2.2305 —0.3552 1.6884 —0.6080 —2.0921 —0.0317
0.6351 —0.1135 2.9452 —0.9536 —2.9387 2.8558

53

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

N o

x10°

Figure 2.5: Convergence behavior of the RNN in 10~7 seconds for Example 2.1.4

The convergence behavior of the network in 10~7 seconds is graphically illustrated in Fig-
ure 2.5.

Example 2.1.5. Consider another singular matrix A from [115], with index ind(A) = 4:

3 -1 -1 -1 1 -3 1 2
3 -1 -1 -1 1 -3 1 2
2 0 -1 -11 -3 1 2
A 1 0 0 -11 -3 1 2 .
o 0 0 0 1 -3 1 2
o 0 o0 0 0 -2 1 2
o o0 0 0 0 0 -1 2
o0 0 0 0 0 1

Here 0(A) = {0,0,0,0,1,—2,—1,1}. Since A has negative eigenvalues, we can take m = 5,
because the matrix AT = AT = AS has all nonnegative eigenvalues. Using v = 107,

neural network produces the solution

54

2.1. GNN for computing the Drazin Inverse

0000
0000
0000

4l — 0000
0000
0000
0000
0000

The exact Drazin inverse of A is
0

0

0

AP = 0

0

0

0

0

1.0000
1.0000
1.0000
1.0000
1.0000

0

0

0

o O O O o o o o
o O O O o o o o
o O O O O o o O

—1.4999
—1.4999
—1.4999
—1.4999
—1.4999
—0.5000

0
0

N NIW NW MW Nw N|w

O O O =
|

o O

—0.5000
—0.5000
—0.5000
—0.5000
—0.5000
—0.5000
—1.0000

[e
= N N NE N N N

o

0

— O NN NN NN

1.9999
1.9999
1.9999
1.9999

1.9999|

1.9999

1.0000

The convergence behavior of the network in 10~° seconds is graphically illustrated in Figure

2.6.

State variable

0 0.2

Figure 2.6: Convergence behavior of the RNN in 10~ seconds for Example 2.1.5

0.4

Time (s)

0.6

0.8

x10°°

55

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

Our model is intended for computing the Drazin inverse of singular matrices, but it can also
deal with the inverses of regular matrices. More precisely, if the matrix A is nonsingular, then
our method produces A™!; but if A is singular, the method gets AP. Compared to previous
works, where neural networks for computing the inverse matrix are introduced (for example,
[94, 96, 108]), our neural network has the same neural network architecture as discussed in

[94], but different neurodynamic.

Example 2.1.6. Several nonsingular matrices with different orders are randomly created in
this example. We compare the performance of our neural network against the performance of
the neural network for calculating the matrix inverse, presented in [94].

The output of our neural network is denoted by A%; by Gn(A) we denote the output of neu-
ral network presented in [94], while A=' denotes the matrix inverse calculated by the Matlab
function inv (). Finally, the matrix norm || - || is computed by the Matlab function norm().
The test shows that our neural network computes the inverse of a given matrix with very good

precision, similar to the precision achieved by the network presented in [94].

Table 2.2: Numerical comparison test with [94]

Matrix | n | ~ | time(s) | ||[AY—A7Y| | |GN(A) =AY
Ay 5 | 10° 1077 1.34-10* 1.06 - 1071
Ag 10 | 10° 1077 4.97-107° 1.47-107°
As 15 | 10° 1077 2.97-107° 9.39-1076
Ay 20 | 10° 1077 7.88-107° 1.93-107¢
As |25)10°| 1077 | 1.79-107* 2.30-1074

Example 2.1.7. In this example we compare the performance of our method against the per-
formance of an iterative method for computing the Drazin inverse proposed in [136], which
we denote by IM. The Matrix A takes the values A, ..., As reused from examples 1-5. The
comparison in Table 2.3 is given in the sense of the accuracy of the solution and the CPU time
required for the convergence. Previous testing has shown that both methods produce solutions
with the similar accuracy. So in this table, we fixed the accuracy (~ 10~%) and we measure the

CPU time required for each method to generate the solution with that accuracy.

Table 2.3: Numerical comparison test with [136]

| AP — A4 time(s)

Matrix IM NN IM NN
Ay ~107* | ~ 107 | 0.029391 | 1076
Ao ~ 107 | ~ 107 | 0.050967 | 1076
Az ~107* | ~107* || 0.006505 | 10~¢
Ay ~107* | ~107% | 0.232515 | 1077
As ~107* | ~ 107 | 0.541346 | 107

56

2.1. GNN for computing the Drazin Inverse

Results from Table 2.3 show that RNN approach gives results with similar accuracy but about

three orders of magnitude faster than [136].

2.1.4 Application of the GNND model

The Drazin inverse and the group inverse have been applied to various fields, for instance,
singular linear systems, finite Markov chains, singular differential and difference equations,
multibody system dynamics (see, [7, 22, 57, 71]), cryptography [41], etc. In the monograph
[7, Page 123] it is shown that the Drazin inverse solution APb solves the singular linear system
Ax = bif and only if b € R(A¥). Also, APb is the unique solution of Az = b provided that
x € R(A¥) [7, Page 123]. It is also known result that the Drazin inverse solution represents the
minimal P-norm solution of the linear system Az = b, where P is invertible matrix such that
P~1AP is the Jordan canonical form of A and ||z||p = ||P~'z||» [107]. Moreover, the group
inverse is of fundamental importance in the analysis of Google’s PageRank system [39, 40].

The restricted matrix equation

AXB = D, R(X) C R(A*), N(X) D> N(A*),
k = max{ind(A),ind(B)}

has the unique solution X = AP DBP [90].
The Drazin inverse is applicable in the study of linear systems of differential equations with
singular coefficients, which can occur in electrical circuits if, for example, there are dependent

sources [7].

Example 2.1.8. In this example we consider solutions of the linear system Ax = b. The
matrix A takes, in succession, the values A1, Ay, As, Ay reused from [57] and the vector b takes
two values bc,, € R(A*) and bge, ¢ R(AF), both defined in [57). The results contained
in Table 2.4 (resp. Table 2.5) are corresponding to the case b = bg,, (resp. b = bgen).
Using ~ = 108, after 10~7 seconds, RNN approach generates the result v = A%b according to
numerical data arranged in Table 2.4 and Table 2.5. By MMSW are denoted accuracy and the
CPU time obtained applying the iterations from [57]; corresponding results generated by our
RNN approach are denoted by NN.

57

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

Table 2.4: Comparison test with [57] in the case b = b¢y,

| APb — || time(s)
Matrix MMSW NN MMSW NN
Ay 0.00163624 | 0.000880501 1.41 | 0.000001
A, 0.00354824 | 0.015209950 3.47 | 0.000001
As 1.06348014 | 0.013472465 9.41 | 0.000001
Ay 0.000000197 | 0.002730538 0.8 0.000001

Table 2.5: Comparison test with [57] in the case b = bgep,

| APb — || time(s)
Matrix MMSW NN MMSW NN
Ay 0.001108242 | 0.0016349695464 0.73 | 0.000001
A 0.002457201 | 0.0000760248121 0.7 0.000001
As 0.486144760 | 0.0004332707662 6.72 | 0.000001
Ay 0.000000432 | 0.0026274614443 0.44 | 0.000001

Comparing data arranged in both Table 2.4 and Table 2.5 it can be easily observed that

RNN approach produces more accurate results in significantly smaller CPU time.

Example 2.1.9. The group inverse plays a central role in the theory of finite Markov chains
[7, 56]). Let T' be the one-step transition matrix of a finite homogeneous Markov chain and
A =1 —T. According to known result [7, Theorem 8.2.1] the condition ind(A) = 1 holds,
i.e., the existence of AC is ensured for any stochastic matrix T. It is well known fact that the
answer to every important question concerning the chain can be obtained from A% [56].

Let us consider the regular chain whose transition matrix is given by

0220
2

s 112020
412101
1111

For the description of the Markov chain it is necessary to compute the group inverse of

4 =2 =2 0
-2 4 =2
A=1-T= ! 0
41 -2 -1 4 -1
-1 -1 -1 3

58

2.1. GNN for computing the Drazin Inverse

The exact group inverse of A is known from [56]:

266 —61 —96 —108

A#:i -96 300 —96 —108
1083 | —115 —137 246 6
—210 —156 —210 576

Setting v = 10°, we obtain the resulting group inverse A9 after 10~7 seconds. The convergence

behavior is presented in Figure 2.7.

0.4893 —0.1126 —0.1773 —0.1994
—0.1773 0.5540 —0.1773 —0.1994
—0.2123 —0.2530 0.4543 0.0111
—0.3878 —0.2881 —0.3878 1.0637

A9 =

0.6 J

0.4 b

0 =
{
-0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x 107

Figure 2.7: Convergence behavior of the RNN in 10~7 seconds for Example 2.1.9

59

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

2.2 GNN models for computing outer inverse

Next, we present the results from [138]. We are expanding investigation applied to the com-
putation of the Drazin inverse ([84]), based on appropriate dynamic equation and induced gra-
dient based RNN, to the more generalized problem of computing the outer inverses. Similarly
to the RNNs developed for the usual matrix inversion as well as to the RNNs for computing the
matrix pseudoinverse and the Drazin inverse, developed earlier, the proposed neural network
are also composed of a number of independent sub-networks which can operate concurrently.
Due to its simplicity in the implementation a linear activation function is chosen. The stabil-
ity of the proposed recurrent neural networks as well as their performance is demonstrated by

means of a few numerical examples.

2.2.1 Preliminaries and motivation

Recall that the generalized inverse A% g of A € C™" is the matrix X € C™*™ which
satisfies
XAX =X, R(X)=T, NX)=S5. (2.2.1)

If A e C™", T is a subspace of C" of dimension ¢ < r and S is a subspace of C™ of
dimension m — ¢, then A has a {2}-inverse X such that R(X) = 7" and NV (X) = S if and only
if AT & S = C™, in which case X is unique and it is denoted by A%)s (see [89]).

Our aim is to develop a general RNN approach for computing the outer inverse with pre-
scribed range and null space, continuing dynamic state equations and gradient RNN approach
exploited in [84, 94, 96, 108].

It is reasonable to expect that the starting point should be the integral representation of
outer inverses. In [109, 111], Wei introduced the integral representation of the generalized
inverse A(TQ?.; of a complex matrix A € C™*", where T" and S are subspaces of C" and C™,
respectively. For the sake of simplicity, Re (¢(GA)) >0 stands for Re A > 0, VA € o(GA).
Under the assumptions R(G) = T, N(G) = S, in the case when the spectrum of G A satisfies
Re (6(GA)) > 0, the following integral representation of A%)5 is valid:

Ag?)s = /Oooexp(—GAT)G dr. (2.2.2)

In the dual case, Re (0(AG)) > 0 guarantees the existence of the following integral represen-
tation:
Ag)s = / Gexp(—AGT)dr. (2.2.3)
’ 0

We define an appropriate dynamic equation and the corresponding RNN, both initiated by
(2.2.2) or (2.2.3). The RNN is capable of generating outer inverses with prescribed range R(G)

60

2.2. GNN models for computing outer inverse

and null space N (G) under the assumption of zero initial states. The particular case G = A™,
where m > ind(A) is appropriately defined nonnegative integer, includes all the results we

presented in section 2.1.

2.2.2 Neural network architecture

Our general observation is that the problem of computing various generalized inverses can
be resolved as a solution of appropriate dynamic state equation of a generic recurrent neural
network. Furthermore, the dynamic state equation is stated by virtue of appropriately defined
constraint satisfaction problem. In order to define the constraint satisfaction problem which
initiates the dynamic state equation underlying in the corresponding recurrent neural network,

it is necessary to introduce Lemma 2.2.1 and several observations.

Lemma 2.2.1. Let A € C"*" be given and G € CI*™ be arbitrarily chosen matrix satisfying

0 < s <r. Assume that X := Ang), N©) exists. Then the matrix equations
GAX =G, XAG=G (2.2.4)

are satisfied.

Proof. The following known facts are used to verify the statements (cf. [89, 120]):

AX - PAR(G),N(G)? XA - ‘P7Q(G)7(14*/\/'(GV)L)L

Now, the first and the second statement in (2.2.4) follows, respectively, from the next known
results (see, for example [2]): Pp, G = G if and only if R(G) C L and GPp, py = G if and
only if V(G) 2 M. [

Remark 2.2.1. The constraint satisfaction problem (2.2.4) defined in Lemma 2.2.1 for the usual
matrix inversion as well as for the Moore-Penrose inverse is AX = I [94, 96]; for the Drazin
inverse it is defined by A" X = AmMAX = A™, m > ind(A) [84]. This certainly means that
(2.2.4) in the case G = I leads to the results corresponding to the usual inverse and the Moore-
Penrose inverse; similarly, the case G = A™, m > ind(A) produces the results corresponding
to the Drazin inverse. Finally, the choice G = AF (A%“)T A* k= ind(A) leads to the RNN
defined in [85].

The number of floating point operations in the case m > n can be reduced by applying the
first matrix equation in (2.2.4) in defining the dynamic equation. The first equation in (2.2.4)

can be rewritten as
GAVg(t) — G =0, (2.2.5)

61

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

where V() € R™™ denotes the unknown matrix to be solved and which corresponds to the
outer inverse with prescribed range and null space X := AgZGL N(G) Our intention is to solve
(2.2.5) for the unknown matrix Vi using dynamic-system approach. Therefore, we define a

scalar-valued norm based error function

_IGAVa(t) = Gl

E(t) .

The minimal value E(t) = 0 of the residual-error function F(t) is achieved in a minimum point
Vo = V() if and only if V(%) is the exact solution of (2.2.5). Therefore, a computational
scheme for computing the minimum point Vi; could be defined along the gradient descent
direction of E(t). The derivative of F(t) with respect to Vi € R™ ™ could be derived by
applying the principles of the matrix calculus described in [25, Chapter 5]:

DB (t)
Vg

= (GA)" (GAV(t) - G). (2.2.6)

Therefore, the GNN model for computing outer inverses Ang% N(G) Possesses the form

dVi(1)

e Va(t) = =7 (GA)T (GAVG(t) = @), Ve(0) = Vo, m > n, (2.2.7)

The GNN design (2.2.7) will be termed as GNNATS2 model.
Clearly, the term (GA)T in the right-hand side of (2.2.6) is constant matrix. Therefore,

following the same reason as in [84], it can be omitted without loss of generality. In this way,

the dynamic equation of the initiated recurrent neural network can be given in the form

dVe(t)
dt

=Va(t) = —v (GAVG(t) — G), Va(0) =V, m > n, (2.2.8)

where V(1) is a matrix of activation state variables and + is a positive scaling constant. The
GNN design (2.2.8) was originated in [138] and will be termed as GNNGA model.

The equilibrium state Vi = V(%) of the dynamic system (2.2.8), satisfying
dVe
— =0 229
& (2.2.9)
is also the minimum of the residual-norm function F(t). Namely, (2.2.9) implies

— (GAVG - G) =0, (2.2.10)

which means that V; satisfies (2.2.5).

Remark 2.2.2. The second matrix equation in (2.2.4) is more efficient for the dual case, m < n.

62

2.2. GNN models for computing outer inverse

In accordance to that, it is completely justified to define following dynamic system, whose

equilibrium state Vg, satisfies the second equation in (2.2.4):

dVe(t)
dt

= —y (Va(H)AG — G), Vg(0) =V, m < n. (2.2.11)

The GNN design (2.2.11) will be termed as GNNAG model.
The recurrent neural network defined above is a linear dynamic system in matrix form.
According to the linear systems theory [35], the closed-form solution of the state matrix was

given in [138]:

Va(t)=

{exp(—vGAt)Vg(O) + v exp(—yGAt) [exp(YGAT)Gdr, m >n, 2.2.12)

Ve (0) exp(—vAGt) + G exp(—yAGt) [iexp(YAGT)dr, m < n.

To analyze the convergence and stability of a neural network, it is of major interest to
know the eigenvalues of the matrix G A (or AG for the dual case). Using the principles from
[84], it can be easily shown that the term lim,_,,, exp(—yG At) vanishes if the matrix G A has
nonnegative eigenvalues. That fact and equation (2.2.12) imply the following representation
for lim;_,, Vg (t) = V!

Jim yexp(—yGAt) [texp(YGAT)Gdr, m >n,

(2.2.13)
tlim G exp(—yAGHt) [iexp(YAGT)dT, m < n,

It can be verified, based on the definition and properties of matrix exponential, that the
closed-form solution of Vg in (2.2.13) satisfies (2.2.1) and it is independent of ~. This means
that (2.2.13) and (2.2.2) produce the same result, equal to Ag ?g The proof is presented in
Theorem 2.2.1 from [138].

Theorem 2.2.1. [138] Let A € R™*" be given matrix, G € RI*™ be arbitrary matrix satisfying
0<s<rando(GA)={\, s, ..., \u} be the spectrum of G A. Suppose that the condition

Re(};) >0, 7=1,2,...,n (2.2.14)
is satisfied. Then the limiting expression (2.2.13) produces the outer inverse Ang% NGy e

Vo = AQloy v (2.2.15)

63

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

Proof. Applying several elementary transformations and basic properties (2.2.4) of the outer

inverse Ang), N(G)» Ve conclude

_ t
Vo = tllrgoyexp(—yGAt)/() exp(YGAT)G dr

- ¢
= tlggo exp(—yGAt)/O exp(YGAT)(vGA) dT:| Ang),N(G)

_ t
. 2
= [exp(—6GA) [d(epr647)] A0 v

T=t

= | im exp(—7GAt) exp(yGAT)]Ang),N(G‘)

7=0

= {}il?o exp(—yGAt) [exp(7vGAt) — 1)]} AR vie)
= [I — tlgglo exp(—’yGAt)} Ang)N(G).

Using the principles from [84] one can verify that the term lim;_,, exp(—~vyG At) vanishes.
Therefore, (2.2.15) is verified. [
Remark 2.2.3. Analogous statement can be verified when the outer inverse Ang) N(G) IS gene-
rated using dual equation X AG = G in (2.2.4). This situation is more appropriate in the case

m < n, due to the reduced complexity required for matrix multiplications.

In light of the above discussion, the dynamic state equation of the RNN for computing outer

inverse can be described as follows:

{ ol — — (GAVG(t) = G), V(0) =0, if m>n, (2.2.16)

Welt) — _y (Va()AG - G), V(0)=0, if m<n

dt

Now we investigate stability of the equilibrium state V;. The main result shows that the
equilibrium state is stable.

Theorem 2.2.2. [138] Let A € R™ " be given matrix, G € R!*™ be arbitrary matrix satisfying
0<s<rando(GA) = {1, Ao, ..., \,} be the spectrum of GA. Suppose that (2.2.14) holds.
Then the gradient-based neural network (2.2.16) is stable in the sense of Lyapunov.

Proof. 1t is only worth to mention that the Lyapunov candidate function is defined by

—qz T ((GAX - G)' (GAX -G
_lleAax — g T (()" () 0217

E(t) 5 5

Then the rest of the proof is analogous to the proof of Theorem 2 from [84]. [

64

2.2. GNN models for computing outer inverse

According to the Theorem 2.2.1, the matrix G must be chosen such that the matrices G A (in
the case m > n) or AG (in the case m < n), have nonnegative real parts of all their eigenvalues,

i.e.

o(GA) C {z:Re(z) > 0}, m >n, (2.2.18)
o(AG) C {z: Re(z) > 0}, m <n. (2.2.19)

The positive real scaling constant v should be chosen as large as possible in order to speedup
the process of computation. Since v multiplies the time parameter ¢, it is clear that vanishing

of the term limy_, ., exp(—yGAt) from (2.2.12) is faster with for larger ~.

The neural network used in our implementation is composed from a number of independent
sub-networks, in the similar way as it has already been discussed in [94, 96]. Specifically, the
number of sub-networks is m if m > n or it is equal to n if m < n. The connection weight

matrix W of the neurons is identical in each sub-network and defined as

W —~GA, m>n
—vAG, m <n.

Note that the size of the connection weight matrix is min{m, n} x min{m, n} which usually
has fewer connections than being defined otherwise. The threshold (input) matrix of the neuron
array is —y(G. Figures 2.8 and 2.9 present the architecture of the recurrent neural network for
computing outer inverses in both cases.

Consider the case m > n. Let us denote by v;(t) (resp. g;) the jth column vector of Vi (¢)
(resp.), for j = 1,2,...,m. The dynamics of the jth sub-network can be expressed in the

general form which is first time presented in [94]:

dv;(t
lei) = —v (GAv;(t) — g;) . (2.2.20)
Each sub-network exploits the same connection weight matrix W = —yG A and

Y95 = V915,792, - -+ VGns }

is the biasing threshold vector for the jth sub-network.

Elements v;; of unknown matrix Vi; () are computed using

dvg; - . .
Vi = ;}tj = sz‘kvkj +795, t=1,2,...,n;5=1,2,...,m, (2.2.21)

k=1

65

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

where w;; are elements of V. It is important to mention that the column vector

?}j = {Ulj,l)gj, N ,Unj}

is output in the jth sub-network.

Because the connection weight matrix of the neurons in each sub-network is identical, the
proposed recurrent neural network can also be realized by a single sub-network with time-
sharing threshold vectors. In each time slot, sub-network biased by the corresponding threshold
vector generates one column vector of the outer inverse. Each neuron can be implemented by
cascading a summer, an integrator, and an inverter, in the same way as was done in [94].

Analogous equations can be derived in the case m < n.

Figure 2.8: Architecture of the RNN for computing outer inverse in case m > n

2.2.3 Particular cases of GNNGA and GNNAG model

According to (1.2.15), the following particular choices of the matrix GG could be pointed
out.

2.a) In the particular case G = AT of of GNNGA model we immediately derive known
results concerning the usual inverse [94] when A is nonsingular, as well as the Moore—Penrose
inverse when matrix A is rectangular or rank-deficient [96].

2.b) The choice G' = A* = N~ A*M produces the results corresponding to the weighted
Moore-Penrose inverse AM ~ [108].

The following particular choices of the matrix G in GNNGA could be pointed out according to

66

2.2. GNN models for computing outer inverse

Vu | [Vio] o o o [Vin
Vo | [Vo | e - [Von

Vo | [Vm

| Vi

Figure 2.9: Architecture of the RNN for computing outer inverse in case m < n

(1.2.16).

3.a) Inthe case G = A™, m > ind(A) we get corresponding RNN approach in computation
of the Drazin inverse. But, in this case we have additional possibilities to generate the Drazin
inverse using appropriate choice of the exponent m. Two different approaches in resolving this
problem are described in [85, 84].

3.b) For a square matrix A of index ind(A) = 1, the limiting expression (4.3.9) produces the
group inverse A% of A in the case when G is equal to a square matrix A of index ind(A) = 1.

3.c) The choice rank(G) = r = rank(A) implies V; € A{1,2}.

According to Proposition 1.2.11, it is possible to use defined RNN approach to compute
the outer inverse A%)s and subsequently the vector z = A% ?gb, which is a solution of the linear

system Az = b under certain conditions presented in Proposition 1.2.11.

2.2.4 Illustrative examples for GNNGA model

Example 2.2.1. Consider the matrix A equal to

, (2.2.22)

DD W NN ==
S O W W N
EN B = NS ST NG N U
ENEEEN B S S TN
o O = W N =

67

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

choose the following matrices P € R>*? and () € R?*6

-

= ot W NN O

S W NN o= O

and compute G = PQ). The spectrum of GA is

101010

010101]

0(GA) = {266.346716180717,0.653283819282910, 0, 0,0} .

(2.2.23)

The following approximation of Agz P)N (@) can be obtained using G =PQ and v=108 in the

RNN (2.2.16):
[0
~0.1207
X =| 03448
0.2241
| —0.5862

0.1092

0.

0.2644
—0.1552

0.4828

0

—0.1207

0.3448
0.2241

—0.5862

0.1092

0

—0.2644
—0.1552

0.4828

0

—0.1207

0.3448
0.2241

—0.5862

0

0.1092
—0.2644
—0.1552

0.4828

Corresponding exact {2}-inverse of A corresponding to G is defined by P(QAP)™'Q (see

[12]) and it is equal to

0
—21
60

39
—102

0

19
—46
—27
84

0
—21
60

39
—102

0

19
—46
—27
84

0
—21
60

39
—102

0

19
—46
—27
84

Convergence behavior of the network in time 10~7 seconds is graphically illustrated in

Figure 2.10.

68

2.2. GNN models for computing outer inverse

Figure 2.10:

0.6

0.4

0.2

-0.4

1 1 1 1 1 1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (second) %107

State variable
)
N
<] T T :
(S ﬁ
Il

Convergence behavior of the RNN in 10~7 seconds for Example 2.2.1

Example 2.2.2. The goal of this example is to compute the Drazin inverse of the matrix

2 04 0 0 0O O O O O O 0 O]
-2 04 0 0O 0 O O O O 0 0 O
-1 -1 -1 0 0 0O 0 -1 0 0 ©
-1 -1 -1 1. 0 0 0O 0O O 0 0 O
o 0 0 o0 1 1 -1 -1 0 0 -1 0
o 0 0 O 1 1 -1 -1 0 0 0 O
0 0 0 -1 -2 04 0 0 O 0 0 O
0O 0 0 O 2 04 0 0O O 0 0 O
o -1 0 o0 0 O O 0 1 -1 -1 -1
o 0 0 O 0 O 0 0 -1 1 -1 -1
0 0 0 0 0 0 0 04 -2

0 0 0 0 0 0 0 04 2 |

satisfying ind(A) = 3. Therefore, our first attempt is to use G = A3. Since the eigenvalues of

G A are equal to

o(GA) = o(A*) = {16.0000 + 0.00007, 16.0000 + 0.00004, 4.3866, 0.7168 4 2.45761,

0.7168 — 2.4576i,0.0934 -+ 0.00004, 0,0, 0,0, 0.7168 + 2.45761,
0.7168 — 2.4576i},

whose real parts are greater than zero, the choice G = A® is appropriate. Using v = 10%,
we get the following approximation of the Drazin inverse with the precision 107° after 1077

69

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

seconds:
Al=
0.25 —0.25 0. 0. 0. 0. 0. 0 0. 0. 0. 0.]
1.25 1.25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
—1.6640 —0.9922 0.25 —0.25 0. 0. 0. 0. —0.0625 —0.0625 0. 0.1563
—1.1953 —0.6797 —-0.25 0.25 0. 0. 0 0. —0.0625 0.1875 0.6875 1.3437

—2.7637 —1.0449 —1.875 —1.25 —1.25 1.25 1.25 1.25 1.4844 2.5781 3.3203 6.6406
—2.7637 —1.0449 —1.875 —1.25 —1.25 1.25 1.25 1.25 14844 25781 4.5703 8.5156

14.1094 6.3008 6.625 3.375 5. —3. —5. —5.—4.1875 -85 —10.5078 —22.4609|
—19.3242 -8.5078 —9.75 —-5.25 75 45 75 7.5 6.375 12,5625 15.9766 33.7891
—-0.625 —0.3125 0. 0. 0. 0. 0. 0. 0.25 -0.25 —-0.875 —1.625
—-1.25 —0.9375 0. 0. 0. 0. 0. 0. —0.25 0.25 —-0.875 —1.625
0. 0. 0. 0. 0. 0. 0 0. 0. 0. 1.25 1.25
0. 0. 0 0. 0. 0. 0 0. 0. 0. —0.25 0.25 |

Convergence behavior of the network in time 10~ seconds is graphically illustrated in Figure
2.11.

40

30 7

20 b

State variable

_30 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (second) -7

Figure 2.11: Convergence behavior of the RNN in 10~ seconds for Example 2.2.2

Example 2.2.3. Consider the Hessenberg matrix of the order 6:

-1 1 0 0 0 O

1 -1 0 0

-1 1 -1 0 0
A=

1 -1 1 -1 1 0

-1 1 -1 1 -1 1

70

2.2. GNN models for computing outer inverse

The index of A is equal to ind(A) = 3, so that the exact Drazin inverse of A is equal to

1 1 1 _1 29 6
8 8 16 4 32 32

~1 1 5 3 1 29

8 8 16 4 32 32

; 11 1 3 3 71

d __ A3 2%3+4+1 3 _ 2 2 2 2 4 4
AT=4 (A) A=10 0 0 s
4 4 8 2 16 16

1 1 1 7

o o L 1 1

4 2 8 8

D T
L 0 0 4 2 8 8

Eigenvalues of the matrix GA = A* form the set {135.88225,16.0,0.1177,0.,0.,0.}. Using
G = A3, and -y = 108, RNN produces the following approximation of the Drazin Inverse:

[08750 0.8750 0.4375 —1.7500 0.9062 2.0937 |
~0.1250 0.1250 0.3125 —0.7500 0.3437 0.9062
_ | 05000 —0.5000 —0.5000 1.5000 —0.7500 —1.7500

Vo = AP =
—0.2500 0.2500 0.1250 —0.5000 0.3125 0.4375
0. 0. 0.2500 —0.5000 0.1250 0.8750
0. 0. —0.2500 0.5000 —0.1250 -—0.8750

Convergence behavior of the network in 1077 seconds is illustrated in Figure 2.12.

25

2

15

1

0.5

0k

State variable

_2 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (second) %107

Figure 2.12: Convergence behavior of the RNN in 10~ seconds for Example 2.2.3

71

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

2.3 GNN for computing the 11 -weighted Drazin inverse

This section is written on the basis of the results from the recent paper [102].

2.3.1 About IV -weighted Drazin inverse

A rectangular matrix X is called a W -weighted Drazin inverse of A € C™*™ if it satisfies

three matrix equations
(AWFLXW = (AW)F, XWAWX =X, AWX = XWA, (2.3.1)

where W € C"*™ (see [18]). Usually, the notation X = A, has been used to denote the
W -weighted Drazin inverse of A.

In particular, when A is square and W = I, the W-weighted Drazin inverse becomes the
Drazin inverse X = AP of A. Further, in the case k& = 1 the Drazin inverse reduces to the

group inverse A#. The W-weighted Drazin inverse possesses the following representations
(see [18, 113, 114])
Agw = A[(WAPP = [(AW)PPA,

and the following properties
R(Agw) = RIAW)Y, N(Agw) = N[(WA)].
The following several lemmas are needed in what follows to analyze the convergence and
stability of proposed neural networks.

Lemma 2.3.1. ([1]) Let M and N be two positive semi-definite matrices. Then the following

statements on the trace hold:
(a) Tr(MN)>0.
(b) Tr(M)=0<= M =0.

Lemma 2.3.2. ([84]) Let M and N be two real square matrices of the order n. If the matrix N
is symmetric, then the following relation is valid:

Tr(MN) = Tr[H(M)N], (2.3.2)

where H(M) = (M + M™).

The following result from [68] will be useful in the rest of the section.

Lemma 2.3.3. ([68]) If A is W-Drazin invertible, then the W-Drazin inverse Ag,, is a {2}-
inverse of W AW with the range R(A(W A)¥) and the null space N'(A(W A)*), where k =

72

2.3. GNN for computing the W -weighted Drazin inverse

max {Ind(AW),
Ind(WA)}, ie.,
(2)
Ad,w - (WAW>R(A(WA)k),N(A(WA)k)' (233)

Since A(WA)* = (AW)* A, Lemma 2.3.3 immediately implies
(2)

Let o(A) be the spectrum of A and s(A) = Re(c(A)) = {Re(A): A€ ca(A)}, then
s(A) > 0 denotes Re(\;) >0,i=1,2,...,n.

2.3.2 Specific case for W-weighted Drazin inverse

We consider the case when the nonzero eigenvalues of (AT)"*2 lie in the open right-half
plane, i.e., the condition s((AW)"*2) > 0 holds, for some positive integer [satisfying [> k =
max{ind(AW),ind(W A)}. Value of [could be determined according to rules given in Lemma
4 and Theorem 3 from [84]. Because of the assumed constraint, we use the term ‘specific case’
to denote this RNN approach.

Dynamic equation in the specific case

We restrict our investigation to real matrices, i.e., it will be assumed that A € R™*"™ and
W e R™™,

Lemma 2.3.4. [102] The W -weighted Drazin inverse of A € R™ " satisfies the following
matrix equation:

(AW) 2 Ay, = (AW)A. (2.3.5)

Proof. Let G = (AW)'A. When the existence of AngL N(c) 18 ensured, it is possible to verify

that the matrix equations
GAAQ) -G, AY AG =G (2.3.6)
R(G)N(G) 1 AR@G)N(G) -

are satisfied. According to the result representation (2.3.4), in conjunction with (2.3.6), imme-

diately follows the identity
(AW AW AW) Ay = (AW)' A, (2.3.7)
which is just another appearance of (2.3.5). [

73

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

Let V € R™*™ be the unknown matrix corresponding to A, ,,. According to (2.3.7), the

following matrix equation holds:
(AW) 2V — (AW) A = 0. (2.3.8)

In order to solve (2.3.8) for V(¢) via dynamic-system approach, we can define a scalar-valued

norm based error function:

(AW V(1) = (AW AL

E(t) = :

Note that the minimal value E(f) = 0 of the residual-error function E(¢) is achieved in a
minimizer V' = V(¢) if and only if V(7) is the exact solution of (2.3.8). A computational
scheme could be designed to evolve along a descent direction of this error function £/(t), until
the minimum FE/(7) is reached. The typical descent direction of E(t) is defined by the negative
gradient —0FE(t)/0V of E(t). The gradient of £ with respect to IV € R™*™ could simply be

derived as
OE(t)

ov
Therefore, the GNN neural dynamics for computing the W -weighted Drazin inverse is defined
by

= ((AW)#2)" ((AW) 22V (1) — (AW)'A) . (2.3.9)

dV(t)

Cdt
where V() is a matrix of activation state variables, ¢ € [0, +00), and 7 is a positive scaling
constant. The model (2.3.10) will be refereed as GNNADW.

= — ((AW)*2V () — (AW)A), 1>k V(0)=Vp (2.3.10)

The first term, ((AW)”Q)T, in the right-hand side of (2.3.10) is a constant factor. There-
fore, the gradient direction of E(t) is also defined by (AW)*2V (¢) — (AW)'A.

According to design formula

dv(t) OE()

@ - Tav
and by omitting the constant term, the dynamic equation of a gradient recurrent neural network

can be defined as

av ()

== = =y ((AW)2V () = (AW)'A) 1=k V(0) =V 2.3.11)

Here, V/(t) is a matrix of activation state variables, ¢ € [0,+00), and + is a positive scaling
constant. The model (2.3.11) was proposed in [102] and will be refereed as GNNDW.

The reason for this definition could be the fact that if we find the equilibrium state V' = V(%)
for dynamical system (2.3.11), then the minimum for the residual-norm function E(t) is also

74

2.3. GNN for computing the W -weighted Drazin inverse

achieved, because it satisfies

dv
— = 2.3.12
7z ()
at the equilibrium state V. Thus,
—y (AW)2V — (AW)'A) =0, (2.3.13)

and, therefore (2.3.8) holds.

The RNN defined in this section is determined by the linear dynamical system (2.3.11) in a
matrix form. The closed-form solution of the state matrix can be derived using known results

of the linear systems theory (see [35]), and it is equal to

V(t) = exp[—y(AW) 2V (0)+
t (2.3.14)
4y expl =y (AW)H2] /0 exply(AW)27] (AW) A dr.

Convergence and stability analysis in the specific case of GNNDW

To analyze the convergence and stability of a neural network, the following lemmas are

needed in what follows.

Lemma 2.3.5. [102] Let A € R™*" and W € R"*™. Suppose that the condition s ((AW)”Q) >
0 is satisfied for some | > k = max{ind(AW),ind(W A)} and t € [0, +oc]. Then it holds,

- +2,] _
tllglo exp [—'y(AW) t} = 0.

Proof. For each singular matrix AW € R™>*™ which is not nilpotent, there exists a nonsingular

AWzP(B O)P—l,
O

matrix P such that

N

where B is a nonsingular matrix and NV is nilpotent. It is known that the nilpotency index of N
is equal to the index of AW.
It is easy to check that

B+2
(Aw)H-Z —p 0 P_17
O O

where s(B'*?) > 0. Since

_ Bl+2
I v B

O O

75

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

from Lemma 1 in [84], it follows that
. opl+2y)
Ji exp (—87%) =0
and later
. +2,] _
tllglo exp [—v(AW) t} =0.

This completes the proof. [

Now, (2.3.14) and Lemma 2.3.5 imply the following representation for tli}m V(t)=V:

t
lim V(t) =V = lim v exp[—y(AW)"**¢] / exp[y(AW) 27 (AW) Adr. (2.3.15)
oo oo 0
Based on the definition and properties of the matrix exponential, it can be verified that the
closed-form solution of V' in (2.3.15) represents the 1¥-weighted Drazin inverse Ag,,, and it is

independent of the gain parameter ~y.

Theorem 2.3.1. [102] Let A € R™*™ and W€ R™ ™. Let the eigenvalues of (AW)'*? satisfy
s((AW)H2) >0, for some | > k = max{ind(AW),ind(W A)}. Then the limiting expression
(2.3.15) satisfies V = Ag.

Proof. The following can be derived employing several basic properties of the 11/-weighted

Drazin inverse:

¢
V' = lim 7 exp <—7(AW)I+215) / exply(AW) 27| (AW) Adr
—00 0

= Lli}r& exp (—’Y(AW)H_Qt)/OéXp (’7(AW)l+2T> (7(AW)Z+2> dT}Ad’w

= ng?o exp (—7(AW)l+2t) exp (’y(AW)l”T)

‘| Ad,w
7=0
_ . 142
= [I - tli>r23 exp (—’y(AW) t)] Ag -
Now, the result of Lemma 2.3.5 implies
V = Ad,wa

which was our initial intention. [

If Ais asquare and W = I, then the 1V -weighted Drazin inverse A, ,, reduces to Drazin

inverse AP. The corresponding convergence result is stated in Corollary 2.3.1.

76

2.3. GNN for computing the W -weighted Drazin inverse

Corollary 2.3.1. Let A € R™" and the nonzero eigenvalue \; of A1, 1 > Ind(A), satisfy
s(A"Y) > 0. Then the limiting expression (2.3.15) produces the Drazin inverse A®, i.e., V =
AP,

Note that the equation (2.3.14) can be simplified by forcing the first matrix term in the right-
hand side to be zero by setting zero initial states. In light of the above discussion, the dynamical
state equation (2.3.11) of the recurrent neural network for computing the W -weighted Drazin

inverse can be stated in the form

dgt)——7(<AW>’“V(t>—(AW)ZA), [> Ind(AW), V(0)=0. (2.3.16)

Now we investigate the stability of the equilibrium state V.

Theorem 2.3.2. [102] Let A € R™*™ and W € R with | > k = max{ind(AW), ind(WA)}.
If s((AW)*2) > 0, then the gradient-based neural network (2.3.16) is stable in the sense of

Lyapunov.

Proof. We consider the following Lyapunov function candidate

[(AW)' 2V — (AW)'A| %
2
Tr (((AW)H?V — (AW A)" ((AW)Ry - (AW)’A)>

BE(t) =

Clearly, the inequality F(t) > 0 holds. Applying the matrix derivative on E(t), we derive the

following statements:

o) 19T <((AW)”2V —(AW)A) ((Aw)y - (AW)lA))

ov 2 ov

— ; { {((AW)Z-I—Q)T(AW)HQ] i [((AW)Z+2>T (AW)HQ]T} Ve ((AW)I+2)T(AW>lA

_ ((AW)I+2)T ((AW)I+2V _ (AW)ZA) .

Thus, the time derivative of E(t) is equal to

(8]

_ Tr<((AW)l+2V—(AW)lA)T (AW)'+? (= ((AW)H?V-(AW)lA)))

_ Th ((AW)”Q ((AW)#2V — (AW)A) ((AW) 2V — (AW)'A T) .

7

Chapter 2. GNN for computing generalized inverses with restrictions on spectrum

It follows from the identity (5.1.5) of Lemma 2.3.2 that

dE(t T

di) — 4Tr <H ((AW)+2) ((AW) 42V — (AW A) ((AW)2V — (AT)' A)) .
Since the eigenvalues of a square matrix are equal to the eigenvalues of its transpose, and
using the assumption that the nonzero eigenvalues \; of (AW)!*2 satisfy Re();) > 0, together
with the fact that H ((AW)'*?2) is symmetric, thus, H ((AW)"*2) is positive semi-definite. The

matrices H ((AW)!*2) and

T

((AW)2V — (AW)'A) ((AW) 2V — (AW)'A)

are both positive semi-definite. According to Lemma 2.3.1, the trace of their product is non-
negative. Therefore
dE(t) <0
dt —

so the gradient-based neural network is stable and the proof is thus complete. [J

Particulary, if A € R"*" and take W = I, then the 1¥-weighted Drazin inverse Ag,,
reduces to the Drazin inverse AP. We also obtain the stability of the equilibrium state V" as

follows.

Corollary 2.3.2. Let A € R™", If s(A™1) > 0, for some | > ind(A), then the gradient-based
neural network (2.3.16) is stable in the sense of Lyapunov.

78

Chapter 3

GNN for computing generalized inverse

without restriction on spectrum

All considered models in Chapter 2 have a drawback concerning the convergence. Namely,
the convergence of these GNNs is conditioned by the nonnegativity of real parts of eigenval-
ues of certain matrices. In this chapter, we present the dynamic equations and corresponding
recurrent neural networks for computing the generalized inverses for arbitrary real matrix, con-
vergent without any restriction on its eigenvalues. These neural networks resolve the drawback
of considered GNN models from the previous chapter, at the cost of increasing the number of
matrix operations. The structure of the neural networks introduced in this chapter is the same
as the structure discussed in Chapter 2. We discuss conditions which ensure the stability of
the defined recurrent neural networks as well as its convergence. Several illustrative examples

present the results of computer simulations.

3.1 Globally convergent GNN for computing Drazin inverse

3.1.1 Preliminaries and motivation

The stability of the gradient-based neural networks for computing the usual inverse and the
Moore-Penrose inverse [94, 96] is warranted, since the matrix M = ATA € R™ " possesses
the spectrum o (M) = {1, Aa, ..., A, } which satisfies

X\ >0,7=1,...,n 3.1.1)

In the case of the weighted Moore-Penrose inverse [109] the stability is ensured since the
spectrum o (M) = {\;, Xa, ..., A} of the matrix M = A% A € R™ " also satisfies (3.1.1).

In addition, the conditions that must be imposed to the spectrum of A™ ensure the stability

79

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

of the gradient-based neural network initiated in [84, Lemma 1]. In the case of the Drazin
inverse, the stability is ensured in the case when the spectrum o (M) = {1, Aa,..., \,,} of the
matrix M = A" A= A™T! ¢ R™ " satisfies

Re(\) >0, 5=1,...,n. (3.1.2)

One of the main results of [84] was the algorithm, proposed in Lemma 4, for estimating an
appropriate exponent m such that the power A™*! satisfies (3.1.2). But, that algorithm may
request an unbounded in advance exponent m. Now, we present an alternative approach de-
veloped by Stanimirovié, Zivkovié and Wei in [85]. Basically, instead of the matrix A™,
where the exponent m is defined as in [84, Lemma 4], our current intention is to use the
matrix AF (A”““)T A* k = ind(A). That matrix requires relatively great exponent A***1,
k = ind(A). But, this exponent is fixed and predefined in advance. Necessary details will be

explained in the next section.

3.1.2 Neural network architecture

We follow the main leading idea from [23]. Namely, the goal here is to to drop the restriction
(2.1.4) imposed on the spectrum of A™. Guided by this idea, the authors of [23] introduced an
additional representation of the Drazin inverse AP, which is applicable without any restriction

on the eigenvalues of A.

Proposition 3.1.1. [23] Suppose that A € C"*™ and k = ind(A). Then
AP = [Texp(At (4251) 4k) 4t (4241) At dr (3.13)
0

As we have seen in the previous chapter, the general property of GNNs for computing
generalized inverses is based on a main principle which requires solving one representative
matrix equation via dynamic-system approach. Further, the dynamic-system approach is de-
fined as a scalar-valued norm based error function F(t). Then the proposed approaches try to
find the minimum for the residual-norm function E(¢) using the design formula dV/ (t)/dt =
—~y0E(t)/0V. Therefore, the main idea used in [84, 96, 108] is the same as the leading prin-
ciple from [118]: convert the generalized inverse problem into a matrix norm optimization

problem.

Here we continue the described approach. The leading notions will be the integral represen-
tations of the Drazin inverse in conjunction with the dynamic-system equation which is defined

as an appropriately defined norm based error function £(¢). To simplify notation, we use the

80

3.1. Globally convergent GNN for computing Drazin inverse

substitution G = AF (A%H)T A* k= ind(A). Clearly that
GAAP =@

is satisfied. Then the following matrix equation with respect to unknown matrix V' can be

considered:

GAV —G =0. (3.14)
The scalar-valued norm based error function corresponding to (3.1.4) is defined as

_lGave) -Gl

E(t) :

(3.1.5)

Note that the minimal value E(f) = 0 of E(t) is achieved if and only if V() is the exact
solution of (3.1.4). The gradient descent direction of E(t) is defined by —0FE(t)/0V. The
gradient of £/ with respect to V' € R™*" could simply be derived as (see, for example, [25,
Chapter 5])

DE(t)
oV

To make the equation simpler, the authors of [85] omitted the constant factor (G A)" and the

= (GA)" (GAV(t) - G). (3.1.6)

dynamics corresponding to the integral representation (3.1.3) can be defined as

dV (t)

=GV =), V(0) =V, G =4 (A%“)TAk, k=ind(A). (.17

Here, V() is a matrix of activation state variables, ¢t € [0, 4+00), v is a positive scaling constant
[94, 97].

The recurrent neural network (3.1.7) is a linear dynamic system in matrix form. The closed-

form solution of the state matrix can be described as follows (see [35]):
t
V(t) = exp(—yGAt) V(0) 4+ v exp(—yG At) / exp(yGAT) Gdr. (3.1.8)
0

Lemma 3.1.1 along with Proposition 3.1.2 provide necessary conditions that the first matrix
term in the right-hand side of (3.1.8) approaches the zero matrix of the same size as time

approaches infinity, regardless of the initial states; i.e., for arbitrary 1/(0)
tli}m exp(—yGAt) V(0) = 0. (3.1.9)

Lemma 3.1.1. Let M € R™" be given matrix, c(M) = {\1, Ao, ..., \,} be the spectrum of

81

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

M, andt € [0, +00). Suppose that the condition (3.1.2) is satisfied in the case of o(M). Then

the following limiting expression holds:
lim exp(—Mt) = 0. (3.1.10)
t—o0

Proof. This result is a generalization of Lemma 1 from [84] and can be proved in the same

way. []

Proposition 3.1.2. The matrix GA = A* (A%“)TA’““, k = ind(A), from (3.1.8) has a
nonnegative spectrum, i.e. o(GA) = {\,\o..., \,} satisfies \; > 0, j = 1,...,n, for

arbitrary given matrix A € R"*™.
Proof. The proof of this statement has been shown in the proof of Theorem 2.1 in [23]. [
Corollary 3.1.1. The limit expression (3.1.9) is valid for arbitrary matrix A € R"*™.

The result of Corollary 3.1.1 is very important, and shows that (3.1.9) holds for arbitrary

V' (0) as well as for arbitrary matrix A, in both nonsingular and singular cases. Now, equations

(3.1.8) and (3.1.9) imply the following representation for tllm V(t)=V:

_ t
V = lim vexp(—yGAt) / exp(YGAT) G dr. (3.1.11)
t—00 0

Next we verify, based on the definition and properties of matrix exponential, that the closed-
form solution of V in (3.1.11) satisfies (1*), (2), (5) and it is independent of the parameter .
This means that (3.1.11) and (2.1.4) produce the same result, AP.

Theorem 3.1.1. [85] Let A € R™ " be given matrix, and k = ind(A). Then the limiting

expression (3.1.11) produces the Drazin inverse AP, i.e.,
V =AP.
Proof. According to the basic property (1*) of the Drazin inverse, immediately follows
G — Ak <A2k+1)TAk _ Ak (A2k+1)TAk+1AD — GAAP,

which, in conjunction with (3.1.11), implies

82

3.1. Globally convergent GNN for computing Drazin inverse

— t
V = Jim yexp(A" (4257)Ta41e) Pexp(At (4241)" a7) b (4241) ¥ dr
t—o0 0
t
:tILm exp(—’yGAt)/ exp(YGAT)yGAAP dr
o0 0
t
[hm exp(—yGAt) / d(exp(vGA T))} AP
0

|

T=t

= [hm exp(—yGAt) exp(vGAT)

t—o00

7=0

_ {tlggo exp(—7GAL) [exp(vGAL) — f)]} AP

— _ 1 _ D
= [I tligloexr(7GAt)] A"

An application of Corollary 3.1.1 gives lim; ., exp(—yGAt) =0and V = AP. O

The equation (3.1.8) can be simplified by forcing the first matrix term in the right-hand side
to be zero by setting zero initial states. For this purpose, it is useful to appoint V(0) = 0 in
the first matrix term in the right-hand of (3.1.8), which will also speed up the convergence.
Therefore the dynamic state equation of the recurrent neural network for computing the Drazin

inverse can be presented as follows:

= V() — D), V(0) =0, G= A" (4%) A5 k= ind(4). G.L12)

Now we are investigating the stability of the equilibrium state V. Before the main result, which
shows that the equilibrium state is stable in the sense of Lyapunov, we restate the following

Lemma 3.1.2 from [1], for the sake of completeness.

Lemma 3.1.2. Let M and N be two positive semi-definite matrices. Then
Tr(MN) > 0. (3.1.13)

Theorem 3.1.2. [85] The recurrent neural network described in (3.1.12) is stable in the sense
of Lyapunov.

Proof. The Lyapunov’s method (see [63, Chapter 2.9]) is used to prove the stability. The

Lyapunov function candidate can be instinctively defined as

IGAV — G2 Tr((GAV —G)T (GAV - G))

E(t) = 5 = 5 (3.1.14)

It is clear that the inequality E(t) > 0 is true.

83

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

Applying known matrix calculus (see, for example [25, Chapter 5]) on E(¢), it is not diffi-
cult to verify

DE(t)

S = (@ANGaY -a).

Thus, the time derivative of E(t) is equal to

2 ((2))

=Tt ((GAV — G)T GA(— (GAV - G)))
= —9Tr (GA(GAV = G) (GAV - G)T).

(3.1.15)

In the rest of the proof we consider the Hermitian part of a square real matrix G A, defined by
1 T
H(GA) = (GA+(GA)).

Since (GAV — G)(GAV — G)T and H(GA) are both symmetric, after some algebraic trans-

formation one can verify

dE(t
di) = —9Tr (H(GA) (GAV - G) (GAV - G)").
In accordance with the known fact that all eigenvalues of a square matrix are equal to the
eigenvalues of its transpose, an application of Proposition 3.1.2 implies the nonnegativity of
A; > 0, for each \; € o (H(GA)). Moreover, since H(GA) is symmetric, it is positive semi-
definite. Finally, since both the matrices H(GA) and (GAV — G)(GAV — G)" are positive
semi-definite, another application of Proposition 3.1.2 immediately implies

dE(t)

—= <0.
dt —

Thus, by Lyapunov stability theory, neural network (3.1.12) is stable, therefore, the proof is

complete. [

Remark 3.1.1. The positive real scaling constant -y could be set as large as possible. This will

speed up the process of computation, because it is clear that the term
: ko g2k+1\ T gkt1 -
tlgn exp(—vA (A) A t> , k=1ind(A)

will vanish faster for larger vy, because v multiplies the time parameter t. Usually, values of

v should be as large as the hardware permits, or selected appropriately for simulative and/or

84

3.1. Globally convergent GNN for computing Drazin inverse

experimental purposes.

The configuration of a neural network is similar to what it has already been discussed in
[94, 96]. It is composed from a number of independent sub-networks where each sub-network
consists of n massively connected linear neurons in a single layer, and each layer represents
a column vector of V' (¢). Simple linear activation functions can be used instead of nonlinear
ones. We denote v;(t) (resp. a;) as the jth column vector of V (¢) (resp. A* (A%H)T APy, for

7 =1,2,...,n. The dynamics of the jth sub-network can be expressed as follows:
dv;(t
Ucit() B <Ak (AZ1) " AR (1) — aj> . (3.1.16)

The dynamics defined in (3.1.16) indicates that each sub-network is essentially the same as
the recurrent neural network presented in [94]. The connection weight matrix W is identical
for each sub-network, W = —~yA* (A2k+1>T AFF1 and the biasing threshold vector for the jth
sub-network is ya; = {yay;,...,va,;}. Elements of the matrix W (resp. V) are denoted by

w; (resp. v;;). Figure 3.1 depicts the architecture of the proposed recurrent neural network for
computing the Drazin inverse.

Figure 3.1: Architecture of the RNN for computing the Drazin inverse

Elements of unknown matrix V' (¢) are computed using the relation (34) from [84]. This
essentially means that the elements of the column v; = {vy;, ..., v,;} are generated in the jth
sub-network.

85

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

3.1.3 Ilustrative examples

Several computer simulations have been done in order to check the validity and performance
of the neural network approach in the computation of the Drazin inverse. In all examples it
is assumed that AP denotes the exact Drazin inverse of A and A¢ denotes its approximation
derived from RNN approach. All the tests are performed on Intel Core 13-4130 CPU machine,
with 8GB RAM.

Example 3.1.1. Consider the following singular matrix from [115]

|
—_

|
—_
—_

|
—_

_ o O O O
o O O O
o O O O
o O o O

0

o o0 -1 1 -1 -1
0O -1 0 0 1 -1
o 0 o0 0 -1 1

Here o(A) = {0,0,0,0,2,2,2,2}. The following approximation of the Drazin inverse AP
is obtained using k = ind(A) = 4 and v = 10* after 1077 seconds:

o O O O
o O O O

[0.2500 —0.2500 0 0 0 0 0 0
—0.2500 0.2500 0 0 0 0 0 0
0 0 0.2500 —0.2500 0 0 0 0
44— 0 0 —0.2500 0.2500 0 0 0 0
0 0 —0.0625 0.0625 0.2500 —0.2500 0 0
0 0 —0.0625 0.0625 —0.2500 0.2500 0 0
0.0625 0.0625 —0.0625 —0.0625 0 0 0.2500 —0.2500
—0.0625 —0.0625 0.1875 —0.0625 0 0 —0.2500 0.2500

Elementwise convergence behavior of the network in 10~" seconds is graphically illustrated in
Figure 3.2.

86

3.1. Globally convergent GNN for computing Drazin inverse

0.3

0.1 b

State variable

_0.2 -

_0.3 - -

_04 Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (seconds) %107

Figure 3.2: Convergence behavior of the RNN in 10~" seconds for Example 3.1.1.

Let us mention that the exact Drazin inverse of A is equal to

L1 9 0 0 0 0 0]
-+ 1 0 0 0 0 0 0
o 0 4+ -2 0 0 0 0
p_|0 0 -+ 1 0 0 0 0
1 1 1 1
0 0 —& L& X -2 0 0
0 0 —-% & -3 1 0 0
1 w6 —i O 0 1 g
1 1
L~ 16 Tlﬁ 1% 116 0 0 T4 i
Example 3.1.2. Consider the following singular matrix
&4 0 0 0 0 0 O
-+ 1 0 0 0 0 0 0
-1 -1 3 -3 0 0 0 0
P -2 3 0 0 0 0
o 0 o0 o0 2 -3 -1 -1
o 0 -1 0 -2 3 -1 -1
o o o o o o 1 -1
o o o o o o 1 3

The eigenvalues of matrix A are included in the set
o(A) = {1.5,1.5,1.25 4+ 0.1443¢,1.25 — 0.1443i, 1.25 — 0.14437,1.25 + 0.14434}.

87

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

Using k = ind(A) = 2, and v = 10°® we get after 10~" seconds the following approximation of

the Drazin inverse:

[0.6316 —0.2105 0 0 0 0 0 0

0.1579 0.9474 0 0 0 0 0 0
—0.6150 —0.5319 0.3333 —0.3333 0 0 0 0
—0.6150 —0.5319 —0.3333 0.3333 0 0 0 0

Ad

0.6166 0.5282 —0.1111 0.3333 0.3333 —0.3333 —0.5319 —0.6150|
—0.1442 —-0.1538 —0.1111 -0.1111 -0.3333 0.3333 —0.5319 —0.6150
0 0 0 0 0 0 0.9474 0.1579
0 0 0 0 0 0 —0.2105 0.6316 |

Convergence behavior of the network used in Example 3.1.2 in 10~7 seconds is illustrated in
Figure 3.3.

State variable

Il Il
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (seconds) x 107

Figure 3.3: Convergence behavior of the RNN in 10~" seconds for Example 3.1.2.

88

3.1. Globally convergent GNN for computing Drazin inverse

The exact Drazin inverse is

= -5 0 0 0 0 0 0
5 = o 0 0 0 0 0
222 192 1 1
361 361 3 3 0 0 0 0
222 _ 192 _ 1 1
AD — 361 361 3 3 0 0 0 0
12688 32608 1 1 1 1 192 222
20577 61731 9 3 3 3 361 361
_ 2068 9496 _ 1 _ 1 _1 1 _ 192 _ 222
20577 61731 9 9 3 3 361 361
18 3
0 0 o o o o & 2
4 12
0 0 0O 0 0 0 w1

To monitor the network convergence, it is appropriate to use the norm of the computational
error ||V (t) — AP(t)||. Figure 3.4 shows that the state matrices of presented neural network all
converge to the theoretical inverse AP and computational errors ||V (t)— AP(t)|| all converge
to zero, for three different values of . Also, it is observable that the convergence can be

accelerated by increasing v = .

3

g —3=10
2.5 "'» [)1 — 107 1
D T 8 =106
2F 4
15 e _ 8
1r i
0.5f b
O L Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (seconds) -6

x 10

Figure 3.4: Convergence of ||V (¢)— AP|| for three different values y = .

89

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

Example 3.1.3. In this example we will show that our neural network produces the regular
inverse in the case when the input matrix is regular. Consider the following randomly generated

matrix

0.0046 0.8001 0.8693 0.5132 0.4173 0.9001 0.0965
0.7749 0.4314 0.5797 0.4018 0.04965 0.3692 0.1320
0.8173 0.9106 0.5499 0.0760 0.9027 0.1112 0.9421
A= 108687 0.1818 0.1450 0.2399 0.9448 0.7803 0.9561
0.0844 0.2638 0.8530 0.1233 0.4909 0.3897 0.5752
0.3998 0.1455 0.6221 0.1839 0.4893 0.2417 0.05978
10.2599 0.1361 0.3510 0.2400 0.3377 0.4039 0.2348 |

The matrix A is regular, so it satisfies ind(A) = 0. The spectrum of A is equal to
o(A) = {3.0953, —0.9778, —0.5571,0.2904 + 0.3749:,0.2904 — 0.3749i,0.2354, —0.1833}.
Using k = ind(A) = 0 and v = 1011, the neural network produces the following approximation

of the Drazin inverse after 10~" seconds:

[0.0439 12022 —0.4308 11517 0.0312 11600 —4.0275

1.0869 0.1738 0.5595 0.2298 —0.4034 —-0.1539 —-2.6975
—0.0877 0.5401 —0.4067 —0.0575 1.3195 0.8319 —1.8463
AY=1-23972 —1.4086 2.0950 —4.6892 —2.6342 —3.6889 19.8601
—0.0888 —1.6265 0.6749 —0.4814 —1.2210 1.1998 2.8891
1.7409 0.8704 —1.6648 2.8154 1.0611 1.1242 —8.8760
—0.9648 0.0431 0.5126 —0.6807 0.8499 —2.3282 3.8572 |

The convergence behavior of the network in 10~ seconds is graphically illustrated in Fig-
ure 3.5.

The exact Drazin inverse of A is equal to

[0.0440 1.2022 —0.4308 1.1517 0.0312 1.1600 —4.0275]
1.0869 0.1738 0.5595 0.2298 —0.4034 —0.1539 —2.6975
—0.0877 0.5401 —0.4067 -0.0575 1.3195 0.8319 —1.8463
AP = A" =|-23972 —1.4086 2.0950 —4.6892 —2.6342 —3.6889 19.8601
—0.0888 —1.62656 0.6749 —0.4814 —1.2210 1.1998 2.8891
1.7409 0.8704 —1.6648 2.8154 1.0611 1.1242 —8.8760
|—0.9648 0.0431 0.5126 —0.6807 0.8499 —2.3282 3.8572 |

90

3.1. Globally convergent GNN for computing Drazin inverse

State variable

-10 I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (seconds) X107

Figure 3.5: Convergence behavior of the RNN in 107 seconds for Example 3.1.3.

Example 3.1.4. Consider the following Hessenberg matrix of the order n = 4:

2 1 0 0
4 -2 10
=8 4 —2 1

16 -8 4 =2

Here, the spectrum of A is equal to o(A) = {—6,—2,0,0}. Again, using v = 107, we obtain

the following approximation of the Drazin inverse, after 10~7 seconds:

—-0.2778 0.1389 —0.00463 —0.03009
D 0.1111 —0.05555 0.01852 —0.004628

0.6667 —0.3333 —0.05556 0.1389

—-1.333 0.6667 0.1111 —0.2778

The exact Drazin inverse of A is equal to

—0.2778 0.1389 —0.00463 —0.03009
0.1111 —0.05555 0.01852 —0.004628
0.6667 —0.3333 —0.05556 0.1389 |
—1.333 0.6667 0.1111 —0.2778

Ad

The convergence behavior of the network in 10~7 seconds is graphically illustrated in Figure
3.6.

91

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

05 b

State variable

-0.5 b

_1.5 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (seconds) X107

Figure 3.6: Convergence behavior of the RNN in 10~7 seconds for Example 3.1.4.

Example 3.1.5. Consider the following well known Rosser matrix:
611 196 —192 407 -8 —52 —49 29 |
196 899 113 -—-192 -71 —-43 -8 —44
—-192 113 899 196 61 49 8 52
407 —192 196 611 8 44 59 —23
-8 =71 61 8 411 =599 208 208
—-52 —43 49 44 =399 411 208 208
—49 =8 8 29 208 208 99 911
29 —44 52 —23 208 208 —911 99

The matrix is 8 X 8 with integer elements. It has a double eigenvalue, three nearly equal
eigenvalues, dominant eigenvalues of the opposite sign,a zero eigenvalue and a small nonzero

eigenvalue: i i
—1.020049018429998¢ + 03

0.000000000000001e + 03
0.000098048640722¢ + 03
1.000000000000000e + 03
1.000000000000000e + 03
1.019901951359279¢ + 03
1.020000000000000e + 03
| 1.020049018429996e + 03

92

3.1. Globally convergent GNN for computing Drazin inverse

The exact Drazin inverse of A is equal to

—0.2000
0.0999
—0.0999
0.2000
0.0103
—0.0105
—0.0196

[4.0406 —2.0198 2.0198 —4.0396
-2.0198 1.0109 —1.0099 2.0198

2.0198 —1.0099 1.0109 —2.0198
o —4.0396 2.0198 —2.0198 4.0406
—0.2000 0.0999 —0.0999 0.2000

0.2000 —0.1001 0.1001 —0.2000

0.4000 —0.2000 0.2000 —0.4000
' —0.4000 0.2000 —0.2000 0.4000

0.0200

0.2000
—0.1001
0.1001
—0.2000
—0.0105
0.0103
0.0200
—0.0196

Neural network produces the following approximation of the Drazin inverse:

[4.0406
~2.0198
2.0198 —1.0099
—4.0396 2.0198
—0.2000 0.0999
0.2000 —0.1001
0.4000 —0.2000
—0.4000 0.2000

—2.0198
1.0109

Al =

2.0198
—1.0099
1.0109

0.1000
0.2000

—4.0396
2.0198
—2.0198
—2.0198 4.0406
—0.0999 0.2000
—0.2000
—0.4000
—0.2000 0.4000

—0.2000 0.1999

0.1000 —0.1001
—0.1000 0.1001

0.2000 —0.2000
0.0104 —0.0105

—0.0104 0.0103
—0.0196 0.0200

0.0201

0.4000 —0.4000
~0.2000 0.2000
0.2000 —0.2000
~0.4000 0.4000
~0.0196 0.0200
0.0200 —0.0196
0.0397 —0.0405
—0.0405 0.0397 |
0.4000 —0.4000]
~0.2000 0.2000
0.2000 —0.2000
~0.4000 0.4000
~0.0196 0.0200
0.0200 —0.0196
0.0397 —0.0405
~0.0196 —0.0405 0.0397

Example 3.1.6. In this example we want to show the application of the method in finding
the solution of the singular linear system Ax = b, where b € R(A), k = ind(A). In the

monograph [7], it is shown that the Drazin inverse solution APb solves the singular linear
system Ax = b if and only if b € R(AF). In addition, APb is the unique solution of Ax = b
provided that x € R(AF) [7]. By 2¢ and xP we denote the approximation of the Drazin-inverse

solution and the exact theoretical solution, respectively.

Consider

—1

N O O O O

o O o O

—14
14

22
81

—22

—28

After setting v = 108, k = ind(A) = 2, the neural network produces the following Drazin-

93

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

inverse solution in 10~7 seconds:

[—7.0000 |
7.0000

—10.9993
10.9993 |
40.9974
12.0026

x4 = A% =

Theoretical solution is))
—7.0000

7.0000
—11.0000
11.0000 |
41.0000
| 12.0000

2P = APy =

The estimation error given in terms of the norm || -
function norm() is || APb — z?|| = 0.0038.

, and computed in Matlab with built-in

Example 3.1.7. Consider the homogeneous differential equation from [8]:

Az’ + Bx =0,
where it is assumed
1 -2 0 1 2
A=|-1 0 2|, B=|-27 =22 —17].
2 3 2 18 14 10

Following calculations described in [8] and introducing A and B, where

1 -3 =5 —4 1 6 5 4
A== _ B=>|-6 —
3 6 95 2], 3 6 -2 2|,
-3 2 10 3 =27

one can get the solution of the homogeneous differential equation in the form
x(t) = exp(—ADEt) z(0),

where (0) is the initial vector of the differential equation.

For v = 10°% k = ind(A) = 0, our neural network produces the following approximation

94

3.1. Globally convergent GNN for computing Drazin inverse

of the Drazin inverse of the matrix A:

—0.1068 0.1885 —0.0717
A4=1-0.1513 0.1663 0.0394 |,
—0.0889 —0.0444 0.2222

so, the final result can be obtained:

0.6624 0.2559 0.1840
w(t) = exp(—A"Bt) 2(0) = exp| | 0.5957 0.3892 —0.0012| ¢ | 2(0).
—0.1333 0.2667 —0.3704

Example 3.1.8. The group inverse plays an important role in the theory of finite Markov chains
[7, 56]. Let T’ be the one-step transition matrix of a finite homogeneous Markov chain reused
from [84, Example 9]:

0220

2 2
polf2020
412101
1 111

To characterize the Markov chain [56] it is of importance to compute the group inverse of

4 -2 -2 0
—2 4 -2
A—1-1=1 o
41 -2 -1 4 -1

-1 -1 -1 3
wherein I denotes the identity matrix. The exact group inverse of A is given in [56]:

265 —61 —96 —108
2 | =96 300 —96 —108
T 1083 | —115 —137 246 6

—210 —156 —210 576

A#

Setting v = 10'%, we obtain the resulting approximation of the group inverse after 10~7 sec-

onds.
0.4893 —0.1127 —-0.1773 —-0.1994

—0.1773 0.5540 —0.1773 —0.1994
—0.2123 —0.2530 0.4543 0.0111
—0.3878 —0.2881 —0.3878 1.0637

95

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

Example 3.1.9. In order to compare the performance of the architecture proposed in the cur-
rent section with the one presented in previous chapter [84], we firstly reuse the matrix A from
Example 3.1.1. The output of the neural network from [84] is denoted by A?S 4 by A% we de-
note the output of the neural network produced in this paper, while AP denotes the theoretical
Drazin inverse. Finally, the matrix norm || - || is computed by the Matlab function norm().
Both the neural networks give the solution after approximately 10~7 seconds. The comparison
in Table 3.1 is given in the sense of the accuracy of the solutions A% and A% 4y generated for
the different values of the parameter . It is clear that more accurate solutions A% with respect

to Aflg 4, are reached for much smaller values of . This observation indicates a less compu-

]

tational complexity of the neural network used in [84] during the convergence of the neural

network.

Table 3.1: Numerical comparison test with [84] for Example 3.1.1

| [y =103 ~=10" y=100 | =100 | 4=10" | y=10° |
\|A?84} —AP||| 0.5957 0.5886 0.5208 0.0917 |8.9562x 1076(1.4079 x 10~°
|AY—AP|| | 0.0060 |1.0387 x 107°(1.9609 x 107°|3.7774 x 10~ 13]2.2236 x 107°|4.7100 x 106

Similarly, let us reuse the matrix A from the Example 3.1.2, and compare the previous two
architectures in the same way. Table 3.2 shows the accuracy of the approximations A% and

A%, . reached after 1077 seconds, for several different values of .

841
Table 3.2: Numerical comparison test with [84] for Example 3.1.2
| |7 =10°[v=10°| y=10"| =10 | 4=10° v =101
HA‘[184} —AP| | 1.7357 | 1.5397 | 0.4122 |2.9217 x 107° | 8.1804x 1077 | 2.2366 x 10~°
| Ad— AP 1.4463 | 0.9121 | 0.0419 | 3.4623x1077 [4.9231x1077 | 3.8940x 10~"

The data arranged in Table 3.2 lead to similar conclusions as the data arranged in Table
3.1. The network from [84] converges little bit slower, so that the corresponding architecture

requires larger vy in order to produce a more accurate solution.

3.2 Globally convergent GNN for computing outer inverse

3.2.1 Preliminaries and motivation

We follow the same principles we applied to the Drazin inverse computation in the manner
presented in the previous section [85]. We expand the main idea to the set of outer inverses with
prescribed range and null space. Guided by this idea, our intention is to exploit the integral
representation of outer inverses which is restated in Proposition 3.2.1. All the results presented

here are derived in [138].

96

3.2. Globally convergent GNN for computing outer inverse

Proposition 3.2.1. ([52, 112]) Suppose that A € C™*" and T and S are subspaces of C" and
C™, respectively. Under the assumptions R(G) = T,N(G) = S, If A has the outer inverse
Ag)S, then
AP, = / “exp(~G(GAG)'GAT) G(GAG)'G dr
o (3.2.1)
- /0 exp(—GoAr) Godr, Gy = G(GAG)TG.
Generally speaking, we follow the main leading idea which initiated the results from [112,
135]. As it was stated in [135], most of methods for computing outer inverses start from
an appropriate matrix G which satisfies R(G) = T,N(G) = S and assume the condition
Re(GA) C (0,+00) or Re (0(GA)) > 0. The authors of the paper [135] established a unified
representation theorem for the generalized inverse Ag 29 which avoids the restriction on the
nonnegativity of the spectrum of GA. Also, the integral representation given in (3.2.1) assumes
Re (6(GA)) > 0. Our intention is to avoid this restriction imposed on the spectrum of G A.
This goal can be achieved by replacing the appropriate matrix GG from (2.2.2) or (2.2.3) by
the matrix Gy = G(GAG)TG, used in (3.2.1). The drawback of this approach is the necessity
to perform additional matrix multiplications in order to derive GG from G. But, there is no other

alternative to overcome very restrictive and ultimate conditions on the spectrum of GA or AG.

3.2.2 Neural Network Architecture

In the general case, it is possible that the set 0(G'A) contains elements with negative real
parts. Then the steady-state matrix of the recurrent neural network is generally not equal to
Agzc), NG In spite of this, there is the possibility that the outer inverse Ang), N(©) exists in
this case. In order to investigate the existence of outer inverse with prescribed range and null

space we use the result derived in Proposition 3.2.2.

Proposition 3.2.2. Let A € C™*" be given and G € CI*™ be arbitrary matrix satisfying
0 < s < r. The condition ind(AG) = ind(GA) = 1 implies the existence of the outer inverse

Ar@N©)-
Proof. Indeed, the assumption ind(AG) = ind(GA) = 1 implies the existence of (AG)# and

(GA)#. Further, using known result from [106], the existence of the outer inverse Agz NG =
G(AG)* = (GA)#G is ensured. [

Certainly, in the case when (2.2.14) is not satisfied and ind(AG) = ind(GA) = 1 the gen-
eralized inverse Ang), N(G) Can not be generated using RNN (2.2.16), in spite of its existence.

However, A%GL ~(c) can be generated using the dynamic equation of the form

AV (1) (3.2.2)

dt

Wall) — _y (GyAVu(t) — Go), V(0)=0, if m>n,
—v (Va(t)AGy — Gp), V(0)=0, if m <n,

97

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

where Gy = G(GAG)'G.
The connection weight matrix of the neurons in RNN is identical in each sub-network and
defined by

W —vGoA, m>n
—vAGy, m <n.

Corollary 3.2.1. Let A € R™*" be given matrix, G € RI*™ be arbitrary matrix satisfying

0 < s < r. Then the limiting expression

tlim v exp(—yGoAt) [fexp(yGoAT)Godr, m > n,

(3.2.3)
Jim 7 G exp(—YAGot) [sexp(YAGoT)dr, m <n

satisfies
Vo = AQloy v (3.2.4)

Proof. Since Re(o(GgA)) >0 is satisfied (see [52, 112]), an application of Theorem 2.2.1 gives
VG:A%GO),N(GO)' The proof can be completed using R(Go)=R(G) and N'(Go)=N(G) (see
[135]). O

3.2.3 Illustrative Examples

Example 3.2.1. Consider the initial matrix A equal to

1 1 0 0]
-1 1 0 0
-1 -1 1 -1 0 0
A=
-1 -1 -1 1 0 0
-1 -1 -1 0 2 -1
-1 -1 0 -1 -1 2
In the case G = — AT the RNN (2.2.16) does not provide a solution, since the matrix GA is

negative semidefinite. Its eigenvalues are included in the set
0(GA) = {—10.6056, —9.1231, —4.0000, —3.3944, —0.8769, 0.0000}.

The divergence of the neural network RNN (2.2.16) is illustrated in Figure 3.7.
Since ind(GA) = 1, according to Proposition 3.2.2, Ang),N(G) exists. But, in spite of its
existence, A%%G), N(G) cannot be computed using RNN (2.2.16). A possible solution is usage of
T T
the matrix G = (—AT) ((—AT)A(—AT)) (—AT)= AT (ATAAT) AT instead of the matrix

G = —A". Such a choice initiates that the spectrum of G A contains elements with nonnegative

98

3.2. Globally convergent GNN for computing outer inverse

6000

1

4000

!

2000

State variable
o

1

-2000

!

—4000

_6000 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (second) %107

Figure 3.7: Divergence of the RNN in 10~7 seconds for Example 3.2.1

real parts:
o(GA) = 10°{1.1929, 0.7593,0.0640, 0.0391,0.0007, 0.0000} .

Using v = 1000000000 and G = AT (ATAAT>T A" the RNN (3.2.2) approach produces the
approximation of the Moore-Penrose inverse of A:

0.2500 —0.2500 —-0.2500 —0.2500 0.0000 0.0000
—0.2500 0.2500 —0.2500 —0.2500 0.0000 0.0000

At — 0 0 0.5000 0.0000 —0.2500 —0.2500
0 0 0.0000 0.5000 —0.2500 —0.2500
0 0 —-0.1667 —0.3333 0.4167 0.0833
0 0 —-0.3333 —0.1667 0.0833 0.4167

Example 3.2.2. Consider following randomly generated matrix of rank 2:

[0.3891 —0.5719 —1.0486 0.0906 |
0.0507 0.0440 —0.7345 —0.5092
A= |-02421 —0.3543 —0.6068 0.0825
—0.6085 —0.8380 —0.0271 1.0628
03580 0.4896 —0.1159 —0.7021

The matrix G is generated using the full rank factorization G = P(Q), where P and () are

99

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

randomly generated matrices of rank 2:

0.6948 0.4387

0.3171 0.3816 ~ 1 0.1869 0.4456 0.7094 0.2760 0.6551
0.9502 0.7655 | | 0.4898 0.6463 0.7547 0.6797 0.1626 |
0.0344 0.7952

The RNN (2.2.16) does not converge to the outer inverse, because there is one negative eigen-

value in the spectrum o(GA):
o(GA) = {~2.9910,0.2889, 0.0, 0.0} .

Again, ind(GA) = 1 confirms the existence of the outer inverse AngL N(©) initiated by the

matrix G.

But, if we take Gy = G (GAG)" G and v = 10" the RNN (3.2.2) approach produces the
following outer inverse of A:

—0.162712466533 —0.193869486921 —0.206592043421 —0.224055760876 0.008074234858
~|—0.038944020388 —0.133747729506 —0.234434903367 —0.060929232708 —0.258398656300
[—0.190291830114 —0.306447329758 —0.410440140316 —0.268697936905 —0.228150378169

0.142546400482 —0.202636669798 —0.607873904204 0.165143602730 —1.117224217594

The exact outer inverse corresponding to G = P() is equal to

Agzc)J\/(G) = P(QAP)ilQ
—0.162712645811 —0.193869773308 —0.206592425100 —0.224056013867 0.008074026949
—0.038944133693 —0.133747910475 —0.234435144552 —0.060929392570 —0.258398787674
—0.190292104036 —0.306447767247 —0.410440723476 —0.268698323377 —0.228150695786
0.142546257394 —0.202636898362 —0.607874208808 0.165143400823 —1.117224383521

Example 3.2.3. Consider following randomly generated matrix of rank 4:

[1.2510 —1.4505 1.6163 —0.3286 —0.7332 —0.2914]
—1.2983 —0.1638 —1.3136 —0.2843 —0.2447 1.3777
—1.7206 0.1765 —1.5799 0.3005 0.7192 0.5433
A=|0.7153 —0.1860 0.9885 0.7135 —0.4896 —0.2466
—0.7785 —1.1098 —0.1949 0.3593 —0.0978 0.5137
—0.9282 —0.8967 —0.2734 0.6571 0.5276 —0.1082
| 0.2117 —0.1662 0.3192 0.0994 0.1811 —0.4174]

100

3.2. Globally convergent GNN for computing outer inverse

Now, randomly generated matrices P and Q) of rank 4 are used:

0.3102 0.1705 0.7818 0.6814
—0.6748 —0.5524 0.9186 —0.4914
—0.7620 0.5025 0.0944 0.6286

P=)

—0.0033 —0.4898 —0.7228 —0.5130

0.9195 0.0119 —-0.7014 0.8585

—0.3192 0.3982 —0.4850 —0.3000

[—0.6068 —0.2067 0.8344 —0.2391 0.0616 0.1376 —0.6756
O— —0.4978 0.6617 —0.4283 0.1356 0.5583 —0.0612 0.5886

0.2321 0.1705 0.5144 —0.8483 0.8680 —0.9762 —0.3776
| —0.0534 0.0994 0.5075 —0.8921 —0.7402 —0.3258 0.0571

For the choice of G = PQ, the RNN (2.2.16) does not converge to the outer inverse, because

there are three eigenvalues in the spectrum o(GA) with negative real parts:

o(GA) = {—0.6491 — 1.2262i, —0.6491 + 1.2262i, —1.1737,1.1509, 0.0, 0.0} .

On the other hand, usage of the matrix Gy =G (GAG)T G and the scaling parameter v = 10!
in the RNN (3.2.2) approach produces the following approximation of Agz PYN(Q)

[0.7418226 —0.8130738 0.9380724 —0.6689539 —0.179301 —0.473387 —1.080997 |
—1.200862 1.709335 —1.782507 0.6594245 —0.8578323 0.7906579 2.5548255
—0.5638703 0.7777778 —1.2338862 0.9416353 0.0575493 0.6281124 1.2348809
—0.5744556 0.3232869 —0.4726930 0.5609873 —0.0340408 0.5260483 0.5112868
1.1415376 —2.1082814 1.9963191 —0.4710172 0.3702859 —0.3844626 —2.8415981
—0.2089968 0.4880962 —0.4971972 0.2283032 0.4464316 —0.0373900 0.5130587

The exact outer inverse corresponding to G = P(Q) is equal to

ARy = PQAP)'Q

[0.7418274 —0.8130737 0.9380642 —0.6689465 —0.1792986 —0.4733854 —1.0809940]
—1.2008608 1.7093355 —1.7825098 0.6594270 —0.8578313 0.7906585 2.5548266
—0.5638670 0.7777779 —1.2338919 0.9416405 0.0575511 0.6281137 1.2348833
_0.5744604 0.3232867 —0.4726849 0.5609799 —0.0340436 0.5260464 0.5112835
11415368 —2.1082815 1.9963204 —0.4710184 0.3702855 —0.3844629 —2.8415986
—0.2089987 0.4880962 —0.4971941 0.2283003 0.4464306 —0.0373907 0.5130574

Remark 3.2.1. Usage of the matrix product Gy = G(GAG)"G sometimes causes numeri-
cal instability. But, despite this disadvantage, the gradient based RNN (3.2.2) and the dy-
namic state equation based on G offer a solution of the problem and is capable to generate

Ang% N (@) The solution has its own drawbacks, it is charged by an increased number of ma-

101

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

trix multiplications, but in some way overcomes the problem and generates an approximation

@)
of Ax(ayn(a)y

3.3 Globally convergent GNN for computing W-weighted Drazin

inverse

In this section, we consider the case of A € R™*™ and W € R"*™ without the necessity to
find positive integer [such that s((AW)"2) > 0.

3.3.1 Dynamic equation with global convergence

If A is a rectangular matrix, Wei [113], Liu and Zhong [53] derived an integral representa-
tion of the W-weighted Drazin inverse A,4,, of the matrix A € C™*", without any restriction
on the eigenvalues of the matrix (AW)"*2, 1 > k = max{ind(AW),ind(W A)}.

Theorem 3.3.1. ([53]) Assume that A € C"™*", W € C"*™ and k = max{Ind(AW),Ind(W A)}.
Then

Agw = / ~ exp (= (AW) A[(AW)22 A (AW)' 227) (AW A[(AW)2 A" (AW Adr,
’ (3.3.1)
where | > k.

However, the dynamical state equation of a recurrent neural network which corresponds to
the integral representation (3.3.1), to the best of our knowledge, has not been developed. In
the following, we prove that the W -weighted Drazin inverse of a rectangular matrix can be
determined by using a recurrent neural network that presented in [85]. Our investigation is
restricted to real matrices, i.e., it is assumed that A € R™*"™ and W € R™*™. For the sake of

simplicity, we use the notations
G = (AW)A, Gy=GGWAW G)'G = (AW A[(AW)H 2 AT (AW) A,
Lemma 3.3.1. The W-weighted Drazin inverse of A € R™*" satisfies
(AW A[(AW)P P2 AT (AW) 2 Ay — (AW A[(AW)H2AT(AW)YA=0 (3.3.2)

Proof. On the basis of R(Gy) = R(G) and N'(Gy) = N (G), the following matrix equation
is valid
GoW AW Agy — Go = 0, (33.3)

which implies (3.3.2). O

102

3.3. Globally convergent GNN for computing W-weighted Drazin inverse

According to (3.3.3), the following matrix equation with respect to unknown matrix V' can

be considered:
GoWAWYV — Gy = 0. (3.3.4)

The scalar-valued norm-based error function corresponding to equation (3.3.4) is defined as

. 2

E(t) = >

Note that the minimal value E(f) = 0 of the residual-error function E(t) is achieved in a
minimizer V' = V/(f) if and only if V(f) is the exact solution of (3.3.4). A computational
scheme could be designed to evolve along a descent direction of this error function E(t), until
the minimum FE/(7) is reached. The typical descent direction of E(t) is defined by the negative
gradient —0FE(t)/0V of E(t). The gradient of £ with respect to V' € R"™*™ is equal to

OE(t)

v = (GoW AW (GoW AWV (1) — Gy) . (3.3.5)

According to the design formula

dvi(t) — OE(t)
a - av
and by omitting the constant term (GoW AW)T, it is reasonable to define the dynamical equa-
tion of a gradient recurrent neural network as follows:
dV(t)

5 = 7 (GaWAWV(t) = Go), (3.3.6)

Go = (AW A[(AW)2P2AT(AW)' A, 1>k, V(0) = V.

The model (3.3.6) will be denoted by GNNDWO. On the other hand, the original GNN design

for computing W -weighted Drazin inverse can be defined as

avi) T _
— = —7(Go) (GaWAWV (1) = Gy), (3.3.7)

Go = (AW A[(AW)2AT(AW)' A, 1>k, V(0) = V.

The recurrent neural network defined above is a linear dynamical system in a matrix form.
According to the linear systems theory [35], the closed-form solution of the state matrix can be

defined as
V(t) = exp (—yGoW AWt) V(0)+
t (3.3.8)
+ v exp (—VGOWAWt)/OeXp (vGoW AW T) G dT.

103

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

3.3.2 Convergence and stability analysis of GNNDW(

To analyze the convergence and stability of a neural network, the following lemma is needed

in what follows.

Lemma 3.3.2. For arbitrary rectangular complex matrices A € R"™*" and W € R"*™, the
matrix GoW AW = (AW A[(AW)2H2A|T(AW)H2, | > k, possesses the eigenvalues \;
satisfying s(GoW AW) > 0.

Proof. See the proof of Theorem 2.3 in [53]. [

Corollary 3.3.1. Forany A € R™*", W € R™*™, [> kandt € |0, +0], the following holds:
tli)m exp (—yGoW AWt) = 0. (3.3.9)

The result of Corollary 3.3.1 is very important and shows that (3.3.9) holds for arbitrary
V'(0) as well as for arbitrary matrices A € R™*™ and W € R™*"™.
Now, (3.3.8) and (3.3.9) imply the following representation for tlim V)=V,

t—o00

_ t
lim V() = V = Jim exp(—GoW AW1) / exp(7GoW AW)Gy d7. (3.3.10)
o0 0

Based on the definition and properties of the matrix exponential, it can be verified that the
closed-form solution of V' in (3.3.10) represents the 1V -weighted Drazin inverse Ag ., and it is

independent of «. Corresponding statement is given in Theorem 5.5.2.

Theorem 3.3.2. Let A € R™* ™ and W € R™ "™ with| > k and t € [0, +00]. Then the limiting
expression (3.3.10) produces the W -weighted Drazin inverse Ag,, i.e., V= Adw-

Proof. The proof is similar as the proof of Theorem 2.3.1 and based on the usage of the matrix
Go = (AW A[(AW)2H2 AT (AW) A

instead of the matrix G = (AW)'A. [

If Ais a square and W = I, then the results corresponding to the W -weighted Drazin
inverse Ay, reduces to analogous results initiating the Drazin inverse AP. Indeed, the dynamic
equation of a gradient RNN (3.3.6) recasts to the dynamic equation

dV(t)

5 = 1 (GoAV (1) = Go), Go = ATHAXEITHTATL 1> &, V(0) = Vo,

104

3.3. Globally convergent GNN for computing W-weighted Drazin inverse

which is of the same effect as the dynamic equation (3.5) proposed in [85]. Simply, a replace-
ment of & = Ind(A) by [4+ 1,1 > k is done, which is allowed. Corresponding convergence

result can be stated immediately in Corollary 3.3.2.

Corollary 3.3.2. Let A € R™*", W = [and | > Ind(A). Then the limiting expression (3.3.10)

produces the Drazin inverse AP, i.e., V = AP,

Clearly, (3.3.8) can be simplified by forcing the first matrix term in its right-hand side to
be the zero matrix, i.e., by establishing zero initial states. In light of the above discussion and
according to (3.3.6), the dynamic state equation of the RNN for computing the W -weighted
Drazin inverse can be stated using the zero initialization in (3.3.6):

dV (t)

— = =y (GWAWV(t) - G

Go = (AW A[(AW)2 2 AN (AW A, 1>k, V(0) = 0.
The stability of the equilibrium state V is investigated in Theorem 3.3.3.

Theorem 3.3.3. The gradient-based neural network given in equation (3.3.11) is stable in the

sense of Lyapunov.

Proof. The proof is similar to the proof of Theorem 2.3.2. It is necessary to replace G =
(AW)!A by Gy = G(GAG)T G and consider the following Lyapunov function candidate:

_ NGoW AWV — Go|l%

B 2

| Te[(GoWAWV — Go)" (GoW AWV — G)]
B 2

E(t)

U

If A € R and W = I, then the IW-weighted Drazin inverse A,,, reduces to the Drazin

inverse AP. We also obtain the stability of the equilibrium state V" as follows.

Corollary 3.3.3. Let A € R™", W = [and | > Ind(A). Then the gradient-based neural
network (3.3.11) is stable in the sense of Lyapunov.

Neural networks architecture of GNNDW(

Since the positive real scaling constant v multiplies the time parameter ¢, its value could be

as large as possible. Greater values of y will speed up the computation, because the terms
Jim exp|[—y(AW)2] = Jim exp[—yGWAWL], G = (AW)' A, | >k

105

Chapter 3. GNN for computing generalized inverse without restriction on spectrum

or
lim exp[—yGoWAWH], Gy = (AW A[(AW) AT (AW) A, 1 >k

vanish faster for larger 7.

Similarly with the RNNs for computing the Drazin inverse which are defined in [85, 84],
our neural network is composed from a number of independent subnetworks. Each subnetwork
represents a column vector of V'(¢). Denote by v;(t) (respectively, by h;, g;, (Go);) the jth
column vector of V (t) (respectively, (AW)'A, G, Gy), for j = 1,2,...,n. The dynamics of

the jth subnetwork corresponding specific case can be expressed as

du; (t)
dt

= = ((AW)*205(t) = hy) 3.3

In the general case, the jth subnetwork can be stated as

du; (t)
dt

= —7 (GoWAWw;(t) — (Gy);), Go = (AW)' A[(AW)? 2 AT (AW) A, (33.2)

106

Chapter 4

GNN for computing outer inverses based

on the full rank representation

In this chapter, we study numerical computation of outer inverses with prescribed range
and null space using dynamic equations and corresponding gradient based recurrent neural
networks. The defined neural networks are aimed to computation of the usual inverse or the
group inverse which are involved in matrix products representing two general representations
of outer inverses with known range and null space. The explicit closed-form solutions of de-
fined dynamic equations are derived. Similarly with the recurrent neural networks for matrix
inversion developed earlier, proposed neural networks are composed of a number of indepen-
dent sub-networks. Each sub-network corresponds to the column or row of the inverse matrix.
Numerical performances and stability of the proposed neural networks are demonstrated and

compared by means of several numerical examples.

4.1 Preliminaries and motivation

The starting point of our investigations is the dynamic state equation of the RNN for com-

puting outer inverse which was introduced in [138]:

av(t)
dt

dv(t)
dt

—y (GAV(t) = G), V(0)=0,if m>n,

. 4.1.1)
—y (V(H)AG - G), V(0)=0, if m <n.

The GNN evolution (4.1.1) is termed as GNNGA or GNNAG. The main advantage of the
dynamic equation (4.1.1) is its universality. More precisely, (4.1.1) comprises all dynamic

equations proposed for numerical computation of generalized inverses.

107

Chapter 4. GNN for computing outer inverses based on the full rank representation

A) In the case G = AT, the dynamic equation (4.1.1) reduces to the dynamic equation of

the linear recurrent neural network for the usual matrix inversion, proposed in [94]:

dV (¢

0 ATAV() 4947, V(0) = W, (4.12)
wherein V() is a matrix of activation state variables corresponding to the inverse matrix of A
and + is a positive scaling constant. As it is proved in [94], the RNN defined on the basis of
(4.1.2) is asymptotically stable in the sense of Lyapunov and its steady-state matrix is equal to
AL

B) By allowing the activation state matrix to be rectangular, recurrent neural network de-
fined in (4.1.2) can be used for computing the Moore-Penrose inverse of a full-column rectan-
gular matrix A € R"*". In the dual full-row case A € R"*", the dual GNN model

dV(t)

- AV (#)AAT +~vAT, V(0) =V} (4.1.3)

can also be used to compute the Moore-Penrose inverse of A.

C) Three recurrent neural networks for computing the Moore—Penrose inverse of rank-
deficient matrices were proposed in [96]. The first RNN is most similar to our approach, and it

exploits the dynamic equation

. T T —
dv(t) _ { MATAV (t) + MAT, V(0) =0, m =n, (4.1.4)

dt —V(#)AATM + ATM, V(0) =0, m <n,

where M is a positive diagonal matrix satisfying M € R™*" in the case m > nand M € R™*™
in the case m < n. The dynamic equation presented in (4.1.4) can be derived from (4.1.1) in
particular cases G = M AT or G = AT M.

D) Another particular case of (4.1.1) leads to RNN approach in computing the weighted
Moore-Penrose inverse. Wei in [108] introduced the following dynamic state equation of the
first recurrent neural network (called N/N1) for computing the weighted Moore—Penrose in-

verses of a rank—deficient matrix A:

v

n,

_DAPAV () + DAL V(0) = 0
dv (t) { (t) + DA%, V(0) O, m wis
=0, m

dt ~V(t)AAD + A*D, V(0)

A

n,

where D is a positive diagonal matrix of appropriate dimensions and A* = N~'ATM (M and
N are chosen positive definite matrices). The simplest choice for D is D = I, where v > 0
[108].

108

4.1. Preliminaries and motivation

E) The isolated case G = A™,m > ind(A) in (4.1.1) leads to the dynamic equation of a
gradient recurrent neural network for computing the Drazin inverse of a square matrix A, which
was defined in [84]:

dV(t)

— = (A™HV () — A™), m > ind(A), V(0) = V. (4.1.6)

The exponent m in (4.1.6) is the smallest integer which assures nonnegative real parts for
all eigenvalues of the matrix A™!. An alternative dynamic, which avoids the necessity to
avoid the computation of an appropriate exponent m, was defined in [85]. This dynamic is
based on the usage of the matrix Gy = A*(AFAAF)TA* |k = ind(A), instead of the matrix
G = A", m >ind(A).

But, the dynamics defined in (4.1.1) has a serious drawback. Namely, the matrix G must be

chosen such that exactly one of the next two conditions is satisfied:

o(GA) C {z:Re(z) >0}, m >n, 4.1.7)
o(AG) C {z: Re(z) >0}, m <n. (4.1.8)

The evolution rule (4.1.1), used in [138], fails in the case when some of real parts in the spec-
trum o (G A) are negative. If one of the conditions (4.1.7) or (4.1.8) is not satisfied, the general-
ized inverse A%EG% e could not be generated on the basis of (4.1.1), despite of his existence.
One possible solution is proposed in [138]; it is based on the replacement of the matrix G by
Gy = G(GAG)TG in (4.1.1). The replacement of G by G eliminates the necessity to fulfill the
constraints (4.1.7) or (4.1.8), since o(GyA) satisfies (4.1.7) and 0(AG)) satisfies (4.1.8). But,
the goal is achieved by a relatively large increase of the number of expensive matrix operations.
Additionally, the numbers in GG grow, in some cases, which could cause numerical instability.
Finally, our numerical experience shows that real parts of eigenvalues contained in o(GyA) or
0(AG)) are sometimes very small negative integers, which later causes numerical instability,

or even divergence.

Two additional possibilities to overcome the problem were proposed in [86]. In this chapter
we present these possibilities. Derived simulations of RNN are based on two different rep-
resentations of outer inverses. Equivalence between these representations is investigated in
Section 4.2. Two dynamic equations arising from these representations and initiated RNNs are

considered in Section 4.3.

109

Chapter 4. GNN for computing outer inverses based on the full rank representation

4.2 On the existence and representations of outer inverses

We firstly show that Proposition 4.2.2 and Proposition 4.2.3 produce the same outer inverse
with prescribed range and null space. The next auxiliary result from [2] is used: if in the
matrix product A = F'HG the matrix F' is of full-column rank and G is of full-row rank, then
rank(A) = rank(H). Also, the representation of the group inverse, proposed in Proposition
4.2.1, is very important.

Proposition 4.2.1. [18] A square matrix A determined by the full- rank representation A = BC

has a group inverse if and only if C'B is nonsingular, in which case
A* = B(CB)™*C.

A useful representation of Ag)S based on the usage of the group inverse, is presented in
[106]. This representation, restated in the next proposition, gave a new computational aspect in

relationship with the A%)s inverse.

Proposition 4.2.2. [106] Let A € C"™*™ be of rank r, let T be a subspace of C" of dimension
s < r, and let S be a subspace of C™ of dimension m — s. In addition, suppose that G € C™*™
satisfies R(G) =T and N (G) = S. If A has Agg)s then ind(AG) = ind(GA) = 1 and

Full-rank representation of {2}-inverses with prescribed range and null space is determined

in the next proposition, which originated in [12].

Proposition 4.2.3. [12] Let A € C**", T be a subspace of C" of dimension s < r and let
S be a subspace of C™ of dimensions m — s. In addition, suppose that G € C"*™ satisfies
R(G) =T,N(G) = S. Let G has an arbitrary full-rank decomposition, that is G = PQ. If A
has a {2}-inverse A%)s then:

(1) QAP is an invertible matrix;

(2) A = P(QAP)'Q.

Representation of outer inverses in the general form Ang% N =G (AG)* = (GA*G
has been widely exploited in scientific literature. This representation is used in deriving the
determinantal representation of generalized inverses [6, 121] as well as in the construction of
iterative methods for their computation [47, 115, 116, 121]. Also, the full rank representation
Agza), NG) = P(QAP)~1(Q has been frequently applied in many numerical calculations. For
example, such a representation has been exploited to define the determinantal representation of

Ag)s inverse in [12]. Also, this representation has been used in the construction of the general

110

4.2. On the existence and representations of outer inverses

successive matrix squaring algorithm for computing A%)s [76] or in the block representation of
the set A{2}, [73].
Our first observation is that Proposition 4.2.2 should be stated as an "if and only if" state-

ment. Similar situation appears in Proposition 4.2.3. These results are verified in Lemma 4.2.1.

Also, Lemma 4.2.1 gives an unified aspect to these, so far, separate results.

Lemma 4.2.1. Let A € C"™*" be of rank r, let T be a subspace of C" of dimension s < r, and
let S be a subspace of C™ of dimension m — s. In addition, suppose that G € C*"™ satisfies
R(G) =T and N(G) = S. Assume that G = PQ is a full rank factorization of G. Then A
has Ag)S if and only if one of the following conditions hold:

ind(AG) = ind(GA) =1, (4.2.1)
QAP isinvertible. 4.2.2)
In this case
APy = G(AG)* = (GA)*G (4.2.3)
= P(QAP)'Q. (4.2.4)

Proof. Proposition 4.2.2 claims the following: If A has A%)S then ind(AG) = ind(GA) = 1
and ATy = G(AG)* = (GA)*G.

But, the opposite case also holds. Namely, does ind(AG) = ind(GA) = 1 ensures the
existence of Ang% ~(G)- Indeed, ind(AG) = ind(GA) = 1implies the existence of (AG)# and
(GA)#. Further, the existence of Ang% ne = G(AG)® = (GA)*G is ensured. Therefore,
we just verified that Ang), N exists if and only if (4.2.1) is satisfied.

Now, it is necessary to verify equivalence between (4.2.1) and (4.2.2). We use that AG =
(AP)Q is a full rank factorization of AG [12]. Since the (AG)# exists, according to full-rank
representation of the group inverse from [18], immediately follows that Q(AP) is invertible
(see, [12]).

It suffices to prove identity between the expressions (4.2.3) and (4.2.4). Concerning invert-

ibility of Q) AP, the following transformation is allowed:
P(QAP)™'Q = PQAP(QAP)*Q.
Using the general representation of the group inverse from Proposition 4.2.1 we have

(AGY* = AP(QAP)*Q

111

Chapter 4. GNN for computing outer inverses based on the full rank representation

which implies
P(QAP)™'Q = G(AG)*.

Similarly, using GA = P(QA) as a full rank factorization of G A, one can verify
P(QAP)™'Q = P(QAP)?QAPQ = (GA)*G,

which completes the proof. [

4.3 Neural networks based on full rank representation of

outer inverses

In order to simplify notations, by RNN(4.2.3) and RNN(4.2.4) we denote the RNNs which
can be used in the computation of the representation (4.2.3) and (4.2.4), respectively. RNN(4.2.3)
is designed for calculating the group inverse (AG)# or (GA)# in accordance with the results
proposed in [84]. RNN(4.2.4) is defined in order to calculate (QAP)~'. The main reason for
this choice are the relatively small dimensions s x s of the matrix () AP with respect to dimen-
sions m x m or n X n of matrices AG or GG A, respectively. Application of RNN(4.2.4) to the

invertible matrix of small dimensions indicates fast numerical computation and global stability.

4.3.1 Neural network RNN(4.2.4) based on (4.2.4)

The following facts are assumed in the rest of this chapter. The matrix A € R”"*" is given;
G = PQ is a full-rank factorization of a selected matrix G € R}*™, where the integer s
satisfying 0 < s < r is the rank of G. Under the assumption that QAP is invertible, the

following full rank representation holds:
AR o aig) = P(QAP) Q. 4.3.1)
The RNN for computing (QAP)~! is generated using the initial matrix equation
QAPV — 1 =0, (4.3.2)

where V' € R™™ represents the unknown matrix which should generate (QAP)~'. A scalar-

valued norm based error function

_IQAP V(1) — L3

5 (4.3.3)

E(t)
can be used to solve (4.3.2) via dynamic-system approach. The derivative of F(t) with respect

112

4.3. Neural networks based on full rank representation of outer inverses

to V' € G™*™ can be derived using [25, Chapter 5]:

DE(t)

v = (QAP)T (QAPV(t) = I,). (4.3.4)

This approach leads to the dynamic equation of the form which was used in the complex-valued

gradient neural network from [122, 125, 129]:

DE(1)

V(t) = e

(4.3.5)
Therefore, it is reasonable to define the dynamic equation of a recurrent neural network as

follows
dV (t)

dt
where V (t) € R**™ is a matrix of activation state variables and + is a positive scaling constant.

= — ((QAP)"QAPV (1) — (QAP)"), V(0) =V, (4.3.6)

The closed-form solution of (4.3.6) can be derived using the linear systems theory (see, for

example [35]):

V(t) = exp (—7(QAP)T QAPt) V(0) +

t 4.3.7
+7exp (—7(QAP)TQAPt) /0 exp (YQAPT) d7 (QAP)". 3

The matrix QAP is positive definite (according to assumptions), which means it has all
eigenvalues real and positive. Also, since v > 0, all eigenvalues of —yQ AP are real and
negative, and according to the linear dynamic system theory, the recurrent neural network is
globally asymptotically stable. Therefore, the term exp(—yQAPt)V (0) in the right-hand side
of (4.3.7) vanishes to the zero matrix of the same size as time approaches infinity, i.e.,

lim exp (—(QAP)TQAPt) V(0) =0, (4.3.8)

t—o0

regardless of the initial states V' (0). Now, equations (4.3.7) and (4.3.8) imply the following
representation of lim; ., V (t) = V, for arbitrary V (0):

V= tli}lgovexp(—v(QAP)TQAPt) /Otexp (’}/(QAP)TQAPT) dr (QAP)". (4.3.9)

According to known results from [96], it can be verified the closed-form solution V' = (QAP)~*
of V in (4.3.9), and it is independent of +.

Theorem 4.3.1. [86] Let A € R™*" be a given matrix and G € R?*™ be an arbitrary matrix
whose rank satisfies 0 < s < r. Further, let G = PQ be a full rank factorization of G and
0(QAP) = {)\i,..., \,} be the spectrum of QAP. Suppose that QAP is regular. Then the

113

Chapter 4. GNN for computing outer inverses based on the full rank representation

outer inverse A2 can be generated using the limiting value V' of (4.3.9), as follows:
R(P)N(Q)
PV Q=AY 4.3.10
R(P)N(@)" 4.3.10)

Also, the RNN initiated by (4.3.6) is globally assymptotically stable.

Proof. Since () AP is regular, the condition
Re(A;) >0, 5=1,....,n (4.3.11)

is satisfied. Then the proof can be verified using the full-rank representation (4.3.1) and the
results from [94]. [

Following the recurrent neural networks for the matrix inversion [122, 129], our neural
network is composed from s independent sub-networks, where each sub-network generates
a column of V/(¢). Let us denote by v;(t) (resp. g;) the jth column vector of V (t) (resp.
G = (QAP)), for j = 1,2,...,m. The dynamics of the jth sub-network can be expressed as
follows:

d”él@ = —7 ((QAP)TQAPu;(t) — g;) (4.3.12)

The dynamics defined in (4.3.12) indicates that each sub-network is essentially the same as the
recurrent neural network presented in [94]. The connection weight matrix W = —y(QAP)TQAP
is identical for each sub-network and the biasing threshold vector for the jth sub-network is
v9; = {791j, - - -, Vgnj }- Elements of the matrix W (resp. V') are denoted by w;; (resp. v;;).

Elements of unknown matrix V' (¢) are computed using

. dv;; - .
Vij = ditj = Witk + V95, 4,5 =1,...,n. (4.3.13)
k=1
Elements of the column v; = {vy;,...,v,;} are generated in the jth sub-network.

Two advantages of the proposed RNN(4.2.4) approach are immediately observable:

1. Dimensions of QAP are equal to s X s; they are potentially much smaller than the
dimensions m and n of AG or GA.

2. RNN(4.2.4) is globally asymptotically stable in the case when () AP is invertible. There-
fore, RNN(4.2.4) is an elegant way to avoid the requirements on the spectrum of the matrix AG

or GA.

114

4.3. Neural networks based on full rank representation of outer inverses

4.3.2 Neural network RNN(4.2.3) based on (4.2.3)

Let us consider the case n < m in more details. The second type of RNN, called RNN(4.2.3),
integrates n independent sub-networks, where each sub-network generates a column vector of
V (t). Under the assumptions that v;(¢) denotes the jth column vector of V'(¢) and g; stands
for the jth column vector of G| = (GA)’“, k > 1, the dynamics of the jth sub-network can be

expressed as follows:

du; (t)
dt

= =7 (G o(t) —g5), 5=1,2,...,m. (4.3.14)
The integer k in (4.3.14) is the first positive integer satisfying
Re(M*) >0, j=1,....n, (4.3.15)

where o((GA)F) = {\1,..., \,} is the spectrum of (GA)**1. The integer k can be defined
using the results from [84].

The connection weight matrix W — ~(G1)**! is identical for each sub-network and the
biasing threshold vector for the jth sub-network is vg; = {vg1;,...,79n;}. Elements of the
matrix W (resp. V') are denoted by wj; (resp. v;;). Then

. dvj; % .
Vij = dtj = kajwik+’ygﬂ, ,7=1,...,n. (4.3.16)
k=1
Elements of the column v; = {vy;,...,v,;} are generated in the jth sub-network.

Corollary 4.3.1. Let A € R"™ " be a given matrix, G € RI*™ be an arbitrary matrix and
0(GA) = {\1,..., \n} is the spectrum of GA. Assume that the integer k is the first positive
integer satisfying (4.3.15). Then the outer inverse Agz PIN(Q) Can be generated using

_ t
ARl i@ = V G = lim yexp(—y(GA) 1) /0 exp(Y(GAM) dr -G, (43.17)

Proof. According to [84, Theorem 1], V = (GA)#. Then the proof follows from Proposition
422. O

Remark 4.3.1. The results stated in Corollary 4.3.1 are applicable in the case n < m. In the

opposite case, m < n, similar result can be stated using the matrix AG instead of G A.

115

Chapter 4. GNN for computing outer inverses based on the full rank representation

4.3.3 Relationships between different RNNs

For the sake of simplicity, by RN N (AT S2) is denoted the RNN proposed in [138]. Outputs
generated by defined RNNs for input parameters v, A, G are denoted by RNN(ATS2)[, A, G],
RNN(4.2.3)[v, A, G] and RNN(4.2.4)[v, A, G].

In the particular case G = AT all three approaches, RNN(ATS2), RNN(4.2.3) and RNN(4.2.4),
derive known results concerning the usual inverse, originated in [94], as well as known results

concerning the Moore—Penrose inverse [96]:
RNN(ATS2)[y,A, A" = RNN(4.2.3)[y, A, A"] = RNN(4.2.4)[y, A, AT] = Al

The case G = A* = N1 A*M produces the results corresponding to the weighted Moore-
Penrose inverse AM from [108]:

RNN(ATS2)[y, A, A] = RNN(4.2.3)[y, A, A¥] = Al .

In the case G = A%, k > ind(A), RNN(ATS2)[, A, A¥] generates the Drazin inverse AP.
This case was devised in [84]. An algorithm for appropriate choice of the exponent £ is given
in [84].

For a square matrix A of index ind(A) = 1, & > 1, RNN(ATS2)[v, A, A¥] produces the
group inverse A% of A.

The choice rank(G) = r = rank(A) it is not difficult to verify Vo € A{1,2}.

Clearly, the following is valid under the assumption that G = P() is a full-rank factorization
of G:

G« RNN(ATS2)[y, AG, (AG)*], m<n

RNN@.23)v, A G] =
RNN(ATS2)[y,GA, (GA*| xG, n<m,
where £ is the first integer satisfying (4.3.15). Also, the following general statement is valid:

RNN@2.4)[y, A,G = PQ] = P*RNN(ATS2)[y,QAP, (QAP)'] x Q.

It is not difficult to verify the following in the case G = A*, k > ind(A):

RNN(ATS2)[y, A, A¥] = RNN(4.2.3)[y, A, A¥] = AP.

Also, the full-rank representations of the sets A{2,4}, and A{2,3}, as particular cases
of the full-rank representation of the set A{2} are derived in [77]. Introduced full-rank rep-

resentations enable adaptation of well-known algorithms for computing outer inverses with

116

4.4. Numerical experiments on GNN based on full rank representation

prescribed range and null space into corresponding algorithms for computing {2, 4} and {2, 3}-
inverses.

In the case G = (QA)*Q, where (Q € C°*™ is an appropriate matrix, Agz Py N(@) Teduces
to

Ao o = QA (QAQA)) Q. (4.3.18)

In the case G = P(AP)*, where P € C"*® is an appropriate matrix, Agz Py A(@) Produces

AR Reapye = P((AP)"AP) Y (AP)". (4.3.19)

According to (4.3.18), the following is satisfied:

AZY o) = (QATQAQA))'Q = RNN(ATS2) [y, A, (QA)Q)
— (QA)" * RNN(ATS2)[y, QAQA)", (QAQA)") '] Q
=RNN#24)[v, A, (QA)TQ]
= (QA)'Q * RNN(ATS2)[y. (QA)'QA, (QA)'QA]

=RNN@4.2.3)[7, 4, (QA)"Q].
Similarly, according to (4.3.19), the following holds:

AR riapy. = PUAP)TAP) ™ (AP)T = RNN(ATS2)[, A, P(AP)"]
= P+ RNN(ATS2)[y, (AP)TAP, ((AP)TAP) | (AP)"
=RNN®@.2.4)[y, A, P(AP)"]
= P(AP)" *RNN(ATS2)[y, AP(AP)", (AP(AP)")']

=RNN®4.23)[y, A, P(AP)Y].

4.4 Numerical experiments on GNN based on full rank rep-

resentation

Example 4.4.1. Consider the matrix

: (4.4.1)

DD Ot W W N
N O Ut = e W

DD W NN ==
N 3 O Ut O
O O B W N =

117

Chapter 4. GNN for computing outer inverses based on the full rank representation

and choose the following matrices P € R>*? and () € R**6

= Ot W N O

S W NN = O

I

=

101010

010101]

(4.4.2)

According to (4.2.4), exact {2}-inverse of A corresponding to G = PQ) is defined by

2 _
Agzzp)w(cg) = P(QAP)™'Q = 174

1
74

0
—21
60
39

—102

A) The spectrum of G A is included in the set

0

19
—46
—27
84

0
—21
60

39
—102

0 0
19 =21
—46 60
—27 39
84 —102

0(GA) = {266.346716180717,0.653283819282910,0,0,0}

0

19
—46
—27
84

and provides the condition (4.1.7). Applying RNN(ATS2)[10°, A, G = PQ), we obtain the
following approximation of Agz P)N(Q)"

0
—0.1207
X = 0.3448

0.2241
| —0.5862

0.

0.1092
0.2644
—0.1552
0.4828

0

—0.1207

0.3448
0.2241

—0.5862

0
0.1092

—0.2644
—0.1552

0.4828

Convergence properties are illustrated in Figure 4.1

118

0
—0.1207
0.3448
0.2241
—0.5862

0

0.1092
—0.2644
—0.1552
0.4828

(4.4.3)

4.4. Numerical experiments on GNN based on full rank representation

0.6 T T T T T T T T T

X: 2.275¢-009
0.4F V.04828

State variable

_02 L -
_04 - -
_06 - 4

_08 Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (second) %107

Figure 4.1: Convergence behavior of the RNN [138] in 10~7 seconds for Example 4.4.1

B) Since rank(GA) = rank((GA)?) = 2, the existence of (GA)¥ is ensured as well as the
existence of the outer inverse AgzP),N(Q) = (GA)*G. Also s ((GA)?) > 0 ensures stability
of RNN(4.2.3). Using G = GA and applying the RNN defined according to (4.3.16) with

v = 10%, one can obtain the following approximation of the group inverse (GA)%:

0.0000 0.0000 0.0000 0.0000 0.0000]
0.2240 0.1194 0.0148 —0.0898 0.2755
RNN(4.2.3)[10°, GA,GA] = (GA), = | —0.6056 —0.3215 —0.0373 0.2470 —0.7442
—0.3816 —0.2020 —0.0225 0.1570 —0.4690
1.0537 05602 0.0668 —0.4267 1.2052

Now, the approximation (GA),G of (GA)*G = A%g PN (@) Coincides with the approximation
X in (4.4.3).

C) An approximation (QAP)™Y of (QAP)™" can be produced using
RNN(ATS2)[10°, QAP, (QAP)]:

0.4828 —0.5862]

AP)TY =
(Q4P) [—0.8563 1.0517

The behavior of the method RNN(ATS2)[10°, QAP, (QAP)"] in the process of its convergence
is illustrated in Figure 4.2.

Now, the approximation

Y = P(QAP)=DQ=P*RNN(ATS2)[10°, QAP, (QAP)"] x Q =RNN(ATS2)[10°, A, PQ]

119

Chapter 4. GNN for computing outer inverses based on the full rank representation

1.5 T T T T T T T T T

X:1.839e-009
Y:1.051

State variable

-0.5} B

_1 Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (second) %107

Figure 4.2: Convergence behavior of the RNN(4.2.4) in 10~7 seconds for Example 4.4.1

of the outer inverse coincides with the resulting matrix (4.4.3).

Example 4.4.2. Consider the matrices A as in Example 4.4.1 and randomly generated 3 x 6

matrix
0.8147 0.9134 0.2785 0.9649 0.9572 0.1419

Q=] 0.9058 0.6324 0.5469 0.1576 0.4854 0.4218
0.1270 0.0975 0.9575 0.9706 0.8003 0.9157

Now, let us consider the matrix

16.6417 15.1378 20.0523 24.0504 24.1164 17.1831 |
24.0178 21.9829 26.1593 32.2128 32.8233 22.0808
Gg = (QA)'Q = | 30.6784 28.0700 32.7198 40.3917 41.3443 27.5294
38.0545 34.9151 38.8268 48.55641 50.0512 32.4271
23.7370 21.6404 28.2141 34.0462 34.1819 24.1278

Clearly, 0(GgA) > 0, and the output generated by applying RNN(ATS2)[10"°, A, G = Gg) is
equal to

0.9990 —0.0844 1.0245 —1.7595 —0.6968 0.9428
—0.8849 —0.0042 —0.7783 1.4540 0.5631 —0.7026
X =] 15164 0.0354 1.3197 —2.4205 —0.9194 1.1878 |. (4.4.4)
—0.3676 0.1157 —0.4832 0.7931 0.3405 —0.4576
—1.1124 —-0.1118 —-0.8261 1.6635 0.6168 —0.7257

120

4.4. Numerical experiments on GNN based on full rank representation

The {2, 4} inverse of A is defined by

A§\2f7(2A)J-,N(Q) = (QA)T (QA(QA>T>_1 Q,

which coincides with X defined in (4.4.4).

Now, our intention is to solve the same problem using RNN(4.2.4). For this purpose, it
suffices to consider the matrices P, = (QA)T,Q, = Q and later A} = Q,AP,,G, = A].
Applying RNN(ATS2)[10'2, Ay, G1], we obtain the following approximation

21.9358 —31.9662 1.7207
(QlApl)(_l) = | —31.9663 46.6893 —2.5770
1.7207 —2.5770 0.1811

of (Q1AP) " = (QA(QA)T)_l . Now, the matrix Py (QlAPl)(fl) Q1 is equal to the matrix X
which is defined in (4.4.4).

Example 4.4.3. The goal of this example is to show global asymptotic stability of RNN(4.2.3).
For this purpose, we use randomly generated initialization V|y of the matrix of activation state
variables V (t). The matrices A, G, P and () are chosen as in Example 4.4.1.

The RNN(ATS2)[v, A, G| is not asymptotically globally stable, which means that the solution,
in general, does not converge to the outer inverse Agz PYN(Q) and depends on choice of the
initial matrix Vy. The function RNN(ATS2)[10'°, A, G] converges, but generates the incorrect

result:)
1.2571 —0.9957 0.3411 1.0149 0.1232 —-0.1224

—1.0682 0.3991 —0.5537 0.2515 0.5429 —1.4664
1.9182 0.0495 2.3513 0.5645 2.4586 0.2087
—0.4413 -0.5021 -0.9267 —-0.6737 —1.3316 —0.0051

| —1.4994 1.0369 —1.1589 —0.6180 —1.5949 1.2889

On the other hand, the RNN(ATS2)[10'°, QAP, (QAP)T| converges successfully starting from
the generated initialization Vi, and RNN(4.2.3)[10, A, G] = PxRNN(ATS2)[10'°, QAP, (QAP)"]*

Q produces the outer inverse generated in Example 4.4.1 using v = 10%°.

Example 4.4.4. In this example, the matrix A is reused from Example 4.4.1 and the matrices

P, Q) are randomly generated:

[0.9421 0.3532 0.6491
0.9561 0.8212 0.7317
P =rand(5,3) = | 0.5752 0.0154 0.6477 |,
0.0598 0.0430 0.4509
| 0.2348 0.1690 0.5470

121

Chapter 4. GNN for computing outer inverses based on the full rank representation

0.2963 0.6868 0.6256 0.9294 0.4359 0.5085
Q =rand(3,6) = | 0.7447 0.1835 0.7802 0.7757 0.4468 0.5108
0.1890 0.3685 0.0811 0.4868 0.3063 0.8176

The matrix G is defined by G = PQ. The spectrum of G A contains negative values:
o(GA) = {87.5644, —0.3869, —0.0621, 0.0000, 0.0000} .

This causes divergence of RNN(ATS?2), with the incorrect result

[_0.8558 —2.3809 1.1049 4.6212 —2.3984 2.9684 |
—1.1025 —3.0671 1.4234 59531 —3.0896 3.8240

1.0e™% | 01336 0.3717 —0.1725 —0.7215 0.3744 —0.4634
0.7326 2.0380 —0.9458 —3.9557 2.0530 —2.5409
0.4764 1.3253 —0.6150 —2.5723 13350 —1.6523 |

Using RNN(ATS2)[10'2, QAP, (QAP)T], it is possible to generate an approximation (QAP)(~Y
of (QAP)™1. Later, v = 10'% in

RNN(4.2.3)[10'2, A, PQ] = P*RNN(ATS2)[10'2, QAP, (QAP)T] x Q leads to the following
approximation OngzP),N(Q) = P(QAP)™'Q:

0.7174 —0.7519 0.2254 —0.1981 0.0500 0.1226
—1.8441 1.5217 —1.4851 0.0060 —0.1595 0.7803
P(QAP)"VQ = | 15050 —1.3240 1.0054 —0.1087 0.1292 —0.3699

—0.1352 0.2318 0.1193 0.1430 0.0049 —0.1943
| —0.3319 0.3753 —0.0776 0.1210 —0.0142 —0.0667 |

Example 4.4.5. In this example, A, P and () are randomly generated matrices of the order
m X n, n X sand s X m, respectively. The matrix G is defined as G = P(Q). IEEE arithmetic
representation for Not-a-Number (NaN) denotes the divergence of the method. The symbol
"-" means a time interval greater than 5e+003. The results arranged in Table 4.1 confirm
that RNN(4.2.4) shows the best performances. The results in Table 4.2 show that increase in
dimensions m and n does not affect the CPU time and values of the residual error in the case

when s remains unchanged.

122

4.4. Numerical experiments on GNN based on full rank representation

Table 4.1: Results for three RNNs generated using on the set of
randomly generated matrices

RNN Sizem,n,s CPUTime [XAX — X5
RNN(ATS2)[10', 4,G] 10, 15,2 1.5600 3.4837e-006
RNN@4.2.3)[10'', A,G] 10, 15,2 0.6552 1.4050e-014
RNN(4.2.4)[103, A, G] 10, 15,2 0.1716 3.6337e-014
RNN(ATS2)[107, A,G] 10,15,5 0.5928 1.7208
RNN(ATS2)[10', A,G] 10,15,5 9.4693 NaN
RNN(4.2.3)[107, A,G] 10,15,5 0.5772 0.5497
RNN(4.2.3)[10', A,G] 10,15,5 5.7876 NaN
RNN(4.2.4)[10'3, A, G| 10,15,5 0.1092 4.7661e-013
RNN(ATS2)[107, 4,G] 10, 15,10 0.7644 4.1438
RNN(ATS2)[101, 4,G] 10, 15,10 17.2381 NaN
RNN(4.2.3)[107, A, G| 10,15, 10 0.5772 1.3629
RNN@4.2.3)[10', A,G] 10, 15,10 17.0353 NaN
RNN(4.2.4)[10%, A, G] 10, 15,10 1.1856 5.6842e-006
RNN@.2.4)[10'7, A,G] 10, 15,10 1.2324 3.9636e-009
RNN(4.2.4)[10Y, A, G| 10,15, 10 1.2948 3.5628e-007
RNN(ATS2)[10'", A,G] 30,45,5 2.6530e + 003 NaN
RNN(4.2.3)[10', A, G] 30,45,5 — NaN
RNN(4.2.4)[10%, A,G] 30,45, 5 0.1872 3.3026e-011

Table 4.2: Results for three RNN(4.2.4) generated using v = 10" on the set of
randomly generated matrices

RNN Sizem,n,s CPUTime | XAX — X]||2
RNN(4.2.4)[10'3, A, G 90,135,15 3.2292 2.7609e-011
RNN(4.2.4)[10", A, G] 180,270,15 2.5116 3.3336e-010
RNN(4.2.4)[10'3, A, G] 360,540, 15 2.5428 2.8120e-011
RNN(4.2.4)[10", A,G] 720, 1080, 15 2.5116 7.2166e-006
[]
[]

RNN(4.2.4)[10'3, A,G] 1040,2160,15 1.9500 3.7591e-011
RNN(4.2.4)[10'3, A,G] 2080,4320,15 3.1512 1.2941e-009

123

Chapter 4. GNN for computing outer inverses based on the full rank representation

124

Chapter 5

ZNN for computing matrix inverse based

on hyperpower iterative methods

This chapter investigates and exploits an analogy between the scaled hyperpower family
(SHPI family) of iterative methods for computing the matrix inverse and the discretization of
Zhang Neural Network (ZNN) models. A class of ZNN models corresponding to the family of
hyperpower iterative methods for computing generalized inverses is defined on the basis of the
discovered analogy. The Simulink implementation in Matlab of the introduced ZNN models
is described in the case of scaled hyperpower methods of the order 2 and 3. Convergence

properties of the proposed ZNN models are investigated as well as their numerical behavior.

5.1 Introduction to ZNN design and known ZNN models

The GNN approach uses the Frobenius norm of the error matrix as the performance criterion
and defines a neural network evolving along the negative gradient-descent direction. In the
time-varying case, the underlying Frobenius norm of the error matrix cannot converge to zero
even after infinite time [48]. Based on this fact, Zhang neural networks (or zeroing neural
networks) (ZNNs) were developed for solving online time-varying problems. ZNN is originally
invented by Zhang in his seminal work [130]. Their dynamics is designed based on an indefinite
error-monitoring function instead of a usual norm-based energy function [131]. In addition,
Zhang neural dynamic is, in general, implicit, whereas dynamic of GNNs is explicit [131].

Five complex-valued ZNN models which are aimed to computation of time-varying com-
plex matrix generalized inverses were proposed and investigated in [48]. ZNN models for
online time-varying full-rank matrix pseudoinversion were introduced and analyzed in [127].
The relationship between the Zhang matrix inverse and the Drazin inverse, discovered in [128],
leads to the same dynamic state equation which was considered in [84] in the time invariant

matrix case. The dynamical equation and corresponding artificial recurrent neural network

125

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

for computing the Drazin inverse of an arbitrary square real matrix, without any restriction
on eigenvalues of its rank invariant powers, were proposed in [85]. A discrete-time model of
ZNN for matrix inversion, which is depicted by a system of difference equations, was investi-
gated in [125]. A general recurrent neural network model for online inversion of time-varying
matrices was presented in [122]. The simulation and verification of such a ZNN were inves-
tigated in [129]. ZNN models for computing online time-varying Moore-Penrose inverse of
a full-rank matrix were generalized, investigated and analyzed in [133]. Two complex Zhang
neural network (ZNN) models for computing the Drazin inverse of arbitrary time-varying com-
plex square matrix were presented in [104]. The design of the ZNNs defined in [104] is based
on corresponding matrix-valued error functions arising from the limit representations of the
Drazin inverse. As a continuation, the paper [67] investigated the computation of the Drazin
inverse of a complex time-varying matrix by means of two ZNN models derived based on two
Zhang functions constructed on the basis of two limit representations of the Drazin inverse.

The finite-time convergence is ensured by means of the Li activation function.

Integration-enhanced noise-tolerant ZNN models (shortly IENTZNN) have been studied
extensively last year. An IENTZNN model for time-varying matrix inversion process was
defined in [32]. Zeroing neural networks which are able to eliminate various kinds of noise and
resolve the redundancy in kinematic control have attracted a great attention last years. Zhang et
al. in [33] designed a noise-tolerant zeroing neural network (NTZNN) design formula from the
viewpoint of control. Corresponding discrete-time models were also defined in [33]. Various
ZNN models applicable in resolving the redundancy of robotic manipulators for kinematic
control in the presence of polynomial type noises were proposed in in [44, 45, 46].

The ZNN model for approximating the time-varying matrix inverse is defined using the

matrix-valued indefinite error function
E(t)=A@t)X(t)— 1. (5.1.1)

The starting point in [48, 132] was the fact that the left Moore-Penrose inverse A(t)" satis-
fies A(t)"A(t)A(t)". Further, on the basis of the assumption that A(t)*A(t) is invertible, the
following matrix-based error function, called ZF(5), is considered

E(t) := At A X (1) — A(t)", (5.1.2)

where X (t) corresponds to A(t)". An elegant way to avoid the assumption of the invertibility
of A(t)*A(t) was presented in [48]. Namely, the authors of [48] defined the complex ZF which

arises from the ZF defined in (5.1.2), and the Tikhonov regularization:
B(t) = (A(t)"A(t) + \I) X(t) = A(t)", A > 0. (5.1.3)

126

5.2. Correlation between iterations and ZNN models

The resulting ZNN model (5.1.3) is termed as complex ZNN-II Model.
In addition, the following complex function was used as the fundamental error-monitoring
function (called ZFL2) in [104]:

E(t) = (A@®)"™ + M) X(t) = A®t)' 1 > k = ind(A), A > 0. (5.1.4)

The matrix X (¢) in (5.1.4) corresponds to the Drazin inverse A(#)P. Let us mention that the
ZNN-II model in [67] is defined on the basis of the ZF defined in (5.1.4) and upon the Li
activation function.

The leading idea of [105] was to comprise so far known ZNN models for computing gen-
eralized inverses into a unique comprehensive model corresponding to outer inverses in the
time-varying complex matrix case. The ZNNATS2-I model defined in [105] requires two ma-
trices A(t) € C*™, G(t) € C*™,0 < s < r, and it is aimed to numerical computations of the
outer inverse A(t)ggG)’ ~(c)- The model is developed using the following two dual fundamental

error-monitoring ZFs, proposed in [105]:

Folt) = { (GAR) + M) X(t) —G(t), n<m, A>0 5.15)
X(t)(A)G(t) + M) — G(t), n > m, A > 0.

5.2 Correlation between iterations and ZNN models

There exist two categories of the numerical algorithms: direct and iterative methods. The
direct method means that the accurate solutions for the problem are computed in finite steps.
An iterative method for computing AT is a set of instructions for generating a sequence { X}
converging to Af. The instructions specify how to select the initial approximation X, how to
proceed from X to X for each k, and when to stop, having obtained a reasonable approxi-
mation. Main results can be found at [12, 91, 106].

One of the most important methods for computing the matrix inverse and various general-
ized inverses is the family of hyperpower iterations. These iterations possess an arbitrary order
of the convergence p > 2, and are given by the standard form

p—1
Xjs1 = X, (1 Y R4+ Rg—l) = X; Y R., Rp=1I-AX, (5.2.1)
i=0
The hyperpower iterative family has been investigated extensively in a number of papers [17,
47,50, 117].

The basic motivation in [87] was the fact that the scaled Newton method for the usual matrix
inversion appears after the discretization of the Zhang Neural Network (ZNN) designed for the
matrix inversion introduced in [125]. More precisely, we generalize the significant result

127

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

From Zhang neural network to Newton iteration for matrix inversion,
derived in [125], into the more general goal
From Zhang neural network to scaled hyperpower iterations for matrix inversion and vice
versa.

Main goals from [87], reused in this section, can be summarized as follows.

(1) Generalize the discretization from [125] and consequently define the scaled hyperpower
iterative methods (SHPI shortly) of an arbitrary order p > 2.

(2) In addition, our intention is to define a ZNN model (called ZNNCM) whose discretiza-
tion produces the scaled Chebysheyv iterative method introduced in [72].

(3) Numerical behavior as well as the convergence properties of the ZNNCM model are
investigated.

(4) A combination of the ZNNCM and the ZNNM model, called the ZNNHM model, is
also defined and considered in numerical testing.

These goals are fulfilled in [87] and in the further discussion we present the main results.

5.3 Scaled Hyperpower iterations as discretized ZNN models

It is assumed that the matrix A is a constant n X n nonsingular matrix. For the sake of
completeness, we restate main steps of the discretization which was defined in [125]. The

matrix-valued error-monitoring function (ZF) of the form
E(X(t),t):=AX(t) -1 (5.3.1)

was used to derive the dynamic equation determined by the general pattern

AB(X(),1)

o - THEX@®).1), (5.32)

where I' € R™" is a positive-definite matrix used to scale the inversion process and H(-) :
R™*™ — R™*™ denotes an appropriate matrix-valued activation-function mapping. An appli-
cation of the general pattern (5.3.2) on the Zhang error-monitoring function (5.3.1) in the case
H =Z7Zand I' = I, where v > 0 is a scalar-valued design parameter, leads to the following

implicit dynamic equation of ZNN:
AX(t) = —y (AX(t) = I)). (5.3.3)

Further, assume that the linear activation function H = Z is used and the discretization of the

continuous-time model (5.3.3) is performed by using the Euler forward-difference rule

128

5.3. Scaled Hyperpower iterations as discretized ZNN models

X(t) ~ (X1 — Xi) /7,

where 7 denotes the sampling time and X, = X (¢ = k7), k = 1,2, Then the discrete-time
model of (5.3.3) is defined by

AXpi1 = AXy, — v (AX, — 1), (5.3.4)

where v = 7y > 0 is the step size that should appropriately be selected for the convergence to
the theoretical inverse A~!. Since A is nonsingular, the implicit discrete-time ZNN model can
be rewritten as

Xpp1 = Xp —yAH(AX, — 1) (5.3.5)

According to [122], the state matrix X (¢) converges to A~! in the continuous-time ZNN model
(5.3.3). Hence, it is justifiably to replace A~! by its approximation X},. This replacement yields
the following explicit difference equation of the discrete-time ZNN for the nonsingular matrix
inversion:

X1 = Xp =7 X (AX = 1) = X (I +7 (1 — AXY)) - (5.3.6)

The iterative rule (5.3.6) is exactly of the form of the scaled Newton iteration for computing

outer inverses with prescribed range and null space, introduced in [64, 65]:
Xir1 = (1 +9)Xp — v X AX, Xo =aG, ~e€(0,1], (5.3.7)

where G € C™" is a given matrix, «, are real constants and G € C?*™ is a chosen ma-
trix and 0 < s < r. In the case v = 1 the iterative process (5.3.7) produces well known

generalization of the Schultz iterative method, intended for computing outer inverses [19, 115].

Charif et all. in [9] developed a new fast online algorithms for motion estimation which is
based on the Horn & Schunck algorithm with the Discrete Zhang Neural Networks (DZNN)
defined by (5.3.6) and Simoncelli’s matched-pair 5 tap filters. A novel implementation of the
multi-dimensional Capon spectral estimator was proposed in [3]. The algorithm is derived

using the discrete Zhang neural network for the online covariance matrix inversion.

In order to extend defined discretization, we start from the continuous-time model which is
based on the error-monitoring function defined by the second and the third term of the hyper-

power iterative process:
Eo(X(t),t) =1 —AX(t)+ (I — AX(t))* = 2I —3AX (t) + (AX(1))*. (5.3.8)
In respect of the general ZNN pattern (5.3.2), the Zhang error-monitoring function (5.3.8) leads

129

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

to the following implicit dynamic equation

Ec(X(1),t) = —AX(t) = AX (t) (I = AX (1)) + (I — AX (1)) (~AX (1))
= —3AX(t) + AX()AX (1) + AX () AX (t) (5.3.9)
= —TH (21 — AX(t) (3] — AX(1))).

The expected convergence of X (¢) to A~! approves the substitution AX (¢) = I in the left hand
side of (5.3.9), which in the case I' = v/, H = I leads to

AX(t) =~ (2] — AX(t) (3] — AX (1))

= =7 (= (AX(1))* + BAX(t) — 2I), 310

where X (0) is appropriately defined initial point. Further, the discrete-time model of (5.3.10)

based on the Euler forward-difference rule is defined by

where v = 77 > 0 is the step size. After the replacement of A~! by X}, the implicit discrete-

time ZNN model for the usual matrix inversion can be stated as
Xiar = X (T 47 (21 = 3AX; + (AXy)?)), (5.3.11)

1.e. in the form of scaled hyperpower iterative method of the order 3. This method was proposed
by Srivastava and Gupta in [72] for estimating the Moore-Penrose inverse. The scaled hyper-
power iterative method (5.3.11) of the order 3 is developed by extending the scaled hyperpower
iterative method (5.3.7) of the order 2.

As a consequence, it is reasonable to investigate the ZNN model defined in (5.3.10), initi-
ated by the ZF defined in (5.3.8).

Our intention is to extend just defined principle in the widest sense, which assumes an
arbitrary hyperpower method of the order p > 2. In view of the previously exploited principle,
the corresponding continuous-time model starts from the error-monitoring function defined by

p—1) p—1)
Eg(X(t),t) =Y R(@t)=>_ (I-AX())".

i=1 i=1

The principle of mathematical induction reveals

R(t)i = — > (I—AX(t) AX(t) (I — AX ()",

Il
=)

130

5.4. Neural network architecture of ZNNCM model

Then the general ZNN design model (5.3.2) leads to the following implicit dynamic equation
in the case H = I:

p—1i-1) , p—1 .
S S (I - AX@) AX () (I — AX(#)) ™ = 4 S (1 — AX(#))". (5.3.12)
i=11=0 i=1
After the substitution AX (t) = I in the left hand side of the implicit dynamics (5.3.12), one

can verify
p—1)
AX(t)=~> (I —AX(t)". (5.3.13)

i=1
The discretization of the ZNN model (5.3.13) corresponding to the Euler forward-difference

rule is given as
p—1]
AXp1 = AXy +vz (I —AXy)', y=717v>0.
i=1
The inverse A~! can be approximated by X, so that the implicit discrete-time ZNN model

of (5.3.13), aimed for the matrix inversion, is given as

=1

p—1)
Xis1 = Xy ([Y (I~ AXk)’) . (5.3.14)

The iterative rule (5.3.14) is referred as the scaled hyperpower iterative methods (SHPI shortly)
of an arbitrary order p > 2.

In conclusion, it is reasonable to define the ZNN model (5.3.3) as the continuous-time
version of the scaled Chebyshev iterative method, in the same way as the ZNN model (5.3.10)
represents the continuous-time version of the scaled Newton iterative method. A comparison

between these two concurrent ZNN models will be investigated.

5.4 Neural network architecture of ZNNCM model

The graphical editor, customizable block libraries and solvers available in Matlab Simulink
are used for modeling and simulating the proposed dynamic systems. As it was mentioned in
[123], the ZNN modeling could be readily developed, expanded and finally realized by using
Matlab Simulink tool. This fact was our motivation to use the Matlab Simulink tool in the
implementation of defined ZNN models. The ZNN model (5.3.3) will be denoted by ZNNNM.
Also, the ZNN model (5.3.10) is termed as ZNNCM. In addition, we define a hybrid method
which starts from the ZNN model (5.3.3) and finishes with (5.3.10). Finally, GNN denotes the
gradient based neural network from [138] in the nonsingular case, corresponding to the case
G = A" in the RNN1 model.

131

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

The Simulink implementation of the ZNNNM model (5.3.3), restated in the equivalent form
X(t)=(I—-A)X({t)—yH(AX(t) = 1)). (5.4.1)

is presented in Figure 5.1.

L] X(t)
y Integrator
X 1, (FAXX(-YHAX()-) ~
s | &
A
A >- I-A
A gha v Y
| Add
: : Matrix
| Matrix Multiply Multiply
| (FAX(t)
| |
P Matrix AX(t) s AX > /
»| Multiply U »o HAXO)
Matrix Multiply1 purelin
Manual Switch
In out Y
power-sigmoid
x-A"
» Matrix 1 >
1-Norm
Matrix 1-Norm Error

Figure 5.1: Simulink implementation of the ZNNNM model.

In order to ensure the implementation, (5.3.10) is transformed into the following equivalent
form:
X(t) = (I - AX(t) = vH (= (AX(1))° + BAX () — 2I). (5.4.2)

The Matlab Simulink implementation of the ZNNCM model, based on (5.4.2), is presented in
Figure 5.2.

Two appropriate activation functions, introduced in [42], will be exploited in nodes of two
developed ZNNs. Their definitions will be restated here in order to complete the presentation.
It is assumed that A € C™*" is written as B + +C, where 1 = v/—1 denotes the imaginary unit
and B € R™", C € R™" are two real matrices. The matrices B, C' correspond to real and
imaginary part of the complex entries of A, respectively. Additionally, let 7 (D) be an odd and
monotonically increasing function element-wise applicable to elements of D = (d;) € R™*"
according to the rule (D) = (f(dy;)), where f(-) is an odd and monotonically increasing

function.

132

5.4. Neural network architecture of ZNNCM model

) x-A" L]
Matrix 1 »

1-Norm

Constant

)

Matrix 1-Norm1 -
Display2

[

X
Integrator
X(t)

(FAX()-y H(-AX()2+BAX(H)-21)

Matrix
Multiply

(-AX(t)

Constant

Constant1

]

"l Matrix
Multiply

atrix Multiply 1

Matrix Multiply

N H((-AX(l))2+3AX(t)-2I)

=

Matrix

2
Muttiply (AXH)

AX(t) v

Matrix Multiply2

| Matrix
»| Multiply

| Matrix
p»| Multiply

Matrix Multiply4

atrix Multiply3

purelin

(-AX()+3AX(1)-21

Constant2 Gain1

V:fanual Switch2 Y

In1 Out1

Power-sigmoid

Figure 5.2: Simulink implementation of the ZNNCM model.

The type I activation function is defined by

Hi(A) = H, (B +.C) = F(B) + .F(C).

Similarly, the type II activation function

matrices U = (uy;) and V' = (vy;), and i

Ho(A) = Ho(B + 1C) = F(I') o exp(1O),

(5.4.3)

exploits the Hadamard product U o V' = (uy;vy;) of
tis defined as

(5.44)

where I' = [B+:C| € R and © = ©(B+ (') € (—m, 7|"*" denote element-wise modulus

and the element-wise arguments, respectively, of the complex matrix B + (C. In sequel, we

use the notation #, as a universal replacement for H; or H.

The hybrid method starts using the ZNNCM method and then continues with the ZNNNM
method. The starting point x, of the ZNNNM method is just the output of the ZNNCM method
and the finishing time of the ZNNCM method is the initial time of the ZNNNM method. The
hybrid method will be denoted by ZNNHM(%,), where ¢, denotes the time when the ZNNNCM

133

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

stops and ZNNNM continues. More precisely, the ZNNCM method evaluates in the time inter-
val [0, o, while the ZNNNM method evaluates in the time interval [t, t], where [0,] denotes
the considered time interval of the hybrid method. Since the ZNNNM model is globally ex-
ponentially convergent to the exact time-varying inverse A(t)~!, the output z of the ZNNCM
method could be submitted as the initial point of the ZNNNM method.

5.5 Convergence of the ZNNCM model

In this section, it is proven the convergence of the complex neural network model (5.3.10)

based on both the activation functions H; and Hs.

Theorem 5.5.1. [87] Let the invertible complex matrix A € C"*" be given. Then the state
matrix X (t) € C"" of the complex neural network model (5.3.10) based on the activation
function H, converges to the matrix inverse A=Y, and the solution is stable in the sense of

Lyapunov.

Proof. Let X(t) :== A" — X(t). Then X(t) = A~" — X () and X(t) — — X (t). Substituting
the above two equations into (5.3.10) yields

AX (1) = vH, (— = AX(t))2 +3 (11— AX(1)) - 2]) . (5.5.1)

After substituting X (t) = A~' — X(t) in the ZF defined by (5.3.8), one can verify

Eo(X(t),t) = AX(t) + (AX (1))~ (5.5.2)

In the view of the definition of activation function #, (-), taking into account E(t) = Re(E¢(t))
+ (Im(E¢(t)), the general model E(t) = —yH,(E(t)) splits into the following two equations
in the real domain:

Re(Ec(t) = —7F(Re(Ec(t)))

and
Im(E¢(t)) = —F(Im(Ec(t))).

In order to verify the convergence, the Lyapunov function candidate is defined as

_ ||Ec§t)|!% T (Ec@?)HEc(t)), (5.5.3)

L(X(t).t) = L(t)

Then the following identities can be verified:

134

5.5. Convergence of the ZNNCM model

dL(t) Tr(Ec®"Ec(t) + Ec(t)'Eo(t))
dt 2
= —;m {(F Re(Eo(t)" = oF (Im (Ec(t))") (Re (E(t)) + dm (Ec(t)))
+ (Re (Ec(t)" = dm (Ec(t))") (F(Re (Eo(t)))" + 1 F(Im (Ec(t))) }
= —7Tr {Re (Ec(t))" F (Re (Ec(t))) + Tm (Ec(t)" F (Im (Ec(t))) }

Since F(C') = (f(cx;j)) and f(-) is an odd and monotonically increasing function, it follows
that

Tr {Re (Ec(t)" F (Re (Ec(t)) + Im (Ec(t)" F (Im (Ec())) }
= Tr {Re (Ec(t))" F (Re (Ec(t))) } + Tr {Im (Ec(t))" F (Im (Ec(1)))} > 0.

To simplify notation, let us denote (i, j)th element of Re (E(t)) by e;; and (4, j)th element of
Im (E(t)) by €;;. Then

Tr {Re (Ec(t)" F (Re (Ec(t)) + Im (Ec(t))" F (Im (Ec(1))) }
= Z eijfei) + Z e f(ei;) >0

and finally

AL(X(t),t) | <0 if Eo(X(t),t) #0,
=0 if Eo(X(t),t) = 0.

Since X (t) = 0 is an equilibrium point of the system (5.5.1), and E(0) = 0 it follows that

dL(X (1), 1)

<0, VX(t) #0.
% <0, (t) #

As a consequence of the Lyapunov stability theory, the equilibrium state X (t) = 0 is stable.
Since X (t) := A~' — X (t), wehave X(t) = A~',t = 00 .

O
Theorem 5.5.2. [87] Let the invertible complex matrix A € C"*" be given. Then the state
matrix X (t) € C™" of the complex neural network model (5.3.10) based on the activation
function Hy converges to the matrix inverse A™', and the solution is stable in the sense of the

Lyapunov.

Proof. Analogically as in the proof of Theorem 5.5.1, the general model is given by

Ec<t) - _PYHZ(E(t))a

135

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

where E(X(t),t) = Ec(t) is defined in (5.5.2). The definition of H,(-) implies
Ha(Ec(t) = F (|[Ec(t)]) o exp(tO(Ec(l))).
The time derivative of the Lyapunov function candidate (5.5.3) is equal to

dL(t) Tr(Ec(OME(t) + Eo(t)"Ec(t))
dt ! 2
=~V (B(0)"Ha (Ec(t) + E(t)Ha (Ec(1)")

= T (Be0)"Hs (Bo(t) + (o), (Bo(t))”)

= —9Tr (Re (Ec(t)"H (Ec(t)))

= —yTr {Re [Eo()"F (| Ec(D)]) o exp (1O(Ec(1))] }
Since Ec(t) = |Ec(t)| o exp(tO(Eq(t))), it follows that

dfh(f) = —Tr {Re [exp (—L@ (Ec(t)H) o ‘Ec(t)HD (F (|Ec(t)]) oexp (16 (Ec(t))))” .

Again, using that F(-) is monotonically increasing, it follows the inequality F(|Ec(t)|) > 0,
for E(t) # 0, and F(|Ec(t)|) = 0, for E¢(t) = 0 which implies that

dL(X(t),t)

<0, VX(¢t) £ 0.
g <0, VX(t) #

According to the Lyapunov stability theory, the equilibrium state X (t) = 0 is stable and,
X(t)—» At —o00. O

5.6 Simulation results and its comparison

Example 5.6.1. As it was observed in [60], the GNN models are not appropriate for calculating
the inverse of a matrix with a big condition number. So this is a reason to apply the ZNNCM

model to a matrix with a big condition number. The following matrix A is considered for this

purpose:

8§ 16 32

27 81 243
16 64 256 1024
25 125 625 3125

e e e
Tt = W N = O
O = = O

136

5.6. Simulation results and its comparison

with the condition number cond(A) = 5.7689¢+04. The theoretical inverse of A is equal to

1 0 0 0 0 0

137 10 5 1

60 5 5 3 4 5

5 _77 107 _13 61 _ 5

Afl — 8 12 12 2 24 12

1771 59 49 41 T

24 24 12 12 24 24

1.7 13 7 1 _1

8 12 12 24 12

1 1 _1 1 _1 1
L 120 24 12 12 24 120 |

Using the scaling parameter v = 10°, the Power-Sigmoid activation function and ode45
solver, after t = 10755 sec, the ZNNCM model gives the results ZNNCM(A) which is equal to

[0.999999999294662 —0.000000000000000 —0.000000000000000
—2.283333331722813 4.999999996473304 —4.999999996473306
1.874999998677495 —6.416666662140734 8.916666660377395
—0.708333332833721 2.958333331246700 —4.916666663198751
0.124999999911833 —0.583333332921884 1.083333332569217
—0.008333333327456 0.041666666637277 —0.083333333274555

0.000000000000000 —0.000000000000000 —0.000000000000000 |
3.333333330982192 —1.249999999118328 0.199999999858933
—6.499999995415274 2.541666664873933 —0.416666666372777
4.083333330453185 —1.708333332128381 0.291666666460944
—0.999999999294657 0.458333333010054 —0.083333333274555
0.083333333274555 —0.041666666637278 0.008333333327456 |

with the absolute error || X (t) — A7!||; = 1.4106399215397e—08. Trajectories of convergence

behavior in 10~°s under zero initial conditions in the ZNNCM model are shown in Figure 5.3.

137

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

T T T T T T T T T
10 n

State Variables

Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Time (s) x10°°

Figure 5.3: Trajectories in 10~° seconds under zero initial conditions in the ZNNCM model

Trajectories of the residual errors || X (t) — A7!||; of the model ZNNCM are illustrated in
Figure 5.4.

0.9

0.8~

0.7 -

0.6

051

Error

04

0.3

0.2

0.1

| | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s) x10°

Figure 5.4: Trajectories of the residual errors of the model ZNNCM.

Trajectories of the residual errors || X (£) — A~Y||; of both the ZNNCM and ZNNNM models
are illustrated in Figure 5.5.

The ZNNNM method produces the result with the absolute error || X () — A7, =
3.5446017745966e-08 while the GNN model corresponding to the usual matrix inversion, from
[94] does not achieve the convergence and stops with the absolute error equal to
| X(t) — A7y = 19.509081114657. So, the ZNNCM model can be used to compute the
inverses of ill-conditioned matrices. This is one more advantage for the ZNNCM model over
the GNN model.

138

5.6. Simulation results and its comparison

1

T T T T T

Error ZNNNM

0.9 Error ZNNCM | -

0.8

0.7

0.6

0.5

Error

0.4

0.3

0.2

0.1

0

0 01 02 03 0.4 05 0.6 0.7 08 0.9 1
Offset=0 Time (s) x107°

Figure 5.5: Trajectories of the residual errors of the models ZNNNM and ZNNCM.

In the subsequent examples, the matrix A is a randomly generated n x n matrix and x(0) is
a vectorization of a given n x n matrix X (0). It is assumed that 2:(0) is the same for all models
ZNNNM, ZNNCM and GNN in the actual table. The ordered triple (¢, n, solver) in headings
of subsequent tables will include the time ¢, the dimension n of the input matrix and the used

Matlab solver. Let us mention that the best results in all tables are marked in bold.

Example 5.6.2. According to Theorem 5.5.1 and Theorem 5.5.2, the solution of the complex
neural network model (5.3.10) is stable in the sense of the Lyapunov. Therefore, it is desirable
to choose the zero initial state X (0). In this example, X (0) is randomly generated n x n matrix

in order to test behavior of the ZNNCM model. The activation function A is linear.

Table 5.1: Comparison of the models ZNNNM, ZNNCM and GNN.

(107210, ode45) (107,10, ode45)
Method ~ | X — A7, | Method ~ X — A7Y),
ZNNNM 10® 9.6055 ZNNNM 10® 10.6051
ZNNCM 10® 8.6367 ZNNCM 10® 10.5938
GNN 108 10.4382 GNN 108 10.6126
ZNNNM 10° 3.9053 ZNNNM 10° 10.5101
ZNNCM 10° 8.7346 ZNNCM 10° 10.3980
GNN 10° 9.8657 GNN 10 10.5877
ZNNNM 109 4.8369¢—04 || ZNNNM 10'° 9.6055
ZNNCM 10 0.0013 ZNNCM 10'° 8.6367
GNN 1019 8.4838 GNN 1019 10.4382

139

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

Table 5.1: Comparison of the models ZNNNM, ZNNCM and GNN.

(107210, ode45) (107,10, ode45)
Method | X — A7, | Method ~ X — A7Y),
ZNNNM 10'' 2.8613e—06 | ZNNNM 10 3.9053
ZNNCM 10Y 7.9558¢—05 || ZNNCM 10 8.7346
GNN 101t 2.1187 GNN 1011 9.8657
ZNNNM 102 1.0572¢—05 | ZNNNM 102 4.8369¢—04
ZNNCM 10'% 3.4264e—05 | ZNNCM 102 0.0013
GNN 102 9.8238¢—06 | GNN 102 8.4838
ZNNNM 103 2.1264e—05 | ZNNNM 10 2.8613e—06
ZNNCM 10 0.0010 ZNNCM 103 7.9558¢—05
GNN 10** 5.7854e—06 | GNN 10 2.1187
ZNNNM 10 2.0846e—06 || ZNNNM 10 1.0572¢—05
ZNNCM 10" 0.0015 ZNNCM 10 3.4264e — 05
GNN 101 3.3838¢—06 | GNN 10 9.8238¢—06

According to the results arranged in Table 5.1, the following observations could be empha-
sized:
(a) The property "as large as possible" of the scaling parameter ~ is valid for ZNNNM and
GNN methods, especially for the GNN method, and it is not applicable in the case of the ZN-
NCM method,
(b) The ZNNCM method produces better results within the smaller time period [0, 10~!!] than
in the time period [0, 107°],
(c) The ZNNCM method produces the best results during the time [0, 10~!] and smaller values
of v: v = 10%,10%, 1019,
(d) In the case of a nonzero initial state X (0), the ZNNCM method should be used in a short

time [0, 10~!1] and with smaller values of v < 10'°.

Example 5.6.3. In this example, X (0) is randomly generated n x n matrix and the activation

function H is linear.

Table 5.2: Comparison of the models ZNNNM, ZNNCM and ZNNHM.

(107130, ode45) (1071130, ode15s)
Method v | X — A7Y|, || Method v | X — A7Y|,
ZNNNM 1010 12.6304 ZNNNM 10 16.3735
ZNNCM 1010 11.9629 ZNNCM 101 1.8502¢ + 03
ZNNHM(10~'?) 10 11.2585 ZNNHM(10~'2) 10 19.4103

140

5.6. Simulation results and its comparison

Table 5.2: Comparison of the models ZNNNM, ZNNCM and ZNNHM.

(107,30, ode45) (107,30, ode15s)
Method v | X — A7Y|, || Method v X — A7Y),
ZNNHM(10-) 1010 11.4939 ZNNHM(10-) 101 18.2060
ZNNNM 1011 5.1351 ZNNNM 1011 6.6561
ZNNCM 10t 5.1555¢ + 15 | ZNNCM 101t 7.6935
ZNNHM(1012) 10 4.7521 ZNNHM(10-12) 10! 680.4448
ZNNHM(10-4) 10! 4.6613 ZNNHM(10-14) 10" 7.4102
ZNNNM 1012 6.3565¢ — 04 | ZNNNM 1012 8.2654e — 04
ZNNCM 102 6.1391e + 15 | ZNNCM 1012 4.7134e — 04
ZNNHM(107'2) 10'? 2.7946e + 11 | ZNNHM(10~!?) 10'? 7.7231e — 04
ZNNHM(10~) 102 5.6655¢ — 04 | ZNNHM(10~!%) 10?2 9.6796e — 04
ZNNNM 10 6.7814e — 06 || ZNNNM 10 5.4011e — 12
ZNNCM 10% 1.0634e + 16 | ZNNCM 10 1.7082¢ — 13
ZNNHM(10712) 10' 2.7107e — 05 || ZNNHM(107'?) 10% 3.7240e — 11
ZNNHM(10~1) 10'® 6.2916e — 06 || ZNNHM(10~*) 103 1.9452¢ — 10
ZNNHM(10~16) 10 3.5050e — 06 || ZNNHM(10-16) 10% 3.0346e — 12
ZNNNM 10 1.9529¢ — 05 | ZNNNM 10 3.2919¢ — 14
ZNNCM 10 5.1555¢ + 15 | ZNNCM 10 8.8654e — 14
ZNNHM(107*2) 10 7.3399¢ — 05 | ZNNHM(10~!?) 10 3.8212¢ — 14
ZNNHM(107*) 10 7.3399¢ — 05 | ZNNHM(10~ %) 10 3.6538¢ — 14
ZNNHM(10-16) 10 6.1610c — 06 | ZNNHM(10-16) 10™ 4.2286¢ — 14

The following observations rise from the numerical results arranged in Table 5.2:
(a) The hybrid method ZNNHM produces the best results in the case when the underlying
solver is ode45,
(b) the ZNNNM or CNNCM give the best results in the case when the underlying solver is
odel5s,
(c) The solver odel5s is more appropriate than ode45 with respect to the ZNNCM method,
(d) ZNNCM model is sensitive on the choice of the initial point X, and the best choice is
Xo=0.

Example 5.6.4. In the left column of Table 5.3 this example, X (0) is randomly generated n x n
matrix and X (0) n X n zero matrix in the right column. The activation function H is Power

Sigmoid activation function.

141

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

Table 5.3: Comparison of the models ZNNNM, ZNNCM and ZNNHM with Power Sigmoid
activation function H, defined by the parameter p = 3.

Table 5.4: Comparison of the models ZNNNM, ZNNCM and ZNNHM with Power Sigmoid

142

(1077, 20, odel5s), X, is arbitrary

(1077, 30, odel5s), Xg = 0

Method

Y

| X — A7,

Method

o~

IX — A~

ZNNNM
ZNNCM

ZNNHM(10-12)
ZNNHM(10~14)
ZNNHM(1016)

1012
1012
1012
1012
1012

2.7645e — 14
4.3998e — 14
2.3267e — 14
2.7345e — 14
2.9818¢ — 14

ZNNNM
ZNNCM
ZNNHM(1012)
ZNNHM(10~14)
ZNNHM(1016)

1012
1012
1012
1012
1012

1.4903e — 12
6.1530e — 12
1.6522e — 12
1.7446e — 12
1.6834e — 12

ZNNNM
ZNNCM

ZNNHM(1012)
ZNNHM(1014)
ZNNHM(10~16)

1013
1013
1013
1013
1013

2.6716e — 14
4.5023e — 14
3.1053e — 14
2.7970e — 14
2.8306e — 14

ZNNNM
ZNNCM

ZNNHM(1012)
ZNNHM(10~14)
ZNNHM(10~16)

1013
1013
1013
1013
1013

1.7769e — 12
4.1402e — 12
1.7335e — 12
1.6732e — 12
2.0054e — 12

ZNNNM
ZNNCM

ZNNHM(1012)
ZNNHM(10~14)
ZNNHM(10~16)

10"
1014
1014
10"
1014

2.7645e — 14
4.3998e — 14
2.3267e — 14
2.7345e — 14
2.9818e — 14

ZNNNM
ZNNCM

ZNNHM(10~12)
ZNNHM(10~14)
ZNNHM(10~16)

10"
1014
1014
10
1014

5.3491e — 12
5.4503e — 12
1.9956e — 12
2.0058e — 12
2.4750e — 12

activation function defined by the parameter p = 3.

(10719,30, ode15s), Xy = 0 (1075, 30, odel5s), Xo = 0
Method ol | X — A7Y|; | Method v X — A7Y),
ZNNNM 10'2 1.2136e — 12 | ZNNNM 1012 1.6829¢ — 12
ZNNCM 102 1.8007e — 09 || ZNNCM 102 3.7154e — 12
ZNNHM(10712) 10'? 1.2410e — 11 || ZNNHM(107'2) 10'? 2.3492¢ — 12
ZNNHM(10-) 10'2 1.8332¢ — 12 | ZNNHM(10-4) 10'2 1.3554e — 12
ZNNHM(10716) 10'? 1.8565e¢ — 12 || ZNNHM(107¢) 10'? 1.8953e — 12
ZNNNM 1013 1.6428¢ — 12 || ZNNNM 103 1.9011le — 12
ZNNCM 103 4.4561le — 11 || ZNNCM 10% 5.9375e — 12
ZNNHM(10712) 10'3 1.7544e — 12 || ZNNHM(10~*2) 10" 1.7805e — 12
ZNNHM(10-1) 1013 1.5256¢ — 12 | ZNNHM(10-1) 10'3 1.7413¢ — 12
ZNNHM(10716) 103 1.6547e — 12 || ZNNHM(10~'6) 10'3 2.0168¢ — 12
ZNNNM 104 1.7526¢ — 12 || ZNNNM 104 1.9145¢ — 12
ZNNCM 10* 4.4716e — 12 | ZNNCM 10 4.6704e — 12

5.6. Simulation results and its comparison

Table 5.4: Comparison of the models ZNNNM, ZNNCM and ZNNHM with Power Sigmoid
activation function defined by the parameter p = 3.

(10710.30, ode15s), Xo = 0 (107>, 30, odel5s), Xo = 0
Method v | X — A7Y|; || Method v | X — A7Y|,
ZNNHM(10712) 10 1.7646e — 12 || ZNNHM(107'2) 10 1.9448¢ — 12
ZNNHM(10~) 10 1.2410e — 12 || ZNNHM(10~ 1) 10 1.5412¢ — 12
ZNNHM(1071¢) 10" 2.0978e — 12 | ZNNHM(10~¢) 10 1.9367e¢ — 12

The following conclusion arises from the results presented in Table 5.3 and Table 5.4:
(a) The ZNNHM method gives best results for appropriately selected intermediate time ¢,. This

value is, in most cases, equal to ¢y = 10714,

Example 5.6.5. The results produced by the Simulink and based on based on the power sig-
moid activation function are arranged in Table 5.5.

Table 5.5: ZNNNM vs ZNNCM using the power sigmoid activation function.

Method v [Ix-4; | Method v [Ix-4;
(1078, 10, odedb), Xog = 0 (1078,10, odel5s), Xg = 0
ZNNNM 105 | 0.99000742007452 ZNNNM 105 | 0.99000742007452
ZNNCM 108 | 11.796704121711 ZNNCM 108 | 11.796704121712
ZNNHM(10~19) | 10° | 0.98921005121423 ZNNHM(10~19) | 106 | 0.98921005121423
(107°,10, oded5), Xo = 0 (107°,10, odel5s), Xog = 0
ZNNNM 108 | 1.7721525005302e — 09 || ZNNNM 108 | 1.7721525005302e — 09
ZNNCM 10% | 8.9282757020914e — 09 || ZNNCM 10° | 8.9286161242264¢ — 09
ZNNHM(1078) | 106 | 1.5373390357755¢ — 09 || ZNNHM(10~8) | 10° | 1.5373790308806e — 09
(1073, 10, odedb), Xog = 0 (1073,10, odel5s), Xg = 0
ZNNNM 10% | 2.7877256580469¢ — 15 || ZNNNM 10% | 2.776852376599¢ — 15*
ZNNCM 105 | 9.048317650695¢ — 15 || ZNNCM 108 | 7.549516567451e — 15
ZNNHM(107°) | 10% | 2.7947546454768¢ — 15 || ZNNHM(10~°) | 10° | 2.140363747233e — 15

The star sign in Table 5.5 means that the ZNNM model stopped the computation with the
message:

"Relative tolerance of 1.0E-15 is too small, setting relative tolerance to 2.8421709430404007E-
14".

143

Chapter 5. ZNN for computing matrix inverse based on hyperpower iterative methods

144

Chapter 6

Matlab simulation of the hybrid neural

dynamics for online matrix inversion

A novel kind of a hybrid recursive neural implicit dynamics for real-time matrix inver-
sion has been recently proposed and exploited. It was shown that, comparing a hybrid recur-
sive neural implicit dynamics on the one hand, and conventional explicit neural dynamics on
the other hand, a hybrid model can coincide better with systems in practice and has higher
abilities in representing dynamic systems. More importantly, hybrid model can achieve supe-
rior convergence performance in comparison with the existing dynamic systems, specifically
recently-proposed Zhang dynamics. This chapter presents the Simulink model of a hybrid re-
cursive neural implicit dynamics and gives a simulation and comparison to the existing Zhang
dynamics for real-time matrix inversion. A simulation results confirm a superior convergence

of the hybrid model compared to Zhang model.

6.1 Preliminaries and motivation

A new type of complex-valued recurrent neural networks, called Zhang neural network
(ZNN), was proposed in 2001 and has been extensively exploited in solving various time-
varying complex generalized inverse problems. The design of complex ZNN models arises
from the choice of a complex matrix-valued error-monitoring function, called the Zhang func-
tion (ZF). Computation of the Moore-Penrose inverse of time-varying full-rank matrix by
means of different ZNN models were investigated in [127]. Liao and Zhang in [48] proposed
five different complex ZFs and, accordingly developed and investigated five different complex
ZNN models for computing the time-varying complex pseudoinverse.

In this chapter we present a Matlab Simulink model based on the hybrid recurrent neural
networks for computing inverse of nonsingular matrix [10]. This Simulink model was proposed
in [137].

145

Chapter 6. Matlab simulation of the hybrid neural dynamics for online matrix inversion

The following defining equation of matrix inverse A~ € R™*" can be given:

AXt)—I1=0 6.1.1)

or
XMHA—1=0, (6.1.2)

where / € R™" is the identity matrix, and X (t) € R"*" denotes the unknown matrix to be

inverted which corresponds to the theoretical inverse A1,

Some known results related to the gradient-based dynamics and implicit Zhang dynamics
as well as improved hybrid model are restated in Section 6.2. In Section 6.3 we present the
corresponding Matlab Simulink model of improved hybrid dynamics along with simulation

examples and comparison.

6.2 Model formulation

We assume invertible condition for matrix inversion : Equation (6.1.1) (or (6.1.2) in dual

case) has a unique solution if the minimal eigenvalue a of matrix A’ A is larger than 0.

6.2.1 Gradient-based dynamics

The dynamics of the gradient neural network (GNN) models for computing inverses are
based on the usage of the scalar-valued norm-based error function

o() = (X (1)) = 1B} (62.1)

where E(t) is an appropriate error matrix and ||A||p := /Tr(ATA) denotes the Frobenius
norm of the matrix A and Tr(-) denotes the trace of a matrix. The general design formula is
typically defined along the negative gradient —0s(X (t))/0X of ¢(X (¢)) until the minimum is
reached. Using the above negative gradient to construct the neural dynamics, we could have

the gradient-based dynamics as follows

X, (W@D) | (62.2)

dt 0X

The scaling real parameter v in (6.2.2) is used to adjust the convergence rate and could be
chosen as large as possible in order to accelerate the convergence. Further, F(C') is an odd and

monotonically increasing function array, element-wise applicable to elements of a real matrix
C = (c;) €e R ie. F(C) = (f(cij)),i=1,...,m,j=1,...,n, wherein f(-) is an odd

146

6.2. Model formulation

and monotonically increasing function.

The dynamic equation of the linear recurrent neural network for the inversion of a real
nonsingular matrix is initiated by the error matrix £(¢) = AX(t) — I, and it was proposed in
[94]:

dX(t)
dt
The same principle was extended for computing the Moore—Penrose inverse of a full-

= —yATAX(t) + yAT = —yAT (AX(t) = I). (6.2.3)

column rectangular matrix A € R™*" or a full-row rectangular matrix A € R”*". Wang
showed in [96] that the model can be used for computing the Moore-Penrose inverse of rank-

deficient matrices under the zero initial condition, V' (0) = 0.

6.2.2 Zhang dynamics

On the other hand, the ZNN model for online time-invariant matrix inversion is based upon
the matrix-formed error function E(t) , instead of a scalar valued function. The time derivative
of error function E(t), should be chosen such that each element e;;(¢) of E(t) converges to

zero, Vi = 1,... n. A general design rule of F(t) is defined

0

E(t) = 5 = 7 (E®). (6.2.4)

Substituting £/(¢) into dynamic system (6.2.4) and choosing F to bi linear function, the follow-

ing Zhang dynamics for online matrix inversion can be obtained:
AX = —yAX(t) +~1 (6.2.5)

The implicit dynamics were originally proposed for online inversion of a time-varying ma-
trix A(t) in [122]. It was shown in [122] that the Zhang dynamics (6.2.6) globally exponentially
converges to the theoretical inverse A~ starting from any initial state X (0), with the exponen-

tial convergence rate .

6.2.3 Improved ZNN model for matrix inversion

The ZNN model for online time-invariant matrix inversion is based upon the error matrix
E(t) = AX(t) — I, and it is defined using the general design rule

B(t) = —yB(t) = —(AX(t) - I),

which initiates the implicit dynamics

147

Chapter 6. Matlab simulation of the hybrid neural dynamics for online matrix inversion

AX(t) = —y(AX(t) = I). (6.2.6)

A gradient-based recurrent neural dynamics for real-time inverse of a time-invariant matrix

was proposed by Wang [94] in the form of an explicit dynamic system

X(t) = —yATAX (t) + yAT. (6.2.7)

The above explicit gradient-based recursive dynamics (6.2.7) can be transformed into an
implicit form
AX(t) = —yAAT(AX () = I). (6.2.8)

Recently, a novel kind of recurrent implicit dynamics for real-time matrix inversion was
proposed and investigated in [10, 11]. This hybrid model can be obtain by combining the right
hand side of both Zhang dynamics (6.2.6) and gradient dynamics (6.2.8)

AX(t) = —y(AAT + T)(AX (1) —). (6.2.9)

Global exponential convergence rate of the implicit dynamics (6.2.9) was investigated in [10,
11].

Theorem 6.2.1. [10] Given nonsingular matrix A € R™", the state matrix A € R"™" of
the model (6.2.9), starting from any initial state X (0) € R"*", achieves global exponential
convergence to theoretical inverse X* = A1, In addition, the exponential convergence rate is

the product of v and the minimum eigenvalue v > 1 of ATA + 1.

6.3 Simulation results and its comparison

The graphical editor and customizable block libraries available in Matlab Simulink tool
were used in [137] for simulating and comparing the Zhang dynamic system (6.2.6) and re-
cently proposed hybrid dunamic system (6.2.9). Simulink implementation of (6.2.6) was de-
scribed in [87]. The models (6.2.6) and (6.2.9) will be termed as ZNNNM and EZNNN M.

The Simulink implementation of the hybrid model (6.2.9) is based on the equivalent form
given by

X(t)= (- AX(t) —v(AAT + I)(AX(t) = I). (6.3.1)

and is presented in Figure 6.1. For solving differential equations in the models we used

odel5s solver.

148

6.3. Simulation results and its comparison

Matrix

1-Norm

IX-A7"|,

Matrix 1-Norm

E ! or ZNNChen

Display2

|

| X()

Constant3 Time
Scopel Integrator . T
X(t) sy, EAX Oy (AAHDAXO-(AA D))
by
A N I-A
+
A
Add .
. . . [Matrix
I Matrix Multiply Multip}
| I-A)X'(1)
Matrix | AX(t)
Muliply o] (AATHDAX()
Matrix Multiplyl | ﬁdm
T T
Matrix Multiply3 AA HDHAX(HAAH
Y
T
A > Matrix
Mulply
Transpose Matrix Multiply2

Figure 6.1: Simulink implementation of EZNNNM model.

The next examples will compare performances of both ZNNNM and EZNNNM models.

Example 6.3.1. (a) Consider the following matrix

0.8147
0.9058
0.1270
0.9134
0.6324
0.0975
0.2785
0.5469
0.9575
0.9649

0.1576
0.9706
0.9572
0.4854
0.8003
0.1419
0.4218
0.9157
0.7922
0.9595

0.6557
0.0357
0.8491
0.9340
0.6787
0.7577
0.7431
0.3922
0.6555
0.1712

0.7060
0.0318
0.2769
0.0462
0.0971
0.8235
0.6948
0.3171
0.9502
0.0344

0.4387
0.3816
0.7655
0.7952
0.1869
0.4898
0.4456
0.6463
0.7094
0.7547

0.2760 0.7513 0.8407 0.3517 0.0759)]
0.6797 0.2551 0.2543 0.8308 0.0540
0.6551 0.5060 0.8143 0.5853 0.5308
0.1626 0.6991 0.2435 0.5497 0.7792
0.1190 0.8909 0.9293 0.9172 0.9340
0.4984 0.9593 0.3500 0.2858 0.1299|
0.9597 0.5472 0.1966 0.7572 0.5688
0.3404 0.1386 0.2511 0.7537 0.4694
0.5853 0.1493 0.6160 0.3804 0.0119
0.2238 0.2575 0.4733 0.5678 0.3371

This matrix has minimum eigenvalue o = 0.0154 of AT A:. We compare the linear ZN N N M

149

Chapter 6. Matlab simulation of the hybrid neural dynamics for online matrix inversion

EZN N N M model with the gain parameter v = 10°. The initial matrix is chosen by V (0) = 0.
Figure 6.2 (right) shows the trajectories of the error norms || A~1 — X (t)|| in the total simulation
time ti,; = 107°. Figure 6.2 (left) shows the trajectories of the error norms ||A~1 — X (t)|| in
the total simulation time t;,; = 1075.

12 T T T T 1

\J

- - - Error ZNNNM !
Error EZNNNM 0.9r !
4 \]
\!

= = = Error ZNNNM
Error EZNNNM

10r

Error
(o2}

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time (seconds) x10°® Time (seconds) x107°

Figure 6.2: Trajectories of the errors ||A™* — X (t)|| of ZNNNM and EZNNN M in
Example 6.3.1.

In general, Figure 6.2 shows that EZ N N N M model slightly outperforms the ZN N N M
model. Both models generate almost identical residual norms in the initial phase and then
EZNNN M generates a bit smaller residual norms. According to Figure 6.2, the EZN N N M
model possesses a bit faster convergence.

(b) Now, consider matrix Ay = 51 + A. This matrix has o« = 16.6813 which is quite
larger than « in the previous example. We apply the linear EZN N N M model with the gain
parameter v = 105,

Figure 6.3 (right) shows the trajectories of the error norm ||A~' — X (t)|| in the total simu-
lation time t,,; = 107°. Figure 6.3 (left) shows the trajectories of the error norm ||A~' — X (¢)||
in the total simulation time t,,; = 1075.

According to Figure 6.3, the EZ N NN M model possesses faster convergence.

Example 6.3.2. Consider the matrix

20 6
A—
-1 30
which satisfies o = 386.2656. Elements of the matrix X (1) generated by the model EZ N N N M
are denoted by xijN NNM Similarly, elements of the matrix X (t) generated by the model

150

6.3.

Simulation results and its comparison

0.35
0.9]
= = = Error ZNNNM 0.3 |
08 Error EZNNNM | \ = = = Error ZNNNM
’ \ Error EZNNNM
1 .|
0.7 4 0.25 '
1
\
0.6 4
\ -
_ o 02f
205]l '
] I \
0.15 b
0.4 4
S - 1 0.1 \]
Ssao \
______ B \
"""" \
------- 0.05 N 7
4 .
~
~
\ D t -
i i i O i - i i
0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time (seconds) x107° Time (seconds) x10°°

Figure 6.3: Trajectories of the errors ||A]' — X (t)|| of ZNNNM and EZNNN M in

Example 6.3.1.

Z NN N M are denoted by :viZjN NNM “Trajectories of the elements of the matrices are presented

in Figure 6.4.

0.05 —
XEZNNNM -
11 -
4 ZNNNM
0.04F 7 11 1
’
EZNNNM
/ X%
+ —==
0.03} " SR s B
1 4 (ZNNNM
1 22
’
!y
. 0.02f b
= ’
X s
L
1
0.01fu 4
u
v EZNNNM
9 21
Of = 7 ", ZNNNM E
A 21
~
So - YZNNNM
~L_ w2
-0.01 EZNNNM
12
i i i i
0 0.2 0.4 0.6 0.8 1
. —4
Time (seconds) x 10

Figure 6.4: Trajectories of X (¢) of ZNNNM and EZN NN M in Example 6.3.2.

Greater value « initiates significantly faster convergence of EZ NN N M with respect to

ZNNNM.

Example 6.3.3. This example shows the influence of o on the convergence of the Z N N models.
The gain parameters in the simulation is v = 10° and the time period is [0,1075] s. First,

consider the following randomly generated matrix B:

151

Chapter 6. Matlab simulation of the hybrid neural dynamics for online matrix inversion

Then we are varying matrix A in the way that value o becomes larger in every step, and

testing both models on such matrix A in the order to find the error norm of the model results.

0.9631
0.5468
0.5211
0.2316

0.4889

0.6241 0.0377 0.2619
0.6791 0.8852 0.3354
0.3955 0.9133 0.6797
0.3674 0.7962 0.1366
0.9880 0.0987 0.7212

0.1068
0.6538
0.49421 .
0.7791
0.7150

Table 6.1: Comparison of the models ZNNNM and EZNNNM

A o | XZNNNM _ A=1)| [|| XBZNNNM _ g-1),
B 0.0149 0.000594 0.000494
B+1 0.1729 0.000143 2.7866e—05
B+2] 1.9360 3.8564e—05 2.1079e—08
B+ 31 5.6776 2.2102e—05 1.4172e—09
B+41 | 11.4133 1.5414e—05 3.6347—10
B+ 51 | 19.1467 1.1757—-05 1.5278-09
B+ 107 | 87.8023 5.2761e—06 1.0706e—11
B+ 151 | 206.4530 3.3656e—06 2.7424e—11
B+ 201 | 375.1024 2.4667e—06 5.7302e—12
B+ 501 2437 9.4123e—07 8.6352e—14

From the Table 6.1 we can see that when the value of o is grater EZN N N M model gives
better accuracy of the solution related to Z N N N M model in the same given period of time.

Example 6.3.4. In this example we ask the answer for the question: is it possible to compensate
advantage of the EZN N N M model using greater values v in ZNN N M. For this purpose,

we tested these models on the matrix

[5.8147 0.0975 0.1576 0.1419 0.6557)
0.9058 5.2785 0.9706 0.4218 0.0357
A= 101270 0.5469 5.9572 0.9157 0.8491
0.9134 0.9575 0.4854 5.7922 0.9340
0.6324 0.9649 0.8003 0.9595 5.6787

with the minimal eigenvalue of AAT equal to 20.8356. The maximal possible value in Simulink
model ZNNNM is 107 and in EZNNN M is 10°. Figure 6.5 (right) shows the trajectories of
the error norm ||A~' — X (t)|| in the total simulation time t;,, = 107°. Figure 6.5 (left) shows

the trajectories of the error norm ||A~' — X (t)|| in the total simulation time t,; = 107°.

152

6.3. Simulation results and its comparison

0.35 T T T T 0.35
03F . 03k
= = Error ZNNNM — = Error ZNNNM
Error EZNNNM Error EZNNNM
- 025 :
0.2 ; : ' 1
s <
m |
0.15
0.1
0.05 !
1
\
= = - L o\ . M L h
0.4 0.6 08 1 0 0.2 0.4 0.6 0.8 1
Time (seconds) %107 Time (seconds) %x10°

Figure 6.5: Trajectories of the errors |A;" — X (¢)|| of ZNNNM and EZNNN M in
Example 6.3.4.

According to Figure 6.3, the EZ NN N M model still possesses faster convergence. This
means that greater values v can not compensate faster convergence rate of the EZNNN M
model with respect to Z N N N M model.

153

Chapter 6. Matlab simulation of the hybrid neural dynamics for online matrix inversion

154

Chapter 7
Conclusion

Generalized inverses arise in various applications such as statistics, linear estimation, least
squares approximation, singular differential and difference equations, singular control, Markov
chains, ill-posed problems, graphics, cryptography, coding theory, incomplete data recovery,
and robotics. One of the main motivation of this dissertation is based on the ability to exploit
the correlation between the dynamic state equations of recurrent neural networks for comput-
ing generalized inverses and integral representations of these generalized inverses. We have
focused particularly on the problem of generalized inverses computation as well as computa-
tion of regular inverses and matrix equations using artificial recurrent neural network approach.

Here we summarize most important contributions.

We have introduced artificial recurrent neural network as a parallel distributed computa-
tional model for computing the generalized inverses and have followed the main principle
which requires solving one representative matrix equation related to the considered general-
ized inverse via dynamic-system approach, defined over a certain norm based error function
E(t). It is necessary to find the minimum for the residual-norm function £(¢) and dV'(¢)/dt =
—~y0E(t)/0V. The stability of the neural networks is conditioned by the requirement of the
given matrix spectrum. According to the spectrum requirement, we have studied two types of
the GNNs: GNN for computing generalized inverses with restrictions on a spectrum and GNN
for computing generalized inverses without restrictions on a spectrum. First, we have defined
the recurrent neural network for the Drazin inverse of a singular and the inverse of a nonsingu-
lar matrix and then we have introduced more generalized neural network model for computing
outer inverses with prescribed range and null space. Main generalized inverses, such as the
Moore-Penrose and the weighted Moore-Penrose inverse, the Drazin inverse and the group in-
verse can be derived after appropriate particular choices. In addition, we have analyzed and
proved the stability of such a solutions with regard to Lyapunov stability theory. These neu-
ral network models has proven to be capable of computing the considered generalized inverse.

By reducing the number of interconnections required for the network, the models reduce the

155

Chapter 7. Conclusion

complexity for computing the generalized inverse of a given matrix. These time-consuming
computations occur in large-scale applications. The proposed neural network models are stable
in the large and they are able to converge to the generalized inverse with a high accuracy and in
a short period of time. Through computer-simulated illustrative examples, we have shown the
proposed recurrent neural networks are able to generate generalized inverses of singular ma-
trices at the projected convergence rate. Computer simulations have been done using Matlab

environment.

We have investigated the conditions for the existence of outer inverse with prescribed range
and null space as well as different representations of outer inverses. In the essence, these in-
vestigations showed equivalence between two important representations of outer inverse. Then
we have applied obtained representations and introduced two dynamic state equations and ini-
tiated neural networks: RNN(4.2.3) and RNN(4.2.4). These RNNs are based on the full rank

representation of the outer inverse.

We have observed an analogy between the scaled hyperpower family (SHPI family) of itera-
tive methods for computing the matrix inverse and the discretization of Zhang Neural Network
(ZNN) models. On the basis of the discovered analogy, we have defined a family of ZNN
models corresponding to the family of hyperpower iterative methods. The ZNN model corre-
sponding to the hyperpower method of the order 2 (resp. of the order 3) is denoted as ZNNNM
(resp. ZNNCM). We have described the implementation of the introduced ZNN models in the
case of the scaled hyperpower methods of the order 2 and 3 using Matlab Simulink toolbox.

Derived simulation results indicate that the results derived by the ZNNCM method are not
favorable. But, the ZNNCM model becomes useful in the initialization of the ZNNNM method.
For the time being, it is very difficult to determine or estimate the optimal value of the decisive
time moment ?y,. These investigations should be interesting topic for further research. In the
current research, we recommend only heuristics and verification. Additionally, it is observable
that ZNNCM is most sensible to the choice of the initial approximation Xj.

Also, general conclusion is that an approach to avoid usage of matrix iterations is defined.

The proposed alternative is based on the ZNN model an its Simulink implementation.

We have proposed the Matlab Simulink model of a novel implicit dynamic system (6.2.9)
for online matrix inversion. Compared to Zhang implicit dynamic system (6.2.6), superior
global exponential convergence to the theoretical inverse by hybrid implicit dynamic system
(6.2.9) has been confirmed and justified by several computer simulation results. Tests showed
that, with a greater value of « (i.e. v = 1 + «), faster convergence and better accuracy of the
solution can be obtained with the hybrid implicit dynamic system related to the Zhang implicit

dynamic system.

156

Bibliography

[1] K. M. Abadir and J. R. Magnus. Matrix Algebra, volume 1. Cambridge University Press,
2005.

[2] A. Ben-Israel and T. N. E. Greville. Generalized Inverses. Springer, second edition,
2003.

[3] A. Benchabane, A. Bennia, F. Charif, and A. Taleb-Ahmed. Multi-dimensional Capon
spectral estimation using discrete Zhang neural networks. Multidimensional Systems
and Signal Processing, 24(3):583-598, 2013.

[4] A. Bjerhammar. A generalized matrix algebra. Lindstahl, 1958.

[5] R. W. Brockett. Dynamical systems that sort lists, diagonalize matrices, and solve linear

programming problems. Linear Algebra and its Applications, 146:79-91, 1991.

[6] J. Cai and G. Chen. On determinantal representation for the generalized inverse Ag)S

and its applications. Numerical Linear Algebra with Applications, 14(3):169—-182, 2007.

[7] S. L. Campbell and C. D. Meyer. Generalized Inverses of Linear Transformations, vol-
ume 56. SIAM,Philadelphia, 2009.

[8] S. L. Campbell, C. D. Meyer, Jr, and N. J. Rose. Applications of the drazin inverse to
linear systems of differential equations with singular constant coefficients. SIAM Journal
on Applied Mathematics, 31(3):411-425, 1976.

[9] E. Charif, A. Benchabane, N. Djedi, and A. Taleb-Ahmed. Horn & Schunck meets a
discrete Zhang neural networks for computing 2D optical flow. matrix, 2:2, 2009.

[10] K. Chen. Recurrent implicit dynamics for online matrix inversion. Applied Mathematics
and Computation, 219(20):10218-10224, 2013.

[11] K. Chen and C. Yi. Robustness analysis of a hybrid of recursive neural dynamics for

online matrix inversion. Applied Mathematics and Computation, 273:969-975, 2016.

157

Bibliography

[12] Y. Chen. A cramer rule for solution of the general restricted linear equation. Linear and
Multilinear Algebra, 34(2):177-186, 1993.

[13] A. Cichocki. Neural network for singular value decomposition. Electronics Letters,
28(8):784-786, 1992.

[14] A. Cichocki, T. Kaczorek, and A. Stajniak. Computation of the Drazin inverse of a sin-
gular matrix making use of neural networks. Bulletin of the Polish Academy of Sciences.
Technical Sciences, 40(4):387-394, 1992.

[15] A. Cichocki and R. Unbehauen. Neural networks for computing eigenvalues and eigen-
vectors. Biological Cybernetics, 68(2):155-164, 1992.

[16] A. Cichocki and R. Unbehauen. Neural networks for solving systems of linear equa-

tions and related problems. IEEE Transactions on Circuits and Systems 1: Fundamental
Theory and Applications, 39(2):124—138, 1992.

[17] J.-J. Climent, N. Thome, and Y. Wei. A geometrical approach on generalized inverses

by Neumann-type series. Linear algebra and its applications, 332:533-540, 2001.

[18] R. E. Cline and T. Greville. A Drazin inverse for rectangular matrices. Linear Algebra
and its Applications, 29:53-62, 1980.

[19] D. Djordjevi¢, P. Stanimirovi¢, and Y. Wei. The representation and approximations of

outer generalized inverses. Acta Mathematica Hungarica, 104(1-2):1-26, 2004.

[20] A.J. Getson and F. C. Hsuan. {2}-inverses and their statistical application, volume 47.
Springer Science & Business Media, 2012.

[21] G. H. Golub and C. F. Van Loan. Matrix Computations. Baltimore and London, The
Johns Hopkins, fourth edition, 2013.

[22] N. C. Gonzdlez. On the convergence of semiiterative methods to the Drazin inverse
solution of linear equations in Banach spaces. Collect. Math., 46(3):303-314, 1995.

[23] N. C. Gonzalez, J. Koliha, and Y. Wei. Integral representation of the Drazin inverse.
Electron. J. Linear Algebra, 9:129-131, 2002.

[24] N. C. Gonzdlez, J. Koliha, and Y. Wei. On integral representations of the Drazin inverse
in Banach algebras. Proceedings of the Edinburgh Mathematical Society (Series 2),
45(02):327-331, 2002.

[25] A. Graham. Kronecker Products and Matrix Calculus: with Applications, volume 108.
Horwood Chichester, 1981.

158

Bibliography

[26] C. W. Groetsch. Generalized Inverses of Linear Operators: Representation and Approx-
imation. Marcel Dekker, New York-Basel, 1977.

[27] W. Guo and T. Huang. Method of elementary transformation to compute moore—penrose
inverse. Applied Mathematics and Computation, 216(5):1614—-1617, 2010.

[28] N. J. Higham. Functions of Matrices: Theory and Computation. SIAM, Philadelphia,
2008.

[29] F. Hsuan, P. Langenberg, and A. Getson. The {2}-inverse with applications in statistics.
Linear algebra and its applications, 70:241-248, 1985.

[30] X. Hu, C. Sun, and B. Zhang. Design of recurrent neural networks for solving con-
strained least absolute deviation problems. [EEE Transactions on Neural Networks,
21(7):1073-1086, 2010.

[31] Y. Hua, T. Chen, and W.-Y. Yan. Global convergence of oja’s subspace algorithm for

principal component extraction. IEEE Transactions on Neural Networks, 9(1), 1998.

[32] L. Jin, Y. Zhang, S. Li, Integration-Enhanced Zhang Neural Network for real-time-
varying matrix inversion in the presence of various kinds of noises, IEEE Transactions
on Neural Networks And Learning Systems 27 (2016), 2615-2627.

[33] L. Jin, Y. Zhang, S. Li, Y. Zhang, Noise-tolerant ZNN models for solving time-varying
zero-finding problems: a control-theoretic approach, IEEE Transactions on Automatic
Control, 62(2) (2017), 992-997.

[34] J. Jang, S. Lee, and S. Shin. An optimization network for matrix inversion. In Neural
Information Processing Systems, pages 397-401. College Park, MD: AIP, 1988.

[35] T. Kailath. Linear Systems, volume 1. Prentice-Hall Englewood Cliffs, NJ, 1980.

[36] V. N. Katsikis, D. Pappas, and A. Petralias. An improved method for the compu-
tation of the moore—penrose inverse matrix. Applied Mathematics and Computation,
217(23):9828-9834, 2011.

[37] H. K. Khalil. Nonlinear Systems. Prentice Hall (Upper Saddle River, NJ), 1996.

[38] D. L. Kleinman and M. Athans. The design of suboptimal linear time-varying systems.
IEEE Trans. Automat. Contr., AC-13:150-159, 1968.

[39] A.N. Langville and C. D. Meyer. Google’s Pagerank and Beyond: the Science of Search
Engine Rankings. Princeton University Press, Princeton, NJ, 2006.

159

Bibliography

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

160

A. N. Langville and C. D. Meyer. Updating Markov chains with an eye on Google’s
PageRank, volume 27. SIAM, 2006.

J. Levine and R. E. Hartwig. Applications of Drazin inverse to the Hill cryptographic
systems, part i. Cryptologia, 4(2):71-85, 1980.

S. Liand Y. Li. Nonlinearly activated neural network for solving time-varying complex
sylvester equation. /EEFE transactions on cybernetics, 44(8):1397-1407, 2014.

S. Li, B. Liu, and Y. Li. Selective positive—negative feedback produces the winner-take-
all competition in recurrent neural networks. IEEE Transactions on Neural Networks
and Learning Systems, 24(2):301-309, 2013.

S. Li, H. Wang, M.U. Rafique, A novel recurrent neural network for manipulator control
with improved noise tolerance, IEEE Transactions On Neural Networks And Learning
Systems (2018), 29:5 (2018), 1908—1918.

S.Li, Y. Zhang, L. Jin, Kinematic Control of Redundant Manipulators Using Neural Net-
works, IEEE Transactions On Neural Networks And Learning Systems 28(10) (2017),
2243-2254.

S. Li, M.C. Zhou, X. Luo, Modified primal-dual neural networks for motion
control of redundant manipulators with dynamic rejection of harmonic noises,
IEEE Transactions On Neural Networks and Learning Systems (2017), DOI:
10.1109/TNNLS.2017.2770172.

W. Li and Z. Li. A family of iterative methods for computing the approximate inverse
of a square matrix and inner inverse of a non-square matrix. Applied Mathematics and
Computation, 215(9):3433-3442, 2010.

B. Liao and Y. Zhang. Different complex ZFs leading to different complex ZNN models
for time-varying complex generalized inverse matrices. IEEE Transactions on Neural
Networks and Learning Systems, 25(9):1621-1631, 2014.

Q. Liu and J. Wang. Finite-time convergent recurrent neural network with a hard-limiting
activation function for constrained optimization with piecewise-linear objective func-
tions. IEEE Transactions on Neural Networks, 22(4):601-613, 2011.

X. Liu, H. Jin, and Y. Yu. Higher-order convergent iterative method for computing the
generalized inverse and its application to Toeplitz matrices. Linear Algebra and Its
Applications, 439(6):1635-1650, 2013.

Bibliography

[51] X. Liu, Y. Yu, and C. Hu. The iterative methods for computing the generalized inverse
Ag 29 of the bounded linear operator between banach spaces. Applied Mathematics and
Computation, 214(2):391-410, 2009.

[52] X. Liu, Y. Yu, J. Zhong, and Y. Wei. Integral and limit representations of the outer
inverse in banach space. Linear and Multilinear Algebra, 60(3):333-347, 2012.

[53] X. Liu, J. Zhong, Integral representation of the W -weighted Drazin inverse for Hilbert
space operators, Appl. Math. Comput. 216 (2010), 3228-3233.

[54] E.-L.Luo and Z. Bao. Neural network approach to computing matrix inversion. Applied
Mathematics and Computation, 47(2):109-120, 1992.

[55] MacDuffee, Da. Ba. The Theory of Matrices, 1933. Chelsea, New York (1956).

[56] C.D. Meyer, Jr. The role of the group generalized inverse in the theory of finite Markov
chains. SIAM Review, 17(3):443-464, 1975.

[57] S.Miljkovié, M. Miladinovié, P. S. Stanimirovié, and Y. Wei. Gradient methods for com-
puting the Drazin-inverse solution. Journal of Computational and Applied Mathematics,
253:255-263, 2013.

[58] H. S. Najafi and M. S. Solary. Computational algorithms for computing the inverse
of a square matrix, quasi-inverse of a non-square matrix and block matrices. Applied
mathematics and computation, 183(1):539-550, 2006.

[59] M. Z. Nashed. Generalized Inverse and Applications. Academic Press, New York, 1976.

[60] S. Osowski. Neural networks in interpolation problems. Neurocomputing, 5(2-3):105—
118, 1993.

[61] R.Penrose, On a best approximate solutions to linear matrix equations, Proc. Cambridge

Philos. Soc. 52 (1956), 17-19.

[62] R. Penrose. A generalized inverse for matrices. In Mathematical proceedings of the
Cambridge philosophical society, volume 51, pages 406—413. Cambridge University
Press, 1955.

[63] L. Perko. Differential Equations and Dynamical Systems. Springer-Verlag, New York,
1991.

[64] M. D. Petkovi¢ and P. S. Stanimirovi¢. Iterative method for computing the Moore—
Penrose inverse based on Penrose equations. Journal of Computational and applied
Mathematics, 235(6):1604-1613, 2011.

161

Bibliography

[65] M. D. Petkovi¢ and P. S. Stanimirovi¢. Two improvements of the iterative method for
computing Moore—Penrose inverse based on Penrose equations. Journal of Computa-
tional and Applied Mathematics, 267:61-71, 2014.

[66] M. D. Petkovi¢, P. S. Stanimirovi¢, and V. N. Katsikis. Modified discrete iterations for
computing the inverse and pseudoinverse of the time-varying matrix. Neurocomputing,
289:155-165, 2018.

[67] S. Qiao, X.-Z. Wang, Y. Wei, Two finite-time convergent Zhang neural network mod-
els for time-varying complex matrix Drazin inverse, Linear Algebra Appl. (2017),
https://doi.org/10.1016/j.1aa.2017.03.014.

[68] V. Rakocevi¢ and Y. Wei, The representation and approximation of the W-weighted
Drazin inverse of linear operators in Hilbert space. Appl. Math. Comput., 141:455-470,
2003.

[69] P. Robert. On the group-inverse of a linear transformation. Journal of Mathematical
Analysis and Applications, 22(3):658-669, 1968.

[70] N. Samardzija and R. Waterland. A neural network for computing eigenvectors and
eigenvalues. Biological Cybernetics, 65(4):211-214, 1991.

[71] B. Simeon, C. Fiihrer, and P. Rentrop. The Drazin inverse in multibody system dynamics.
Numerische Mathematik, 64(1):521-539, 1993.

[72] S. Srivastava and D. Gupta. A third order iterative method for A'. International Journal
of Computing Science and Mathematics, 4(2):140-151, 2013.

[73] P. S. Stanimirovic. Block representations of {2},{1, 2} inverses and the Drazin inverse
of matrices. Indian Journal of Pure and Applied Mathematics, 29:1159-1176, 1998.

[74] P. S. Stanimirovi¢. Limit representations of generalized inverses and related methods.
Applied mathematics and computation, 103(1):51-68, 1999.

[75] P. S. Stanimirovié, M. Cirié, 1. Stojanovié, and D. Gerontitis. Conditions for existence,
representations, and computation of matrix generalized inverses. Complexity, 2017,
2017.

[76] P. S. Stanimirovi¢ and D. S. Cvetkovi¢-1li€. Successive matrix squaring algorithm for

computing outer inverses. Applied Mathematics and Computation, 203(1):19-29, 2008.

[77] P. S. Stanimirovié, D. S. Cvetkovi¢-Ili¢, S. Miljkovi¢, and M. Miladinovi¢. Full-rank
representations of {2, 4},{2, 3}-inverses and successive matrix squaring algorithm. Ap-
plied Mathematics and Computation, 217(22):9358-9367, 2011.

162

Bibliography

[78] P. S. Stanimirovi¢, D. Pappas, V. N. Katsikis, and 1. P. Stanimirovi¢. Full-rank repre-
sentations of outer inverses based on the QR decomposition. Applied Mathematics and
Computation, 218(20):10321-10333, 2012.

[79] P.S. Stanimirovi¢ and M. D. Petkovi¢. Gauss-jordan elimination method for computing
outer inverses. Applied Mathematics and Computation, 219(9):4667-4679, 2013.

[80] P.S. Stanimirovi¢, M. Petkovi¢, Gradient neural dynamics for solving matrix equations
and their applications, Neurocomputing 306 (2018), 200-212.

[81] P.S. Stanimirovié¢, M. D. Petkovié, and D. Gerontitis. Gradient neural network with non-
linear activation for computing inner inverses and the Drazin inverse. Neural Processing
Letters, 1-25, 2017.

[82] P.S. Stanimirovi¢, M. Cirié, 1. Stojanovi¢, D. Gerontitis, Conditions for existence, repre-
sentations and computation of matrix generalized inverses, Complexity, Volume 2017,
Article ID 6429725, 27 pages, https://doi.org/10.1155/2017/6429725.

[83] P. S. Stanimirovi¢ and M. B. Tasi¢. Computing generalized inverses using LU factoriza-
tion of matrix product. International Journal of Computer Mathematics, 85(12):1865—
1878, 2008.

[84] P. S. Stanimirovic, I. Zivkovic, and Y. Wei. Recurrent neural network for computing the
Drazin inverse. IEEE Transactions on Neural Networks and Learning Systems, 26(11)
(2015), 2830-2843.

[85] P. S. Stanimirovic, 1. S. Zivkovié, and Y. Wei. Recurrent neural network approach based
on the integral representation of the Drazin inverse. Neural Computation, 27 (2015),
2107-2131.

[86] P.S. Stanimirovié, I. S. Zivkovi¢, and Y. Wei. Neural network approach to computing
outer inverses based on the full rank representation. Linear Algebra and its Applications,
501:344-362, 2016.

[87] I. Stojanovié, P.S. Stanimirovié, I. Zivkovié, D. Gerontitis, X.-Z. Wang, ZNN models
for computing matrix inverse based on hyperpower iterative methods, Filomat 31(10)
(2017), 2999-3014.

[88] N.S. Urquhart, Computation of generalized inverse matrtices which satisfy specified con-
ditions, SIAM Review, 10 (1968), 216-218.

[89] G. Wang, Y. Wei, and S. Qiao. Generalized Inverses: Theory and Computations. Devel-
opments in Mathematics 53. Springer, Singapore and Beijing, 2018.

163

Bibliography

[90] G. Wang and Z. Xu. Solving a kind of restricted matrix equations and Cramer rule.
Applied Mathematics and Computation, 162(1):329-338, 2005.

[91] H. Wang, M. Wei, and X. Liu. Several representations of {2 }-inverses. Arabian Journal
for Science and Engineering, 36(6):1161, 2011.

[92] J. Wang. Electronic realisation of recurrent neural network for solving simultaneous
linear equations. Electronics Letters, 28(5):493—495, 1992.

[93] J. Wang. Recurrent neural networks for solving systems of complex-valued linear equa-
tions. Electronics Letters, 28(18):1751-1753, 1992.

[94] J. Wang. A recurrent neural network for real-time matrix inversion. Applied Mathematics
and Computation, 55(1):89-100, 1993.

[95] J. Wang. Recurrent neural networks for solving linear matrix equations. Computers and
Mathematics with Applications, 26(9):23-34, 1993.

[96] J. Wang. Recurrent neural networks for computing pseudoinverses of rank-deficient
matrices. SIAM Journal on Scientific Computing, 18(5):1479-1493, 1997.

[97] J. Wang and H. Li. Solving simultaneous linear equations using recurrent neural net-
works. Information Sciences, 76(3):255-277, 1994.

[98] J. Wang and G. Wu. Recurrent neural networks for LU decomposition and Cholesky
factorization. Mathematical and Computer Modelling, 18(6):1-8, 1993.

[99] L.-X. Wang and J. M. Mendel. Three-dimensional structured networks for matrix equa-
tion solving. IEEE Transactions on Computers, 40(12):1337-1346, 1991.

[100] L.-X. Wang and J. M. Mendel. Parallel structured networks for solving a wide variety
of matrix algebra problems. Journal of Parallel and Distributed Computing, 14(3):236—
247, 1992.

[101] X.-Z. Wang, H. Ma, and P. S. Stanimirovi¢. Nonlinearly activated recurrent neural net-

work for computing the drazin inverse. Neural Processing Letters, 46(1):195-217,2017.

[102] X.-Z. Wang, H. Ma, and P. S. Stanimirovi¢. Recurrent neural network for computing the
W-weighted Drazin inverse. Applied Mathematics and Computation, 300:1-20, 2017.

[103] X.-Z. Wang, P. S. Stanimirovi¢, and Y. Wei. Complex Zfs for computing time-varying
complex outer inverses. Neurocomputing, 275:983-1001, 2018.

164

Bibliography

[104] X.-Z. Wang, Y. Wei, and P. S. Stanimirovi¢. Complex neural network models for time-
varying drazin inverse. Neural Computation, 28(12):2790-2824, 2016.

[105] X.-Z. Wang, P.S. Stanimirovié, Y. Wei, Complex ZFs for computing time-varying com-
plex outer inverses, Neurocomputing 275 (2018), 983—-1001.

[106] Y. Wei. A characterization and representation of the generalized inverse Ag)s and its
applications. Linear Algebra and its Applications, 280(2):87-96, 1998.

[107] Y. Wei. Index splitting for the Drazin inverse and the singular linear system. Applied
Mathematics and Computation, 95(2):115-124, 1998.

[108] Y. Wei. Recurrent neural networks for computing weighted Moore-Penrose inverse.
Applied Mathematics and Computation, 116(3):279-287, 2000.

[109] Y. Wei. Integral representation of the generalized inverse Ag zg and its applications. In

Recent Research on Pure and Applied Algebra, pages 59-65, 2003.

[110] Y. Wei. The representation and approximation for the weighted Moore—Penrose inverse
in Hilbert space. Applied Mathematics and Computation, 136(2):475-486, 2003.

[111] Y. Wei. Recent results on the generalized inverse Ag 2‘; In Linear Algebra Research
Advances, pages 231-250, 2007.

[112] Y. Wei and D. S. Djordjevi¢. On integral representation of the generalized inverse Ag)S
Applied mathematics and computation, 142(1):189-194, 2003.

[113] Y. Wei, Integral representation of the W-weighted Drazin inverse, Appl. Math. Comput.
144 (2003), 3-10.

[114] Y. Wei and G. Wang, The perturbation theory for the Drazin inverse and its applications,
Linear Algebra Appl. 258 (1997), 179-186.

[115] Y. Wei and H. Wu. The representation and approximation for Drazin inverse. Journal of
Computational and Applied Mathematics, 126(1):417-432, 2000.

[116] Y. Wei and N. Zhang. A note on the representation and approximation of the outer
inverse Ag,% ?g of a matrix A. Applied mathematics and computation, 147(3):837-841,
2004.

[117] L. Weiguo, L. Juan, and Q. Tiantian. A family of iterative methods for computing
Moore—Penrose inverse of a matrix. Linear Algebra and Its Applications, 438(1):47—
56, 2013.

165

Bibliography

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

166

Y. Xia, T. Chen, and J. Shan. A novel iterative method for computing generalized inverse.
Neural computation, 26(2):449-465, 2014.

H. Yanai, K. Takeuchi, Y. Takane, Projection Matrices, Generalized Inverse Matrices,
and Singular Value Decomposition, Springer, New York, Dordrecht, Heidelberg, Lon-
don, 2011.

C. Yonglin and Z. Bingjun. On g-inverses and the nonsingularity of a bordered matrix
A

o . Linear Algebra and its Applications, 133:133-151, 1990.

Y. Yu and Y. Wei. The representation and computational procedures for the generalized
inverse Ag)S of an operator A in Hilbert spaces. Numerical Functional Analysis and
Optimization, 30(1-2):168-182, 2009.

Y. Zhang and S. S. Ge. Design and analysis of a general recurrent neural network model
for time-varying matrix inversion. /IEEE Transactions on Neural Networks, 16(6):1477—
1490, 2005.

Y. Zhang, X. Guo, W. Ma, K. Chen, and B. Cai. Matlab Simulink modeling and sim-
ulation of Zhang neural network for online time-varying matrix inversion. In Network-
ing, Sensing and Control, 2008. ICNSC 2008. IEEE International Conference on, pages
1480-1485. IEEE, 2008.

Y. Zhang, D. Jiang, and J. Wang. A recurrent neural network for solving sylvester
equation with time-varying coefficients. [IEEE Transactions on Neural Networks,
13(5):1053-1063, 2002.

Y. Zhang, W. Ma, and B. Cai. From Zhang neural network to Newton iteration for matrix
inversion. Circuits and Systems I: Regular Papers, IEEE Transactions on, 56(7):1405—
1415, 20009.

Y. Zhang, Y. Shi, K. Chen, and C. Wang. Global exponential convergence and stability
of gradient-based neural network for online matrix inversion. Applied Mathematics and
Computation, 215(3):1301-1306, 2009.

Y. Zhang, Y. Yang, N. Tan, and B. Cai. Zhang neural network solving for time-varying
ful-rank matrix Moore-Penrose inverse. Computing, 97(1):97-121, 2011.

Y. Zhang, B. Qiu, L. Jin, D. Guo, Infinitely many Zhang functions resulting in various
ZNN models for time-varying matrix inversion with link to Drazin inverse, Information
Processing Letters 115 (2015), 703-706.

Bibliography

[129] Y. Zhang, C. Yi, and W. Ma. Simulation and verification of Zhang neural network
for online time-varying matrix inversion. Simulation Modelling Practice and Theory,
17(10):1603-1617, 2009.

[130] Y.Zhang, B.Mu, H.Zheng, Link between and comparison and combination of Zhang neu-
ral network and quasi-Newton BFGS method for time-varying quadratic minimization,
IEEE Trans. Cybern. 43 (2013), 490-503.

[131] Y. Zhang, C. Y1, D. Guo, J. Zheng, Comparison on Zhang neural dynamics and gradient-
based neural dynamics for online solution of nonlinear time-varying equation, Neural
Comput. & Applic. 20 (2011), 1-7.

[132] Y. Zhang, Z. Li, K. Li, Complex-valued Zhang neural network for online complex-valued
time-varying matrix inversion, Appl. Math. Comput. 217 (2011), 10066—-10073.

[133] Y. Zhang, Y. Yang, N. Tan, B. Cai, Zhang neural network solving for time-varying full-
rank matrix Moore-Penrose inverse, Computing 92 (2011), 97-121.

[134] B. Zheng and R. Bapat. Generalized inverse Ag)S and a rank equation. Applied mathe-
matics and computation, 155(2):407-415, 2004.

. 2
[135] B.Zheng and G. Wang. Representation and approximation for generalized inverse A(T)s
Revisited. Journal of Applied Mathematics and Computing, 22(3):225-240, 2006.

[136] J. Zhong, X. Liu, G. Zhou, and Y. Yu. A new method for computing the Drazin inverse.
Filomat, 26(3):597-606, 2012.

[137] I. S. Zivkovi¢ and P. S. Stanimirovi¢. Matlab simulation of the hybrid of recursive
neural dynamics for online matrix inversion. Facta Universitatis-Series Mathematics
And Informatics, 32(5):799-809, 2017.

[138] I.S. Zivkovié, P. S. Stanimirovié, and Y. Wei. Recurrent neural network for computing
outer inverse. Neural computation, 28(5):970-998, 2016.

167

Bibliography

168

Appendix A
Biography

Ivan Zivkovié¢ was born on March 20, 1983 in Majdanpek. He completed 12. September
elementary school and Mile Arsenijevic¢ - Bandera general-education high school in Majdanpek.

In the academic year 2002/2003 he entered the Faculty of Sciences and Mathematics in
NiS, Department of Mathematics and Informatics. He received the M.Sc. degree from this
faculty in 2009 with the grade point average of 9.11/10 and grade 10/10 on his diploma thesis

Object-oriented implementation of NARX neural network training using Kalman Filter.

He enrolled for his Doctoral Academic Studies in the academic year 2009/2010 at the De-
partment of Computer Science, the Faculty of Sciences and Mathematics in NiS. He has passed
all the foreseen exams with the highest grade and has authored or co-authored five scientific

papers published in international journals with IF and one paper in a domestic journal.

He was a Research Associate with the Mathematical Institute of the Serbian Academy
of Sciences and Arts, Belgrade, Serbia, from 2011 to 2017, working on the interdisciplinary
project Development of new information and communication technologies, based on advanced
mathematical methods, with applications in medicine, telecommunications, power systems,
protection of national heritage and education (No. II1 044006), funded by the Ministry of

Education, Science and Technological Development of the Republic of Serbia.

He is currently a software developer at Accordia Group, LLC, New York-based company.

List of papers

e Stanimirovi¢, Predrag S., Ivan S. Zivkovié , and Yimin Wei. "Recurrent neural network
for computing the Drazin inverse." IEEE transactions on neural networks and learning
systems 26.11 (2015): 2830-2843.

e Stanimirovi¢, Predrag S., Ivan S. Zivkovié, and Yimin Wei. "Recurrent neural network

approach based on the integral representation of the Drazin inverse." Neural computation

169

Appendix A. Biography

170

27.10 (2015): 2107-2131.

Zivkovié, Ivan S., Predrag S. Stanimirovié, and Yimin Wei. "Recurrent neural network

for computing outer inverse." Neural computation 28.5 (2016): 970-998.

Stanimirovi¢, Predrag S., Ivan S. Zivkovié, and Yimin Wei. "Neural network approach
to computing outer inverses based on the full rank representation." Linear Algebra and
Its Applications 501 (2016): 344-362.

Stojanovic, 1., Stanimirovié, P. S., Zivkovié, 1. S., Gerontitis, D., & Wang, X. Z. (2017).
ZNN models for computing matrix inverse based on hyperpower iterative methods. Filo-
mat, 31(10), 2999-3014.

Zivkovi¢, Ivan S., and Predrag S. Stanimirovic. "MATLAB SIMULATION OF THE
HYBRID OF RECURSIVE NEURAL DYNAMICS FOR ONLINE MATRIX INVER-
SION." Facta Universitatis, Series: Mathematics and Informatics (2018): 799-809.

Appendix B

Dissertation documentation

171

Appendix B. Dissertation documentation

172

U3JABA O AYTOPCTBY

H3jaBibyjeM J1a J¢ JIOKTOPCKa JMCepTaluja, Mol HacJ0BOM

PEKYPEHTHE HEYPOHCKE MPEXE
3A PEIIABAILE IIPOBJIEMA
JINMHEAPHE AJITEBPE

Koja je opbparmeHa Ha [IpHpOIHO-MATEMATHIKOM (axysrery YHHBEP3UTCTA Y Huwy:

e pe3syaTar CONCTBEHOI HCTPAXHBAUKOT Paja;

e 71a OBY AMCEPTalH)y, HH Yy UCJIHHH, HHTH Y JIe10BUMa, HHUCAM npHjaBbUBa0 Ha ApYruMm
dakynTeTHMa, HHTH YHHBCP3HTCTHMA,

e J1a HHCAM IIOBPEHO ayTOPCKa Mpasa, HATH 3710y1n10TpeOHO MHTCICKTYAIHY CBOjJHHY ApYTHX
nHna.

J103BOJbABAM /18 C€ 06jaBe MOjH JIMMHH MOJALH, KOjH Cy Y BE3M Ca ayTOpCTBOM H nobujameM
aKaJIeMCKOT 3Baiba JOKTOpA HayKa, Kao WITO Cy HME M Mpe3uMe, roA1Ha 1 mecTo pohema n AaTyM
onbpaHe paja, H TO Yy KaTajory Bubimoreke, JJMrHTaIHOM peno3uTopujyMy Y HUBEP3HTETA ¥ Humy,
Kao M y myGiHKalLHjamMa Y HHBEP3HTETa y Huury.

Y Humy, 08. 06. 2018.

[NoTnxc ayTopa AMCepTauHje:

u%m{ .')l'(ukméut

Jlp Usan C. Xuskosuh

M3JABA O HCTOBETHOCTH WITAMITAHOT ¥ EJTEKTPOHCKOT OBJIMKA
AOKTOPCKE JUCEPTALIMJE

Hacnos aucepranmje:

PEKYPEHTHE HEYPOHCKE MPEXE
3A PEIIABAIBE ITPOBJIEMA
JIMHEAPHE AJITEBPE

H3jaBbyjeM Jia je eNCKTPOHCKH OGNMK MOje JIOKTOPCKE JMCEpTaumje, KOjy caM mpeaao 3a
yHowewe y JInrnrannu penosuropujym Yuusepsurera y Huury, ucroseran wramMnanom o6anky.

Y Humy, 08. 06, 2018.

[MoTnme ayTopa aucepraumje:

Ubau Muéko{u'k

Jlp Usan C. Xuskosuh

U3JABA O KOPHII'REWDLY

Osnawhyjem Yuusepsurercky 6ubnuoreky ,,Hukona Tecna* na y Jiururaaiu peno3uTOpHjyM
YuuBepsutera y Humry ynece Mojy ZOKTOpPCKy AMCEPTALH]yY, OJ HACTIOBOM:

PEKYPEHTHE HEYPOHCKE MPEXE
3A PEHIABAILE ITPOBJIEMA
JIHHEAPHE AJITEBPE

Jucepraumjy ca CBHM IPHJIO3MMA NPEao caM y CIeKTPOHCKOM 06JIMKy, TIOrOJHOM 33 TPajHO
apXHUBHpame.

Mojy ZOKTOpCKY AucepTamujy, yrery y Jlurutainu penosutopujym Yrusepsutera y Huury,
MOTYy KOPHCTHTHM CBH KOjH MOWTYjy oApeabe campxane y oaabpaHoM THIy JHLEHUE Kpearusne
3ajemuue (Creative Commons), 3a Kojy caM ce ouIydno/Ja.

1. Ayroperso (CC BY)

2. Ayropctso — HekomepunjanHo (CC BY-NC) : ud

| 3. AyropcTBo — Hekomepunjaano — Ge3 npepaae (CC BY-NC-ND) Lyt J

4. AyTOpCTBO — HEKOMEpIIHjATHO — ICTUTH TIOR HeTHM yciosuma (CC BY-NC-SA)

5. Ayropctso — Ge3 npepaze (CC BY-ND)

6. AyropctBo — jaenuTH noa uctiM yenosuma (CC BY-SA)

VY Humy, 08. 06. 2018.

