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Abstract

The main goal of this doctoral dissertation is to investigate behavior of sin-
gular Sylvester equations, i. e. behavior of operator equations

AX - XB=C,

under the assumption that they are either unsolvable or have infinitely many
solutions. Once solvability conditions are derived, characterization and clas-
sification of the solutions is conducted and an explicit general formula for
those solutions is provided, thus forming the general solution of the given
Sylvester equation.

Standard techniques, such as the generalized inverses, are omitted, because
the assumption that A and B have closed ranges which are complemented
in the corresponding Banach spaces is dropped. Instead, new and original
methods are developed for solving this problem, and they are the original
scientific contribution of the author, published in papers [24]-[29].

The dissertation is broken down into several chapters. Chapter 1 is the in-
troductory chapter, where regular Sylvester equation (which has a unique
solution) is introduced and solved. Some important applications of the equa-
tion are mentioned.

Chapter 2 concerns the singular case where A, B and C' are matrices. The re-
sults are obtained by the shared-eigenvalue discussion for matrices A and B,
and by the analysis of the corresponding eigenspaces. Generalized commu-
tators of matrices A and B are characterized, and the solutions are approxi-
mated when possible. Perturbation analysis is conducted, using majorization
theory for matrices. The main results in this chapter were obtained by the
author and his PhD advisor in their joint works [28] and partially [29], and
by the author in his individual paper [27].

Chapter 3 concerns the singular case when A, B and C' are bounded linear
operators on Banach spaces. Since the spectra of A and B do not necessarily
consist of eigenvalues only, an alternative approach is required. First, a
special operator algebra is introduced, which is not a Banach algebra per se,
but still allows a functional calculus of its elements. This algebra gives a
different form of the general solution to the given Sylvester equation, and
solves every basic operator equation

AX-XB=C, AXB=C, X-AXB=0C,
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in the same manner, discarding regularity of the equations (only their solv-
ability is required). The advantage of this method compared to the gener-
alized inverses techniques (which are commonly used in singular equations)
is that it does not require complementedness of the appropriate ranges and
null-spaces, but rather solves each equation directly. This algebra is intro-
duced and studied in detail by the author in [25]. Afterwards, this algebra is
used to solve the initial Sylvester equation, with help from Fredholm theory.
The author obtained these results in [26]. Applications to some contempo-
rary problems in Banach spaces are illustrated as well.

Chapter 4 concerns the singular case when A and B are densely defined closed
operators on Banach spaces, and C' is a densely defined linear operator. The
initial premise is that the point spectra of A and B intersect, and in that case,
weak solutions X are obtained, which are defined on appropriate eigenspaces
of B. Techniques used involve decompositions of the given operators and
spaces. Further, the results are extended to Schauder bases when possible,
and are applied to Sturm-Liouville operators. These results were achieved by
the author and his PhD advisor in the joint work [29]. Afterwards, a special
case is analyzed, where A and B are densely defined self-adjoint operators on
Hilbert spaces, while the point-spectrum-intersection assumption is dropped.
In that case, the weak solutions X obtained in [29] are extended to the largest
domains possible, which are constructed by the Spectral mapping theorem
for self-adjoint operators and by the Berberian-Buoni-Harte-Wickstead con-
struction. These results were obtained by the author in [24] and they are
illustrated on an example which stems from quantum mechanics.



Abstrakt

Glavni cilj ove doktorske disertacije je ispitivanje prirode singularne Silves-
terove jednacine, odnosno, operatorske jednacine oblika

AX - XB=C,

pod pretpostavkom da je ona ili neresiva, ili da ima beskonacno mmnogo
reSenja. Najpre bi se obezbedili dovoljni uslovi resivosti jednacine, a po-
tom bi se sprovela karakterizacija i klasifikacija resenja. Ta resenja bi se
zatim izvela analitckim i egzaktnim metodima, u zatvorenom obliku, ¢ime bi
formirala opsSte resenje polazne jednacine.

Za razliku od standarndih metoda koriS¢enih za resavanje singularnih op-
eratorskih jednacina, poput uopstenih inverza, u ovoj disertaciji se, izmedu
ostalog, posmatraju i slucajevi u kojima dati operatori nisu uopsteno in-
vertibilni, odnonso, njihova jezgra i njihove slike ne moraju biti zatvoreni
sa topoloskim komplementima u odgovaraju¢im prostorima. Stoga se dati
problem analizira na nov i originalan nacin, sto je ujedno i nau¢ni doprinos
autora ovoj temi. Originalni rezultati autora, na kojima se i bazira ova dis-
ertacija, publikovani su u radovima [24]-[29].

Sama disertacija je podeljena u nekoliko glava. Glava 1 je uvodnog karaktera,
u kojoj se uvodi i resava regularna Silvesterova jednacina (polazna jendacina
koja ima jedinstveno resenje). U ovoj glavi su pomenute neke od najbitnijih
primena ove jednacine.

U Glavi 2 se posmatra singularna Silvesterova jednacina, pod pretpostavkom
da su A, B i C skalarne matrice. Rezultati prikazani u ovoj glavi su izve-
deni diskusijom po zajednickim sopstvenim vrednostima matrica A i B, kao i
pomocu analize sprovedene na odgovarajuc¢im sopstvenim prostorima tih ma-
trica. Okarakterisani su uopsteni komutatori matrica A i B. Sama reSenja
su aproksimirana u slucajevima kada je to bilo moguée. Sprovedena je per-
turbaciona analiza pomocu teorije majorizacija za matrice. Glavni rezultati
ovog poglavlja izvedeni su u zajednickim radovima autora i njegovog mentora
[28] i delimi¢no [29], kao i u samostalnom radu autora [27].

U Glavi 3 se proucava singularna Silvesterova jednac¢ina, pod pretpostavkom
dasu A, B iC ograniceni linearni operatori zadati na Banahovim prostorima.
S obzirom da spektri operatora A i B ne moraju da se sastoje isklju¢ivo od
sopstvenih vrednosti tih operatora, neophodan je drugaciji pristup u odnosu
na matricni slucaj. Za pocetak, uvedena je specijalna algebra operatora,
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koja nije Banahova algebra kao takva, ali dopusta funkcionalni ra¢un svo-
jih elemenata. Ova algebra pruza drugaciji oblik opsteg resenja singularne
Silvesterove jednacine, i direktno resava svaku od elementarnih operatorskih
jednacina oblika

AX - XB=C, AXB=C, X —-AXB=C,

na isti na¢in, zanemarujuéi regularnost samih jednacina (zahteva se samo
njihova resivost). Prednost ovog metoda, u odnosu na upstene inverze, je ta
da se ne zahteva zatvorenost i komlementarnost odgovarajucih slika i jezgara
datih operatora. Ova algebra operatora je uvedena i analizirana od strane au-
tora u samostalnom radu [25]. Nakon toga, ta algebra operatora je iskoriséena
za reSavanje singularne Silvesterove jednac¢ine pomocu Fredholmove teorije.
Ove rezultate je autor izveo u samostalnom radu [26]. Prikazane su primene
dobijenih rezultata na neke savremene probleme koji se javljaju u teoriji op-
eratora.

U Glavi 4 se izucava singularna Silvesterova jednacina pod pretpostavkom da
su A i1 B zatvoreni operatori sa gustim domenima u Banahovim prostorima,
dok je C proizvoljan gusto definisan linearan operator. Polazna pretpostavka
je ta da se tackasti spektri operatora A i B seku, i u tom slucaju su izvedena
slaba resenja X, koja su definisana na odgovaraju¢im sopstvenim prostorima
operatora B. Ova reSenja su dobjena pomoc¢u raznih dekompozicija opera-
tora i prostora. Dobijena slaba resenja X su potom prosirena na Sauderove
baze kada je to bilo moguce, i ilustrovana su na spektralnim problemima iz
Sturm-Liuvilove teorije. Ove rezultate je autor izveo u koautorstvu sa svo-
jim mentorom u radu [29]. Nakon toga, specijalan slucaj je analiziran, u
kome su A i B samokonjugovani neogranic¢eni operatori, definisani na sep-
arabilnim Hilbertovim prostorima, dok je pretpostavka o preseku njihovih
tackastih spektara izbacena. U tom slucaju, slaba resenja X izvedena u radu
[29] su prosirena na najveée mogucée domene. Ona su prosirena pomocu spek-
tralne teorije samokonjugovanih operatora i pomocu konstrukcije uvedene od
strane Berberijana, Buonija, Hartea i Vikstida. Autor je ove rezultate izveo
u samostalnom radu [24], a potom ih je ilustrovao na primeru iz kvantne
mehanike.



A word from the author

Other than being a fifth grader’s worst nightmare, mathematical equations
are the most recognizable “things” from the math world, a claim stated by an
innocent bystander.

,,Imagine trying to compare two variables A and B, which can simultane-
ously take any value as they please. Rarely enough, they sometimes do take
the same number, and in those moments you can say that A and B are
equal. Other times, one is always larger or smaller than the other. That
is, of course, when the variables A and B are real-valued entities, which is
usually not the case”, is how I tried to explain the dissertation to my middle
school students. Those bright, curious minds, who demanded an explana-
tion to why their algebra teacher was sometimes distracted and frustrated.
Luckily, math majors were a bit more sympathetic to their teaching assis-
tant. ,,Is it difficult?” some of them would ask me, with the usual existential
follow-ups (as one mathematician tends to ask another) ,, What’s the point
of such results? Are there any real-world applications?” At the time being,
I spectacularly failed to answer these questions. With a long overdue, I am
finally stating my reply:

Beauty and poetry of mathematics hide in its irregularities. Because, fact
that a butterfly will flap its wings and simply fly away will not send shivers
down your spine; but the idea that the flapping might start a series of events
which could lead to a tsunami will surely get you there. The world does not
function in a reqular manner, but rather experiences chaotic behavior in ev-
ery possible situation, therefore it cannot be modeled with reqular equations.
It demands to be studied and analyzed with the equations which behave in an
wrreqular fashion, which are called "singular” equations. I can only hope that
one day humanity will benefit from the results obtained in this dissertation,
in its attempt to understand the world around us.

An endless "thank you” goes to all my students, current and former, who
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managed to keep me on my toes all these years, pulling me out of my comfort
zone in every way imaginable.

I was fortunate enough to get such an amazing PhD advisor, professor
Nebojsa Dinci¢, who introduced me to this wonderful area of mathemat-
ics. Not only he’d been an extraordinary mentor during the process, but
became a close friend as well. He always knew the perfect balance between
pushing me forward and letting me figure it out on my own. Thank you for
all the patience, knowledge and wisdom you shared with me.

Academician Vladimir Rakoc¢evi¢ and professors Dragan Djordjevi¢, Snezana
Zivkovié-Zlatanovi¢, Dijana Mosi¢, Milica Kolundzija and Marko Djiki¢ are
just few of the many who taught me everything I know about functional anal-
ysis and operator theory. I am forever in their debt. Academician Stevan
Pilipovi¢ and professor Marko Nedeljkov showed me beauty and necessity of
distributions and weak partial differential equations. Academician Miodrag
Mateljevi¢ helped me bridge the gap between spectral theory and complex
analysis. I am grateful to them for helping me understand importance of
mathematical analysis at a deeper level. Professor Peter Semrl carefully
read the manuscript and gave me constructive tips which improved quality
of the dissertation. For doing so, I am very thankful to him.

A special "thank you” goes to my colleagues from Mathematical Institute
of the Serbian Academy of Sciences and Arts, dean Zoran Ognjanovi¢ and
fellows Djordje Barali¢, Mladen Zeki¢, Stefan Ivkovi¢ and Luka Mili¢evic.
Their assertiveness and selflessness showed me just how fruitful a work en-
vironment can be. On that note, I would also like to thank my dear friends
Martin Ljubenovi¢, Dragan Raki¢ and Milos Cvetkovi¢ for including me in
their seminars on Linear Operators, Theory and Applications. I promise, the
next time we’ll get it.

Last, but not the least, I would like to thank my entire Pordevi¢ family,
parents Dragan and Olivera, brother Dusan, sister-in-law Katarina, aunt
Snezana and grandparents Gospava and Sreten, for their endless love and
support during the process. Believe me, the pleasure was all mine.
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Chapter 1

Introduction: Significance of
the Sylvester equation

1.1 Notation

Throughout the dissertation, notation used for various mathematical entities
is a standard one; by V, W, Vi, Vo, K, H, ... we denote vector spaces
(often Banach spaces), unless stated differently. Elements of such spaces are
vectors, usually denoted by u, v, w and so on. The symbol || - || stands for a
(given) norm, and (-, -) stands for the scalar product. By -+ we denote the
orthogonal complement of the given entity. Two spaces W and V', form a
direct sum denoted by W + V| while W & V stands for the orthogonal sum
of W and V. An open disc in the complex plane, with the center a € C and
the radius 7 > 0 is denoted by D(a;r). Letters A, B, C, X, Y, L, S and
so on denote linear operators. I stands for the identical operator, Iu = u,
for every u € V. L(V,W) denotes the set of all linear operators S, with
domains (denoted by Dg) being subsets of V', while their images (denoted
by R(S)) are subsets of W. If V' = W, we simply write L(V'). For normed
spaces V; and V3, the set of bounded (continuous) linear operators from V;
to V5 is denoted by B(V1, V4), where it is understood that the operators are
defined on the entire space V;. If such exists, the inverse of an operator
S € L(V) is denoted by S~! (unless stated differently, we require both S and
S~ to be bounded and defined on the entire V). The set of all A € C such
that S — Al is not an invertible operator in L(V') is denoted by ¢(S), while
p(S) :=C\ o(S) denotes the resolvent set, i.e. the set of all A € C such that
S — M is an invertible operator!. The set of all vectors u such that Su = 0

'Tf S is a bounded linear operator, then ¢(S) is a non-empty compact set and p(.9) is
a non-empty unbounded set.
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is the null-space of S, denoted by N(S). A value A € o(S) is called an
eigenvalue for S if there exists u # 0 such that Su = Au, i.e. uw € N (S —\);
the vector u is then called an eigenvector for S which corresponds to A. For
given Hilbert spaces V and W, for arbitrary L € L(V, W), the unique closed
(if such exists) L* € L(W, V) which satisfies

(Lu,v) = (u, L*v),

for every u € Dy, and every v € Dy, denotes the Hilbert-conjugate (or ad-
joint) operator of the operator L.

In this chapter we introduce Sylvester equations. We state existing results
on this topic, which mostly concern regular Sylvester equations (this will be
explained shortly). Some of the original proof are modified by the author, in
order to make them more mathematically accurate and more applicable for
the rest of the dissertation. These alterations are clearly pointed out in the
text. Afterwards, singular Sylvester equations are introduced and motivation
for their analysis (and motivation for writing this thesis) is explained.

1.2 The regular equation

Let V| and V5 be given Banach spaces. Equations of the form
AX -XB=C (1.1)

are called Sylvester equations, where, in general, A € L(V3), B € L(1})
and C' € L(V},V3), are given linear operators. Such equations were firstly
introduced by Sylvester himself in 1884, in the matrix case, when he proved a
fundamental result, which today serves as a starting point for contemporary
results in matrix analysis.

Theorem 1.2.1. [96] Let A, B and C' be matrices of appropriate dimensions.
The equation (1.1) has a unique solution X if and only if o(A) No(B) = 0.

It wasn’t until the mid 1900s when Rosenblum generalized the result to
bounded linear operators.

Theorem 1.2.2. [89] Let V; and V5 be Banach spaces and let A, B and C be
bounded linear operators defined on the appropriate spaces. The equation
(1.1) has a unique solution if o(A) N o (B) = .

Remark. The converse statement does not hold for bounded linear oper-
ators, that is, there can be a unique solution to (1.1) even though o(A) N
o(B) # 0. This is because in matrices, being invertible is equivalent to being
injective.
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For given Banach spaces V; and V5, and bounded linear operators A € B(V53)
and B € B(V}), condition o(A) N o(B) = 0 implies that for any given C' €
B(Vy,Vs) there always exists a unique bounded solution X € B(Vy,V3) to
(1.1), which means that the problem is regular. More precisely, if one defines
the Sylvester operator,

S(L):= AL — LB, SeBBW,W), LecBVi,),

then o(A) No(B) = 0 implies S to be invertible in B(B(V1,V3)), with a
bounded inverse also belonging to B(B(Vi,Vs)). In that sense, the sought
solution X to (1.1) is always X = S~1(C), for any afore-given C' € B(V, V5).
For this reason, the equation (1.1) is said to be regular whenever A, B and
C are bounded linear operators on the corresponding Banach spaces and
o(A) No(B) = 0. Regular equations have been studied extensively so far,
with various applications in theoretical and applied mathematics, physics
and engineering, see [1], [3], [4], [10], [14], [35], [40], [42], [47], [50], [52], [55],
[56], [60], [69], [70], [83], [88], [89], [90], [91], [93] and numerous references
therein. In addition, there are several results regarding a unique bounded
solution to (1.1), while the operators are unbounded, consult [60], [75] and
[83]. These results have a huge impact on mathematical physics and quan-
tum mechanics. However, these results impose certain solvability conditions
for operator C' (this will be discussed in Chapter 4).

Proofs for Theorems 1.2.1 and 1.2.2 rely on Lemma 1.2.1 below. Notice
that proof of the lemma, as well as proof of Theorem 1.2.2, have a direct
generalization to unital Banach algebras, see [30], [34], [37], [39], [41], [43],
[72], [80], [86], [92], [99], [100], [102].

Lemma 1.2.1. If A and B are commuting bounded linear operators on a
Banach space V', then

o(A—B) C o(A) —o(B).

Proof. Proof provided in [10] follows from Gelfand theory of commutative
Banach algebras. Imbed A and B in a maximal commutative subalgebra of
the algebra of operators. Then the spectrum of an operator is equal to its
spectrum, relative to a maximal commutative subalgebra. The spectrum of
an element of a commutative Banach algebra with identity is the range of its
Gelfand transform. This gives

o(A—B) ={p(A—DB): pis a nonzero complex homomorphism} =

{o(A) — ¢(B) : ¢ is a nonzero complex homomorphism} C o(A) — o(B).
[
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Proof of Theorem 1.2.1 and Theorem 1.2.2. Define operators A(X) := AX
and B(X) := XB. Then A, B € B(B(V1,V3)) and they commute. Trivially,
the Sylvester operator S satisfies S = A — B, therefore, Lemma 1.2.1 applies
and o(S) C 0(A) —o(B) # 0. This proves the statements.

Conversely, if A and B are matrices and for every matrix C' there exists
a unique solution X to (1.1), then o(A) No(B) = (. This is verified by a
direct computation. Assume that, in addition with the previous assumptions,
there exists A € o(A) No(B). Then A € o(A*) and there exist (non-zero)
eigenvectors v and v for B and A*, respectively, which correspond to A and
A, respectively. Define Cu := v and let X be a unique solution to the
appropriate Sylvester equation. Then

0= MXu,v) — MXu,v) = (Xu, W) — M Xu,v)
= (Xu, A*v) — (AXu,v) = (AXu,v) — (X Bu,v)
= ((AX — XB)u,v) = (Cu,v) = (v,v) = ||v]|* > 0,

which is impossible. 0

That the converse does not hold for bounded linear operators is illustrated
in the next example obtained by the author and his PhD mentor:

Example 1.2.1. [29, Example 1.1.] Let V; = V, be infinite dimensional
Banach spaces and let A = C' = 0. Assume that B is onto but is not
injective. Then o(A) No(B) = {0}, while the only solution to the equation
AX - XB=C«& XB=0is X =0. )

The author is here generalizing the statement to noncommutative unital Ba-
nach algebras.

Lemma 1.2.2. Let A be a noncommutative unital Banach algebra that is
infinite dimensional. Let a, b and ¢ € A such that a = ¢ = 04 and let b
be a left zero divisor, which is not simultaneously a right zero divisor. Then
axr — xb = ¢ has only one solution and that is x = 0 4.

Proof. Obviously o(a) = {0} while 0 € o(b), since b is a left zero divisor.
Furthermore,
ar —axb=cs axb=0y4 & x=04.



1.2. THE REGULAR EQUATION bt

Conversely, if there are no solutions, or there exist infinitely many solutions,
the equation is said to be singular. More generally, by singular equations we
can (and we will in Chapter 4) consider equations of the form (1.1), where
we discard boundedness of the given operators and the equation itself does
not have a unique bounded solution. It is quite trivial to give an example of
a Sylvester equation which is unsolvable:

Proposition 1.2.1. Let V' be a Banach space and let A € B(V). Then
equation AX — XA = I does not have a bounded solution.

This statement can directly be generalized to unital Banach algebras as well.
Since the proof is identical, we only prove the statement below.

Proposition 1.2.2. Let A be a unital Banach algebra, with 1 as its unity.
Then 1 is not a commutator in A, meaning that, there are no a, b € A such
that ab — ba = 1.

Remark. Note that proof can be found in numerous books on functional
analysis and operator theory, to name a few, see [30], [34], [37], [39], [41],
[43], [72], [80], [86], [92], [99], [100], [102]. Here, the author states his proof.

Proof. Let a, b € A and let o(a), o(b) denote the spectra of a and b, re-
spectively, in \A. Then o(ab) U {0} = o(ba) U {0}. On the other hand, if
ab = 1+ ba, then o(ab) = o(1 +ba) = 1+ o(ba) = {1+ X : X € o(ba)}.
Consequently,

o(ba) U {0} = o(ab) U{0} = {1+ X : A € o(ba)} U {0}

Denote by K = o(ba), which is a compact subset of C. We are going to prove
that it is impossible to have the set equality

Ku{0} =1+ KuU{0}.

Since K is a compact set, it has a finite diameter, therefore, there exists an
m € Z¢ such that m > diam(K).

Case 1. Assume that K NZ = (). Then for every k € K we have k € K + 1,
that is, k — 1 € K. Consecutively, it follows that £k € K and k —m € K,
which is impossible.

Case 2. Now assume that there exists k € K N Z such that k£ < 0. Then
ke KCK+1U{0}, ergo k € K+ 1and k-1 € K. Similarly to the
previous case, it follows that k—m € K as well as k € K, which is impossible
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by the choice for m.

Case 3. Assume that there exists k € K NZ such that k£ > 0. Then by the
same argument, k+1 € K +1 C K U {0}, that is, k + 1 € K. Therefore,
k+m e K as well as k € K, which is not possible.

Case 4. What remains is that K NZ = {0}. But then, K = {0} U K, where
KiNZ = 10. Then diam(K;) < diam(K) < m and for any k € K;, Case 1
applies which leads to k +m € K, which is not possible. Therefore, K; = ()
and K = {0}. But then o(ab) = o(ba) = {0} and o(ab) =1+ o(ba) = {1},
which is not possible. O

It is important to state that the equation AX — XA = [ can be solved (un-
der certain conditions) if the operator A is unbounded and in that case, the
solutions X are unbounded as well. This example is the pillar for the the-
ory of closed operators, as such equations stem quite naturally in quantum
mechanics, consult [70], [99] and [101]. For this reason, it is very important
to study singular Sylvester equations with unbounded operators. This will
further be discussed in Chapter 4.

The previous proposition illustrates that, when the equation is singular, solv-
ability of the equation is not automatically achieved, but rather requires a
special attention. This will be emphasized in appropriate places of the dis-
sertation. So far, singular Sylvester equations have not been studied that
extensively. This dissertation is a collection of original results on that topic,
published by the author in individual papers ([24]-[27]) and in joint work
with his PhD mentor, professor Nebojsa Dinci¢ (28] and [29]).

1.2.1 Solution to the regular equation

There are numerous ways to construct the solution X in the regular case,
both analytically and numerically. In what follows, we enlist some of the
most common methods for obtaining the solution, as these expressions come
in handy throughout the dissertation. Unless stated differently, we assume
Vi and V5 to be Banach spaces and operators A, B, C' and X are bounded
linear operators, defined on the appropriate Banach spaces. Note that, if
o(A)No(B) = 0, then A or B is invertible. Similarly to the previous remarks,
note that most of the functional calculus can be directly transferred to unital
Banach algebras.

Theorem 1.2.3. [10] Suppose that A is an invertible operator, such that
there exist 0; > 0o > 0, o(B) C D(0,d3) and o(A) C (D(O,51)> . Then the
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solution X to eq. (1.1) can be provided as

+o0
X=) Am'cB" (1.2)
n=0
Similarly, if B is invertible with o(B) C (D(0,51)>c and o(A) C D(0,ds),

then
+00

X=) ACB™ (1.3)
n=0

Proof. If A is invertible such that o(B) C D(0,d,) and o(A) C (D(O, 51)>C,

then the spectral radius theorem implies that [|A~!C'B|| < g—fHC’ ||. Therefore,
the sum in (1.2) converges and defines a bounded linear operator. Direct
verification shows that

+oo +o0
A (Z A—”—ch”) - (Z A—”—loB”) B=C.
n=0 n=0
Analogous procedure holds for (1.3). O

Theorem 1.2.4. [89] Let I be a union of closed contours in the complex
plane, with total winding number around o(A) equal to 1 and total wind-
ing number around o(B) equal to zero. Then the solution to (1.1) can be

expressed as
X=o [a-grem -9 (14)
r

2mi
Proof. Assume that (1.1) holds. Then for every & € C,
(A-OX - X(B-¢) =C.
Take ¢ such that both A — & and B — £ are invertible. This gives
X(B-¢ ' —(A- ' X=(A-¢g7'CB-9"

Integrating over I' and noting that

/F(B—f)ldé‘:O, /F(A—g)ld,g:zm'

finishes the proof. m
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In the case when A, B and C' are matrices, a polynomial construction is the
most fruitful. If dim A = m and dim B = n, let a and b the characteristic
polynomials of A and B respectively:

a(s) = Z s’ (1.5)
= Zﬁisi. (1.6)

Similarly to the previously stated, for given k € Ny, define
n(k,A,C,B) ZAk iCB'. (1.7)

The following polynomial equations hold.

Lemma 1.2.3. [50, Lemma 2.1.] With respect to the previous notation, if
X is the solution to (1.1), then for every k € N the following equality holds

k—1
AX — XB* =) AYICB =n(k—1,A,C, B). (1.8)

=0

Proof. When k = 1, the eq. (1.8) holds by assumption. When k = 2, we
have

A’X—-XB%*= A(AX)—(XB)B = A(AX-XB)—(XB-AX)B = AC+CB.
The rest is proved analogously, by mathematical induction. O]

Combining n(k, A, C, B) with the characteristic polynomial b of B, we define
¢(A,C, B) Z@kn —1,A,C,B). (1.9)

Theorem 1.2.5. [50, Theorem 2.2.] If matrices A and B have no common
eigenvalues, then (1.1) is equivalent to

b(A)X = ¢(A, C, B). (1.10)
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Spectral mapping theorem implies that b(A) is an invertible matrix, so
X =b(A)'¢(A,C,B). (1.11)

Remark. Formulas (1.2)—(1.11) motivate further inspection of expressions
of the form A"CB"™ and A"X B". These expressions have been studied in
detail by the author in [25], and Chapter 3 relies heavily on those results.

For further results on analytical and numerical solutions to the regular Sylvester
equations, the reader is referred to [7], [14], [39], [42], [52], [68], [69], [71],
(73], [74], [75], [88], [89], [90], [91], [93], [94], [95] and references therein.

1.3 Some applications

1.3.1 Diagonalization of operator matrices

Simply knowing when the Sylvester equation is solvable (discarding unique-
ness of the solution), gives quite interesting information about the operators
A, B and C. One of the most basic consequences is the diagonalization of an

operator matrix. Consider the 2 x 2 bounded operator matrices [ 0 g }
A 0 . .
and 0 B defined on V5 x Vi. When are these two matrices similar?

Note that every operator of the form [ L X } is invertible in B(V; x V1),

2
0 L

I, —-X

0 L

exists an X satisfying

A C I X | | I X A 0
ol Tl 7] B
Multiplying out the matrices and equating the corresponding entries gives
four operator equations, of which only one is not automatically satisfied.
That equation is AX+C = XB, or AX —XB = —C. Ergo, if the later equa-
tion is solvable, then the afore given matrices are similar. Simple application
of mathematical induction generalizes this statement to n-dimensional up-
per triangular operator matrices, consult [10]. The diagonalization problem
is essential in applied operator theory and matrix analysis, as it drastically
simplifies computational procedures, such as computation of the matrix (or

operator) sign function, linear model reductions etc. consult [7], [9], [10],
[14], [35], [46], [47], [54], [60], [70], [75], [83], [88], [91], [94] [95] and [100].

and its inverse is { } Thus the given matrices are similar if there
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1.3.2 Lyapunov stability theory

Let H be a Hilbert space and let A € B(H) be a bounded linear operator on
H. Observe the abstract differential equation

dZ

Fri AZ(t), te€|0,400), Z:[0,00)— H. (1.12)
Translating it to 0 and homogenizing the initial conditions, it follows that
either all solutions to (1.12) are stable or unstable in the Lyapunov sense,
where the solution Z(t) is stable if and only if

NZ(@)| — 0, t— 4o0.

Theorem 1.3.1. [10, Theorem 7.1.] With respect to the previous notation,
if the spectrum of A is contained in the open left half plane, then there exists
a unique (strictly) positive operator X satisfying AX + XA* = —1I.

Proof. Tt immediately follows that o(A) N o(—A*) = (), therefore operator
equation AX + XA* = —I has a unique solution. Taking the Hilbert con-
jugate of the operators, it follows that X* is a solution to the equation as
well, indicating that X = X* so X is self-adjoint. In order to prove that X
is positive, it suffices to show that o(X) C RT. Without loss of generality,
we can assume that the numerical range of A is contained in the open left
half plane as well.

If X is an eigenvalue of X then there exists a normed u such that Xu = A\u
and

(—u,u) = (AX + X" A)u,u) = (AXu,u) + (Au, Xu) = 2X\(Au, u).

Since Re(Au,u) and (—u,u) are both negative, A must be positive. For the

same reason, it follows that A # 0.
]

If the operator X does not have an eigenvalue, the proof provided in [10] is
completed by Weyl-von Neumann Theroem (see e. g. [57]):

Theorem (Weyl-von Neumann): Any self-adjoint operator differs from
a pure point spectrum operator by an operator of arbitrarily small Hilbert-
Schmidt norm.

However, this does not imply that all approximate eigenvalues of the operator
X are positive. Here the author provides his own proof, which transfers the
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problem to the elegant construction introduced by Berberian, see [8]. What
is already proved, is that X is a self-adjoint operator, therefore o(X) =
Tapp(X). If X has no eigenvalues, then every point A from the spectrum of X
is its approximate eigenvalue. The problem of transferring the approximate
point spectrum to the set of eigenvalues was firstly solved by Berberian in
[8], which was further applied to bounded Fredholm operators by Wickstead,
Buoni and Harte in [12] and [44]. To start, assume that L is a bounded
normal operator on a Hilbert space V. Then for fixed p and A € o0,,,(L),
there exist two normed sequences (z,) and (y,), such that ||(L — AI)x,|| and
(L — pl)y,|| simultaneously tend to zero as n approaches infinity. Then for
every n:

(1= M) @, yn)| = (A2 = L, yn) + (@, LY — fin) |
< [Aan = Lan[| + | Lyn = vyall,

which tends to zero as n — 4o00. This implies that approximate eigenvec-
tors corresponding to different approximate eigenvalues tend to behave in an
orthogonal manner, similarly to the exact eigenvectors corresponding to the
actual different eigenvalues. This motivates the characterization of the ap-
proximate point spectrum of all bounded linear operators L € B(V'), which
goes as the following (see [8]). Denote by ¢ (V') the space of all bounded
sequences with values in V', equipped with the sup —norm. The set of all se-
quences which converge to zero is denoted by ¢ (V). It follows that ¢ is, with
respect to the relative topology inherited from ¢, (V'), a proper closed sub-
space, and defines a quotient space (o (V')/co(V) in a natural way. What is
left is to enclose this space, in a manner that (. (V') /co(V') forms a complete
inner product space, with inner product defined via the generalized limits
(called Banach limits) in £ (V) (see [8] for a more detailed construction).
For a sequence (z,), € ls(V), a bounded linear operator L € B(V') defines
a bounded linear map on (V) as

L'((xn)n) := (Lxp)y € loo(V).

Furthermore, it follows that L'(z,) € ¢o(V'), whenever (x,) € ¢o(V'). Hence,
Ly : loo(V)/co(V) = Loo(V)/co(V') defines a bounded linear operator, such
that Ly ((x)n/co(V)) = (L'(z,)) /co(V), for every (z,) € loo(V). This im-
plies that ||L|| = ||Lg||, and that L{, extends continuously to the entire space
loo (V) /co(V'), and that extension is denoted again by L.

Theorem 1.3.2. [8, Theorem 1] For every L € B(V), 04pp(L) = 04pp(Ly) =
op(Lo)-
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Now applying this construction to the operator X defined on the Hilbert
space H from Theorem 1.3.1, where AX + X A* = —1I, it follows that X{ is a
self-adjoint operator as well, but with the pure point spectrum. In that case,
we conclude that X, has strictly positive eigenvalues (we simply analyze the
equation AjX) + X[ A*, = —I} in the same manner we analyzed the initial
equation AX + XA* = —I in the first part of the proof of Theorem 1.3.1),
therefore, all approximate eigenvalues of operator X are strictly positive,
thus completing the proof.

Theorem 1.3.3. [10, Theorem 7.2.] With respect to the previous notation,
if the spectrum of A is contained in the open left half plane, then every
solution to the abstract differential equation (1.12) is stable in the Lyapunov
sense.

Proof. Let X be the positive solution of the operator equation A*X + X A =
—1. Define the real-valued non-negative function f : [0, +00) — R as f(t) =
(XZ(t),Z(t)). Then
[ty =(XZ'(t), Z(t)) + (X Z(t), Z'(t)).
However, Z'(t) = AZ(t) so
F1(6) = (XAZ(t), Z(1)) + (X Z(t), AZ(t)) = — || Z(0)]|*.
Choose d > 0 such that X > dI. Then

f(&) = d|Z()|?

and

) =zl _ 1

f@) —dizor d

Therefore
(1) < —(t/d) + C,

for some constant C', that is,
d|Z®)|* < f(t) < e

Taking t — o0 finishes the proof. m
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1.4 The homogeneous equation: generalized
commutators

Specially, when C' = 0, the equation (1.1) is said to be homogeneous. If
the homogenous equation is regular, then the only solution is the zero op-
erator. However, in the singular case, we characterize the set of generalized
commutators of A and B:

{X: AX = XB}.

It is important to emphasize that if X is a generalized commutator of A and
B, then every restriction of X is a generalized commutator for A and B as
well. Therefore, we are always interested in characterizing those X which
have the largest possible supports, w. r. t. the inclusion. Furthermore, it
is quite common to characterize the set of solutions to the inhomogeneous
equation (1.1) as X = X, + X, where X, is one particular solution to
the inhomogeneous equation (1.1), while X}, is an arbitrary solution to the
appropriate homogeneous equation. Therefore, homogeneous equations play
an important role when it comes to singular Sylvester equations, and special
attention will be dedicated to them in the appropriate sections.
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Chapter 2

The matrix case

In this chapter we consider the case where dim V;, dim V5 < oo, that is, the
case where A and B are square matrices of appropriate dimensions, which
share s eigenvalues and C' is a rectangular matrix of appropriate dimensions.
Results presented in this chapter were obtained by the author, in joint work
with his PhD mentor (papers [28] and partially [29]), and in author’s indi-
vidual paper [27].

Denote by o the spectral intersection of matrices A and B:

{M,.. A} =10=0(A)Nao(B).
For more elegant notation, we introduce E% = N (B—\.[) and EX = N(A—
ArI) whenever A\, € o. Different eigenvalues generate linearly independent
eigenvectors, so the spaces E% form a direct sum. Put Ep := i EY Tt
is a closed subspace of V; and there exists E4 such that V; = k;?,lg ® Eg.

With respect to that decomposition, denote By := BPg,, B; := BPEé and

2.1 Solvability of the equation

We begin with the following proposition (see any functional analysis text-
book).

Proposition 2.1.1. Let V be a Hilbert space and L € B(V). If W is
L—invariant subspace of V, then W+ is L*—invariant subspace of V.

Proof. Let w € W. Then Lw € W. For any u € W+ we have
0= (Lw,u) = (w, L*u),

15
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thus L*u € W+ for any u € W+. m

Theorem 2.1.1. [28, Theorem 2.1.] (Ezistence of solutions) For every k €
{1,...,s}, let Ay, E% and E% be provided as in the previous paragraph. If

N(C)F=R(B)) and  C(Ef) CR(A—NI), (2.1)
then there exist infinitely many solutions X to the matrix equation
AX - XB=C. (2.2)

Proof. For every 1 < k < s, let E%, Ep, E3, Bg and B; be provided as in
the previous paragraph. Note that N'(C)*t = R(CY), where Cf € B(Va, V1),
with R(C}) C Ep.

Step 1: solutions on Ep.

We first analyze Ei. The space Ep is BPEé —invariant subspace of V; and
Proposition 2.1.1 yields Ex to be (BPE]JB_)*— invariant subspace of V;, so

without loss of generality we can observe restriction of Bf as B : E — Ei.
Since 0(Bg) = {A1,..., As}, it follows that

o(B;) C {0} Ua(B)\ (M., A

Case 1. Assume that o(Bj) N o(A*) = (. Then there exists a unique
X3 € B(Vy, Ef) such that

XA = BiX =€,
that is, there exists a unique X; € B(Ep, V,) such that
AX, - X1B, =C)
holds.

Case 2. Assume that o(A*)No(By) # 0. It follows that o (A*)No(By) = {0}.
A* cannot be nilpotent. Truly, if 0(A*) = {0} = 0(A), then by assumption,
o(B)Na(A) # 0, therefore, 0 € o(B), that is, 0 € 0. If u € N(By), it follows
that Biju = 0 and u € E%, but then Bu = Byu = 0, so u € N(B) C Ep,
therefore u € Ep N E% = {0}. Hence contradiction, implying that A* is not
nilpotent, but rather has finite ascend, asc(A*) = m > 1, where N ((A*)™)
is a proper subspace of V5.
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Now observe B} : E — Ep, which is not invertible by the assumption. Take
arbitrary operator Z5 € B(N(A*), N'(Bj)). Then for every d € N'(A*), there
exists (by (2.1)) a unique u € N'(Bj)* such that

Bru=Crd.

Define X7, on N'(A*) as X17.d := Zgd+u. Since asc(A*) = m, the following
recursive formula applies.

Assume that m = 1. Precisely, decompose Vo = N(A*) & N(A*)L and
A* = 0@ Aj. Then Aj is injective from N'(A*)* to N(A*)*+ and X7 can be
defined on N(A*)* as restriction of X7 from Case 1.

Assume that m > 1. Then A% is a restriction of A* to N'(A*)* and proceed
to decompose N (A*)t = N(A;) & N(4;)* and and define X7 on N(A}) as
X{nyu = Nfu+d, where Z € B(N (A7), N(B7)) is an arbitrary operator
and

Biu = C7d.

If A; is injective on N(A})*, i.e. if m = 2, then X; can be defined on
N (A3)* as restriction of X; from Case 1. If not, then proceed to decompose
N (AN = N(A5)@dN (A5)*+ and so on. Eventually, one would get to iteration
no. m, in a manner that

Vo = N(A) @ N(AD) e N(A)) & ... @ N(A},) e N (A7),

where A* : N(A%)+ — N(A7 )L is injective. Then o(Bj) No(A%) = 0,
ergo define X} on N(A? )+ as restriction of X; from Case 1 to N(A%)* .
Further, for 0 < n < m, let Z; € B(N(A%), N(B;f)) be arbitrary matrices.
Then define X7 on N(A) as

X{ . d:=27d+u,

where once again v € N (Bj)* is the unique element such that Bju = C}d.
Equivalently, there exists X; € B(E3, V) such that

AXl - XIBI == Cl, (23)

where
Xl = XI(ZO721 ..... Zm)

The condition R(C}) = N(B})* = R(B;) implies X; to be well defined on
the entire Ep.
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Step 2: solutions on Ep.

We now conduct our analysis on Ep. Define E4 = > Efl and split V5 into
k=1

an orthogonal sum V, = E4 @ E+. Decompose A = Ap @ A, with respect to

that sum. Then A, is injective on E5 and Ajv = Av, for every v € Ey. For

every k € {1,...,s} let N}, € B(E%, E%) be arbitrary. For every u € E%, by

the assumption (2.1), there exists a unique d(u) € (Effl)L such that
(A= X\eD)d(u) = Cu.

Define
XE ues Nyu+ d(u), u € B

Then X% : B% — EX@ (PEkL(Al - Akf)—loEg> defines a linear map. What
A

is left is to check whether X5 := >~ XE is a solution to the equation
k=1
AXp — XgBg = CPg,
restricted to Ez. However, this is directly verifiable. For any u € Eg there

exist unique ay,...,a, € C (or R) and unique u; € E%, 1 < k < s, such
that w = Y agug. Then

(AXp— XpBu =AY o Xfue — Y Mo X jun

k=1 k=1

=3 (on(A = \d)) (Nywg + d(ug,))

= Z aCuy, = Cu.
k=1

It follows that

X:[)BE )?1} (2.4)

is a solution to the eq. (1.1). O

Theorem 2.1.1 naturally inquires answers to the following questions:

Question 1. Is every solution to the equation (2.2) of the form (2.4)7
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Question 2. Under which conditions is the solution to (2.2) unique?

Both of these questions have affirmative answers, which is justified by the
analysis of the following eigen-problem associated with the given Sylvester
equation:

Assume that 0 € 0 = o(A) No(B) and let Ny € B(E%, E)) be arbitrary,

for every A € . Define N, := > Ny. Find a solution X to the Sylvester
A€o
equation such that the following eigen-problem is uniquely solved:

AX -XB=C
Xuy = P(EQ)L(A—)\])*lCuAJrN,\u)\, uy € Ep, A€o (6030).
(2.5)

Theorem 2.1.2. |28, Theorem 2.2.] (Uniqueness of the solution to the eigen-
problem) With respect to the previous notation, assume that 0 € o.

1. If the condition (2.1) holds for every shared eigenvalue A € o, then the
solution X depends only on the choice of operator N,, that is, for fixed
N,, there exists a unique solution X such that (2.5) holds.

2. Conversely, for every solution X to (2.2) and for every shared eigenvalue
A for matrices A and B, there exists a unique quotient class (A —
A)TIC(N(B — X)) & N (A — XI) such that X is the unique solution
to the quotient eigen-problem (2.5).

Proof. Recall notation from proof of Theorem 2.1.1.

1. The first statement of the theorem is proved directly. Namely, take
‘/1 = EB@E§7 B = BE@Bl, ‘/2 = EA@EIJ{, A:AE@Al like in
Theorem 2.1.1. Then there exists X = Xz @ X;, which is a solution to
(2.2). By construction, since o(By)No(A) = (), Case 1. applies and X,
is uniquely determined in B(E+,V,) while X7 is uniquely determined
in the class B(Eg/Ey,Va/E}) for every A € 0. Varying A in ¢ com-
pletes the proof.

2. Conversely, let X be a solution to the eq. (2.2). Let A be one of the
shared eigenvalues for A and B and fix u as a corresponding eigenvector
for B. Then X Bu = AXwu. Hence

AXu— XBu=(A—-\)Xu=Cu.
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Split Xu into the orthogonal sum Xu = v; +vq, where v; € N (A—\I)

and vy € (N(A — XI))". Then v, is the sought expression Pra-ant (A—
M) Cu and Xu € vy + N (A — AI). Condition (2.1) follows immedi-

ately. Repeating the same procedure for every shared eigenvalue for A

and B completes the proof.

]

Corollary 2.1.1. [28, Corollary 2.1.] (Number of solutions) let ¥ be the
set of all IV, introduced in the eigen-problem associated with given Sylvester
equation (2.5), that is

S={N,: N,=> N\, N,e€B(EE}), Mco(A)Na(B)=0c30}.
A€o

Let S be the set of all solutions to (2.2) which satisfy condition (2.1). Then
[ =1[5].

Proof. For arbitrary N, € X, there exits a unique X € S such that (2.5)
holds. Further, for arbitrary X € S and arbitrary A € o there exist quotient
classes B} and E3 such that (2.5) holds. Define Ny : E3 — FE} to be
bounded. Then N, = > N,. It follows that N, € 3. There is a one-to-one

A€o
surjective correspondence S <> . O

Remark. Due to Corollary 4.4.1, for fixed N, € X, the solution Xy, € S
can be referred to as a particular solution.

Corollary 2.1.2. [28, Corollary 2.2.] (Size of a particular solution) With the
assumptions and notation from Theorem 2.1.1, Theorem 2.1.2 and Corollary
4.4.1, norm of Xy is given as

1Xn, 1 = IXEIPHIX P < NG 1 Pty (A=AeD) ™ C Py [P+ 1 X0 1,
k=1

(2.6)
where equality holds if and only if the sum Y E% is orthogonal.
k=0

Proof. Taking the same decomposition as in Theorem 2.1.1, let Xn = Xg+
X;. Since Xp annihilates E% and X; annihilates Ep, it follows that

1Xn, 1 = 1 XE + X0|* = [IXEl” + | X0
By the same argument, taking

IXE]? < ING [+ > 1Py (A = M)~ CPpg |,
k=1
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where the equality holds if and only if the sum Y E% is orthogonal.
k=1
O

Corollary 2.1.3. [28, Corollary 2.3.] (Singularities on E%) Assume that
0 ¢ obut 0 € og(A) No(B;) and let dsc(A) = m > 1. For every 0 <

n < m, define Z, € B(R(B;)*, R(A"™)t NR(A")) and let Z = . Z,,. If
n=0

N (C1)* = R(By), then there are infinitely many solutions to (2.2) on Ep.

Those solutions depend only on choice for Z, that is, if Z is fixed then there

exists a unique solution X;(Z) on Fp.

Proof. Proof is the same as part 1) in Theorem 2.1.2. Note that dsc(A) =
asc(A*) = m and R(A™™H)L N R(A") = N((A*)") N N((A*)")L. Then
proceed to Case 2. of proof of Theorem 2.1.1. O

2.1.1 Homogeneous equation

Recall that the equation (2.2) is said to be homogeneous when C' = 0. In that
case, X from Theorem 2.1.1 and Theorem 2.1.2 is always the zero matrix,
and X = 0+ Xpg. This brings our attention to the set of all X, such that
AX = X B. The following corollary speaks of the cardinality of such set.

Corollary 2.1.4. [29, Corollary 2.4.] Let Ay, ..., As be the s different com-
mon non-zero eigenvalues for square matrices A and B. For every k = 1, s,
let E% be the eigenspace for B which corresponds to Ay and let E¥ be the
eigenspace for A which corresponds to \,. For every k = 1, s, put

¢ = dimE% and ¢~ :=dim E%.
There are at least
k=1

different non-zero solutions to the homogeneous equation (2.2), acting from

S S
S" E% to Y E%, which are non-zero on every eigenspace Ef, k=1, s.
k=1 k=1

2.2 Perturbation analysis:
majorization theory

It is not difficult to show that if A and B are altered, then their eigenvectors
(and consequently, the corresponding eigenspaces) are changed drastically.
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This makes perturbation analysis quite difficult, because the solutions Xg,
defined on the said eigenspaces, are in that case incomparable. This naturally
inquires the question: how far are the solutions, if A and B are changed?

If one observes the Sylvester operator, S(X) = AX — X B, and a perturbed
Sylvester operator S"(X) = A’X — X B’, where |A—A4'||, ||B— B'|| < 9, then
IS — 5’| gives an upper bound for the perturbation analysis. For simpler
calculations, we can restrict our observation to Hermitian matrices only, as
any square matrix can be presented as a combination of two Hermitian ma-
trices. Similarly, instead of the sup —norm, || - ||, we observe the Frobenius
norm, || - |2, of the given (daigonal) Hermitian matrix A,

1AL = Jaul*
i=1
For any two real numbers a and b, recall the parallelogram law
la 4+ b|? + |a — b|? = 2|a + b

A similar statement holds in the matrix setting: if A and X are square
Hermitian matrices of the same dimensions, then (see [11])

|AX + XA|3+ || AX — XA|5 =2||AX +iXA|]s.

Consequently, it follows that for any square matrix X, and a Hermitian A,
we have

JAX + X Alls < V2||AX +iX Al».

This implies that [|AX + X B|ls < V2|AX 4+ iX B||, for any square X and
any square Hermitian A and B. Under certain conditions, this estimate can
be extended to a much broader class of matrix norms.

A norm ||| - ||| is said to be unitarily invariant (u. i. for short), if |||A||| =
IIlUAV|||, for every matrix A and every unitary U and V. It is not difficult
to see that u. i. norms depend on the singular values of matrix A, see [9]
and [11]. Classic examples of u. i. norms are the trace norm, the Frobenius
|| - |lo—norm, the Ky-Fan k—norm, and the Schatten p—norm. In what fol-
lows, we state the results obtained in [11] and [27] which concern the u. i.
norms and basic majorizations that involve the Sylvester operator.

For a square n—dimensional matrix A, the matrix A* represents the complex
Hilbert conjugate matrix of A, and |A| = (A*A)"/2. Notation p .d. denotes a
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positive definite, and n. d. denotes a negative definite matrix (operator) for
shorthand. Analogously, p. s. d. denotes a positive semi definite matrix, and
n. s. d. denotes a negative semi definite matrix. The value \;(A) represents
an eigenvalue of the matrix A. If A is Hermitian, then we require

A(A)] = [Aa(A)] = - = [Au(A)].

Similarly, s;(A) represents a singular value of the matrix A, i. e. s;(A) =
VAj(A*A). Hence, we always assume that singular values are ordered in a

non-ascending manner:
(if A is Hermitian, then) || A|| = s1(A) > s3(A) > -+ > s,(A) > 0.

Note that for arbitrary square complex matrices A and B, the following chain
of implications holds:

(|A] —|B|) is  p.osod .
= for every 1 <k <n, sk(A) > sp(B) (2.8)

k k

= for every 1 < k < n, Hsj(A) > HSj(B) (2.9)
i=1 j=1
k k

= for every 1 < k <n, Zsj(A) > Zsj(B) (2.10)
=1 j=1

Relation (2.10) is called the weak majorization of the singular values of B
by the singular values of A, and it is denoted as {s;(B)} <, {s;(A4)}. The
relation (2.9) is called the logarithmic weak majorization of the singular val-
ues of B by the singular values of A, and it is denoted as {s;(B)} <iog(w) {A}-

Relations (2.10) and (2.9) are important, because they state that, if (2.10)
holds, then |||A]l| > |||B]||, for any unitarily invariant norm. This prop-
erty can be extended to the trace class operators, and the corresponding
s—numbers, consult [55], [56], [66], [67], [80] and references therein. This con-
nection with compact and trace-class operators will be mentioned in Chapter

3.

Basic estimates regarding relations (2.7)—(2.10) were obtained by Bhatia and
Kittaneh in [11].

Theorem 2.2.1. [11, Theorem 1.1] Let A and B be nxn Hermitian matrices.
Then
{s;(A+ B)}; <w V2{s;(A+iB)};. (2.11)
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If A is positive semidefinite, then we have the stronger inequality
{55(A+ B)}; <iogtu) V2{s;(A +iB)}; (2.12)

If both A and B are positive semidefinite, then this can be strengthened
further to

s;(A+ B) < V2s;(A+iB). (2.13)
There exist 2 x 2 Hermitian matrices A and B for which (2.12) is not true.
There exist a 2 X 2 p. s. d. matrix A and Hermitian B for which (2.13) is
not true. There exist 2 X 2 p. s. d. matrices A and B for which the matrix
inequality
A+ B <V2/A+iD|

1S not true.

The proof uses a minimax principle derived in [9]. If A is a Hermitian matrix,
then

Ai(A) = Inax Hll]\I/[l (x, Ax). (2.14)
<C" =€
dimM=j ||z||=1

Moreover, if A is an arbitrary linear operator on C”, then

s;(A) = max min ||Ax]|. (2.15)

dimM=j ||z||=1

Further, we have:
k k
Ee{l,....n} = > s;j(A) =max|> (y;, Ax;)|, (2.16)
J=1 J=1

where the maximum is taken over all k-tuples of orthonormal vectors x4, ..., y
and yq, ..., yr. Finally, we have:

k
ke{l,2,...,n} = []si(A) = max|det W*AW| (2.17)
j=1

where the maximum is taken over all n x k£ matrices W with the property
W*W = 1.

We now formulate and prove results obtained by the author in [27]. Theorem
2.2.1 is proved using the same technique.
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Lemma 2.2.1. [27, Lemma 2.1.] Let a and b be real numbers, and let
a = pu+iv, B = XA+ i be complex numbers, which satisfy the conditions
(2.18) and (2.19) below. The following hold:

(1) If ab > 0 and A+ vn > 1, then |a + b| < |aa + Bb;

(2) If ab < 0 and A+ vn < 1, then |a + b| < |aa + Bb);

(3) If ab = 0 then |a + b| < |aa + B0|.

Theorem 2.2.2. [27, Theorem 2.1.] Let A and B be Hermitian matrices.
Let p,v, \,n € R,
a:=p+iv,f:=N+in (2.18)

be provided in a way that

al, 18] = 1, (2.19)
pA +vn > 1. (2.20

Then:

(1) If B and A+ B are p. d. and all singular values of A + B are greater
than ||B||, then {s;(A+ B)} < {sj(cA+ 8B)};

(2) If A and B are n. d., then {s;(A+ B)} <iogw) {5;(0A + B)};

(3) If A and B are p. d., then s;(A+B) < sj(0A+SB) forall j € {1,...,n}.

Proof. (1) Under the assumptions, there exist orthonormal eigenvectors ey, ..., e,
of A+ B, arranged in such a way that the following holds:

1<j<n: sj(A+B)=[ej,(A+ Bej)| = |(ej, Aej) + (ej, Bej)| (2.21)

Note that A + B and B are positive definite matrices, so it is safe to say
that (e;, Ae;) and (e;, Be;) are real numbers. Denote a := (e;, Ae;) and
b := (ej, Be;) for given j. Then

ab = (ej, Ae;)(e;, Bej)
= ({ej, (A+ B)e;j) — (e, Bej)) (e, Bej)
= (s;(A+ B) — (¢, Bej))){ej, Bej).

Since, (ej, Be;j) > 0, applying the Cauchy-Schwarz inequality, we have:
ab = ((ej, Be;))(s;(A+ B) — || Bej|| - [|¢;]])
Since ||e;]| =1 and ||Be;|| < |[B||l[e;]| = [|B]], we get:

ab > ((e;, Be;))(sj(A+ B) —||B||) > 0. (2.22)
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Since ab > 0, we can now apply Lemma 2.1 in (2.21):

[(ej, Aej) + (ej, Bej)| < |afe;, Aej) + B(ej, Bej)| = [{ej, (aA + BB)ej)|.

Combining the last inequality with (2.16), it follows that

sij(aA+ BB)

IIM»

k k
ZSJA+B Z ej, (?A+ B)e;)|
Jj=1 J=1

(2) Let A and B be Hermitian n.d. matrices. Let {\;,..., \,} denote the
spectrum of (—B)~2 A(—B)~z. Now we have:

|det(A + B)| = |det[(—B)2((—B) zA(-
= | det(—B)det((—B) "2

= | det(— |H;Aj—1\.

Note that \; are negative real numbers, for all j, due to A and B being n.
d. Therefore, we can apply Lemma 2.1. Let a := A; and b := —1. Since the
condition Ay +vn > 1 is satisfied, due to the assumption of the theorem, the
following inequality holds:

| det(— |H|)\—1| < | det(— |H| B+ a)|

[SIE

— |det(—B )||det(—51+a(—3)—%A(—B)—
= |det(aA + BB)|.

)|

From (2.17), we know that there exists W € C"** W*W = I, such that

[[si(A+B) = [det(W*(A+B)W)| < |det(W*(aA + BB)W))

j=1

< s aa+sByW),

j=1
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k
H s;(W*(aA+ B)W

J=1

(€A + pB) =

HEF

Ew
Ew

sj(A+B) <

j=1 7j=1

s;j(aA+ BB).

(3) Let A and B be Hermitian p.d. It follows that the singular values of
A+ B are also its eigenvalues, because A + B is also Hermitian p. d. Let
j € {1,...,n} be fixed, ey, ..., €; be the eigenvectors of A+ B that correspond
to the eigenvalues (singular values) Ay, ..., \; of A+ B, in that order, and let
M be the span over {eq,...,e;}. Now we have:

sj(A+B) = mlﬁ (x,(A+ B)z).

xre
[l]|=1

Note that (z, (A+ B)z) = (z, Ax) + (z, Bx), for an arbitrary normed = € M,
for an arbitrary j—dimensional subspace M of C". Since A and B are p. d.,
it follows that (z, Az) > 0 and (z, Bx) > 0. Thus we have:

(x,Az) + (z,Bx) = |(x,Azx)+ (z,Bx)| < |a(x, Az) + B{z, Bx)]|
= |(z,(aA+ BB)z)|.

Using the condition of the theorem: pA +wvn > 1, we can apply Lemma 2.1.
Since the majorization holds in all M < C",x € M, ||z|| = 1, we have:

si(A+B) < [(z,(aA+ [B)z)| < |[(aA+ BB)x|| - [l
= |[(aA+ BB)z|]
=
si(A+B) < mln (A + BB)z|| < ]\I?%Xn f}ém ||(cA + BB)z||
||IH 1 dimM=j ||z[|=1

s;j(aA+ BB).
[
Corollary 2.2.1. [27, Corollary 2.2.] Let A and B be Hermitian matrices,

and p, v, \,n € R, @ := p+iv, 5 := A +in denoted in a way that |«|, |5] > 1,
and Ay + vn < 1. Then:
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(1) If B is negative semi-definite, A + B is positive semi-definite, and none
of the singular values of A+ B are smaller than ||B||, then {s;(A+ B)} <.
{5(ad + BB)}

(2) If A is positive semi-definite and B is n. d., then {s;(A 4+ B)} <iog(w)
{s;(aA + BB));

(3) If A is positive semi-definite, B is negative semi-definite and A + B is
positive semi-definite, then s;{A + B} < s;{a A+ 8B}.

2.3 Approximation schemes
As seen from the proof of Theorem 2.1.1, every solution to (2.2) has the form

| Xg O
R
where X solves the ,regular problem” (2.3), while Xg solves the eigen-

problem
Xpu = Nyu+ P(Ek)L(A — M) Cu, (2.23)
A

for every u € E%, for every shared eigenvalue )\;, and every given N, €
B(E%, EX). Tt is known that, even with given eigenvalues, numerical pro-
cedures for computing the corresponding eigenvectors are highly unstable.
Therefore, numerical methods for solving the singular equation (2.2) are nu-
merically unstable in general. However, if we restrict our attention to solving
only (2.5), that is, if we assume that Aj,..., A are provided, and the corre-
sponding Nj, € B(E%, E¥), are provided as well, for 1 < k < s, then solving
the (2.5) reduces to two numerically solvable problems: one is solving (2.3),
which has been done in [7], [14], [23], [28], [50], [52], [69], [71], [88], [94], [95]
and references therein. The other problem is solving (2.23), which is merely
the standard problem
Lz =y,

with = and y given and L the unknown, which has been solved in [6], [18],
4], [54], [73], [74] and rich references therein.
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The bounded operator case

Unlike the matrix case, when it comes to bounded linear operators, the corre-
sponding spectra of A and B can contain values which are not eigenvalues (see
e. g. [17], [37], [43], [59], [86], [99] and [102]). Therefore, the standard eigen-
analysis approach fails, but an alternative way solves the problem. Main
results in this chapter were obtained by the author in his individual papers
[25] and [26].

The main goal is to solve the Sylvester equation given in its vector form
AX —XB=S5X)=C, (3.1)

where S'is the Sylvester operator while X and C are treated as vectors from
the space B(V4, V2). Problems of the form

L=y

require access to the fact whether y € R(L). Then and only then, the equa-
tion Lz = y is solvable. Recall that, if 0 ¢ o(5), then S is invertible on the
entire space B(V}, V2), and for every C' there exists a unique X such that (3.1)
holds. However, if 0 € ¢(S), then the operator S is singular (which is the
main premise of this dissertation), but this still does not answer the question
whether C' € R(S) (recall condition 2.1 from Theorem 2.1.1). Therefore,
sufficient conditions for solvability of the equation (3.1) are required.

In this chapter, D represents the open unit disc in the complex plane and D
represents its closure. H(D) denotes the set of all holomorphic functions on
D, continuous on its closure. P[C] denotes the set of all polynomials with
complex coefficients. Finally, let AbC'on be the set of all f € H(D) such that
the power-series for f is absolutely convergent on D.

29
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3.1 The algebra A xp

In what follows, we assume V; and V5 to be Banach spaces, A € B(V%),
B € B(Vy) and X € B(Vy,Vs) such that X # 0. Define n—th power of AXB
in B(V1,V3) by

(AXB)" := A"XB", ne€N.

Put

Aaxp = {p(AXB) : p € P[C]}. (3.2)

These expressions raise particular interest, as they appear in numerous pa-
pers, among which are [15], [16], [22], [34], [58], [72], [76], [78], [80], [87].

3.1.1 Invertibility in A,xp

Let € > 0 and M := max{][|A|, || B||} + . Then ||A], || B|| < M and |54,
| Bl < 1. Put A := ;A and B, = ;B. It is not difficult to see that
[Al, 1 B:]l < 1 and

AAXB = AAlXBl .

Theorem 3.1.1. [25, Theorem 2.1.] Assume ||A|| and ||B]| to be smaller
than one. Let n, m € Ny such that 0 <n < m and let Ay xp be provided as
in (3.2). Then

1. The ordered triple (Aaxp, || - ||, +) is a separable Banach subspace of
B(Vi,V,). The ordered triple (Aaxp,+,-) is a commutative algebra
with the unity X. The ordered quadruple (Aaxg,| - |,+,) is not
necessarily a normed algebra.

2. The inequality [[(AXB)™|| < |[(AXB)"|| holds, where the equality is
obtained iff (AX B)* = 0, for some k € {0,...,n}.

3. The series
—+oc0

> (AXB)™ (3.3)

Jj=0

converges in Asxp. The operator X — (AX B)™ is invertible in Aaxp
and its inverse is given as (3.3).

Proof. Let Axxp, A, B, m and n be provided as stated in the theorem.

1. In order to prove that A4xp is indeed a separable Banach subspace
of B(Vi,V4), it suffices to prove that Asxp is a closed and separable
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subspace of the Banach space B(V;, V5). The closedness follows directly
from (3.2). Since the powers

r—1, Tz, o~
form a Schauder basis for the space of polynomials P[C], it follows that
X, AXB, (AXB)?*

form a Schauder basis for A xp (or even a Hamel basis, in the case
that AX B is nilpotent). Either way, this proves that Asxp must be
separable.

The associative law AP - A9 = A9- AP for every p, ¢ € Ny, and B?- B? =
B? . BP implies that

(AXB) - (AXB)? = (AXB)? - (AX B)?,
so the multiplication in (3.2) is commutative. Trivially,
X (AXB)" = (A°XB") - A"XB" = A" X B"" = A"X B",

for every n € Ny, so X is indeed the unity in A4xp. Fact that A xp
is not necessarily a normed algebra is illustrated in the next example.

Assume that B = \/LQIVI, A= \%IVQ and ||X|| < 1. Then ||AXB|| =

\/%HXH < 1. Now observe

I(AXB)?| = |AAX BB = £ |1 X|
6

and 1
IAXBI]* = [AXB] - [AX B = clIX]*
Since || X|| < 1, it follows that
I(AXB)?*|| > |AXBJ]?,

therefore A4 xp in this particular case is not a normed algebra.

. With respect to the assumption ||A||, || B|| < 1, we have

I(AXB)™|| = A" X B™|| = [|A™ " A" X B"B"~™"|
<[l A - AX B) [ - [[B™ ]| < [(AX B)"]].
The equality is obtained iff (AXB)* = 0, for some k& € {0,...,n}.
Another way to prove the later is with help from Banach fixed point
theorem. Observe the operator T(X) := (AXB)™". From ||T| <

I|A|l - ||B|| < 1 it follows that 7" is a contraction. Hence there is only
one fixed point for 7" and that is 0.
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3. If (AXB)™ =0 then X = X — 0 is invertible in A, xp and its inverse

is X = (AXB)? Now assume that (AXB)™ # 0. Note that X* —
(AXB)™* = X — (AXB)™*, for arbitrary k € N. Having proved that
I(AXB)™| < || X]|, it follows that

=
—

X — (AXB)™* = (X — (AXB)™) -y (AXB)™. (3.4)

<.
I
o

When k£ — 400, we get
I(AXB)™ || < [JA™* - | X - |BI™* =0, Kk — 400
and consequently

X - (AXB)"* - X, k— +oo.

+ .

On the other hand, the numerical series > ||(AX B)™7|| converges, due
j=0

to the comparison criterion

IAXB)Y™ | < [IX] - (Al - 1BI)™,

where the sequence (||A]| - [|B||)™7, j € Ny forms a geometric pro-
gression. Therefore (3.3) converges absolutely and A4xp is a Banach

space, thus
“+oo

> (AXB)™

=0

converges in A, xp. Further, A xp is a commutative algebra, so

X =(X - (AXB)™) . +f(AXB)m'j
= (f(AXB)m'j) (X = (AXB)™),

+oo .
which yields X —(AX B)™ to be invertible in A x g, having > (AX B)™7
j=0
as its inverse.
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Corollary 3.1.1. [25, Corollary 2.1.] If V; = Vo =V, let A, B and X €
B(V), such that they all commute and X = X?. Then Asxp is a Banach
algebra.

Proof. If A, B and X commute, where X = X2, a direct verification shows
that the multiplication defined in (3.2) coincides with the standard multipli-
cation defined on B(V) (i.e. composition of the operators at hand). B(V)
is a Banach algebra and Axp is a closed subspace of B(V') with the same
multiplication, therefore A, xp is a Banach algebra as well. O

Remark. In order to reduce the algebra A4 xp to a Banach algebra of, say,
bounded linear operators over a Banach space V', existence of idempotents
is a necessary condition. However, bounded projectors always exist in every
maximal commutative unital subalgebra of B(V'). This proves that our alge-
bra Aaxp generalizes the standard notion of a Banach algebra contained in
B(V).

The previous theorem suggests further investigation of invertible elements in
Aaxp. For future reference, the said set will be labeled as A7} 5. Note that
invertibility in A4x p is not correlated with actual (left or right) invertibility
of operators.

Suppose A € B(V,), B € B(V;) such that ||A, ||B]| < 1. Let n > 0 and
let g : [-n,1] — R be a real non-negative function, non-decreasing on [0, 1],
from the class C*(—n, 1). Define the set F (g) as

+o0 +oo
F(g)={f € AbCon : [f(z)=> az gllz) = lellzl", |2 <1}.
k=0 k=0

The value ||g|| will represent the sup-norm of ¢ on [0, 1], that is

+oo +oo
lgll = sup{g(lz]) = |2l < 1} =sup{d_ lexllz]* : [z] <1} = |ea| = g(1).
k=0 k=0
Remark. From the maximum modulus principle one can see that the afore-

mentioned function g must be non-descending on [0, 1]. Therefore ||g|| = g(1).

Remark. The value n plays no role in the further text. Its main purpose is
to ensure differentiability of g at point zero.



34 CHAPTER 3. THE BOUNDED OPERATOR CASE

Theorem 3.1.2. [25, Theorem 2.2.] Let operators A and B, function g
and the set f (g) be provided as described in the previous paragraph. Let
X € B(V1, V), f € F(g) and X € C such that AXB # 0 and ||.X||-[|g]] < |Al.
Then

1. Operators .
(A +g(0)e¥) X — f(AXB)

are invertible in Asxp, for every ¢ € [0, 27).

2. If A+ g(0) e # 0 for every o € [0,27) then

+o0o

(A +g(0)e?) X — fF(AXB)) " =3 (A+g(0)e*) " (F(AXB))".
= (3.5)

3. If A+ g(0) e = 0 for some ¢q € [0,27) then f(AXB) is invertible in
Aaxp. I '
[F(AXB) = g(0) e -X|[ < [A]

then its inverse is

(JAXB)™ = (=)' (f(AXB) ~ G X > .

k=0

(3.6)

Proof. Let all the assumptions from the theorem hold. Put Y := f(AXB).
We are going to prove all three statements by conducting the following cases:

Case 1. Assume that g(0) = 0 and |A| = 1. Put

+00
f(2) =) az¥ |zl <L (3.7)
k=0
Observe
400 +o00
IF(AXB)" || = D ex(AXBY ™| <> el - X1 - (AN - 1Bl
k=0 k=0

= 1X0 ) leal (1AL - 1BID™* = 1X1 - g ((IAIL- 1BI)™).

Now (||A]| - ||B|N)" — 0, s0 Y™ = f(AXB)™ — 0 when n — +oo. This yields
that
X-Y"> X n— +oo.
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Further,

|53 (g’f% AxBy )’“

k=0 \n=0

—+00 +00 k
s}leﬂ“(Eﬂ%kOMHwBMﬂ

n=0

<XJMW (1Al 111",

which is a convergent sum, as a geometric progression
(X1 - Nlglh* < 1, & € No.

Therefore, the decomposition

X-Y"=

|
=

|
=
]

)

holds when n — 400 and
—+o00
SN
k=0

Case 2. Assume that ¢g(0) = 0 and |\ # 1. Put gi(z) := %. Then
91(0) = 0 and for every f; € F (g1) it follows that

AXB X
lg(AXB)|| _ llgll - IXT_

AXB
Iax By < ML < ML

Now apply Case 1. of this theorem on fi(AXB) = $f(AXB). It follows
that
AX — f(AXB)

is invertible in A4y and its inverse is given as

(AX — F(AXB)) ™ = S A (F(AXB)) .
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Case 3. Assume that g(0) = w # 0 and let A be arbitrary. Define
gi(z) =g(x) —w, xe€][0,1].
Then ¢;(0) = 0 and since w = |¢g| > 0 we have ||g1]| = ||g]] —w < ||g]|, so
lgall - [ XN < |AL,

thus Case 2. of this theorem applies. In other words, X — %( fi(AXB)) is
invertible in Aaxp, for every fi € F (g1), that is
f(AXB) —we* - X  A+we' f(AXB)

X - = X -
A A A

is invertible in A4 xp, for every ¢ € [0,27), and so are the operators
(A +g(0)e¥) X — f(AXB), ¢ €0,2m).

This proves the first statement of the theorem. To prove the other two, we
conduct an auxiliary discussion as presented below.

If X+ g(0)e™” # 0, for every ¢ € [0,2m), then the sought inverse is (for a
given )

—+00

(A +9(0)e) X — F(AXB)) " =" (A+g(0)e*) " (F(AXB))".

k=0
If A+ g(0)e™ = 0, for some g € [0,27), then

f(AXB) = :—if(AXB) _ _A@ _

(3 <)\+g(0) e f(AXB)) _

A A

(3.9)

(=) <X _ f(AXB) —)\9(0) cio -X>

is invertible in Asxp. If || f(AXB) — g(0) ’#° - X|| < |)|, then its inverse is

(FAXB) " = (=N ) (f<AXB) _AQ(O) - 'X> |

k=0



3.1. THE ALGEBRA Aaxp 37

Corollary 3.1.2. [25, Corollary 2.2.] Let A, B, X, A\, g and F (g) be given
as in the previous theorem.
Then for every g; such that 0 < ||g1]| < ||g|| the operator

X+ g(0) e
mm——ﬁ%L—X—juAXB>

is invertible in Asxpg, for every f1 € F (g1), for every ¢ € [0, 27).

Theorem 3.1.3. [25, Theorem 2.3.] Let Y € Asxp be given as Y =
f(AXB), for some function f € AbCon. There exists w € C such that
wX —Y is in A;& p- Furthermore, there exists wy € C such that for every
A € C with |A\] > |wo| the operator AX — Y is in A% 5.

Proof. Assume that
+oo
f(z) = Zakzk, |z| <1
k=0

and that the series
+o0

> ol

k=0
converges. Put

“+oo
gallz) = ) lawl(12)", |2 < 1.
k=0

Then ||g.|| = ' < +00. There exists a numerical series

+o0o
D 1Bkl 180l =0
k=0

such that its sum is I 4 ¢, for some ¢ > 0. Then there exists a function gg
such that

—+00

g5z = D_1BlI=l*, 12l <1, llgsll =T +e,  g5(0) =0.

k=0

Now there exists a ¢ € C\ {0} such that
lgsll - X1 < I¢]-

Applying Corollary 3.1.2 we see that

lgall - X — F(AXB)

lgsl
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llgall
llgsll
follows that |w| can be arbitrary large. Therefore the statement is true for

every A € C such that |A| > |w|.
To complete the proof, note that |(| does have a lower bound. Let e = 0+0
and take a family of holomorphic functions g3, such that

is in ALz Now take w := (;%1. Since there is not upper bond for |(| it

95(0) =0
and
H|g§H —TI'|=o0(e), e¢—=0+0.
Then % —1=o0(e), &— 0+0. Now take (p such that
[Gol = mf{[C] = flgall - XN <<l e =040} = [[X]|- T
The sought number is |wo| = |¢o| - 122l = || X]| - T. O

”gaH -

Definition 3.1.1. Let Y € Asxp, Y = f(AXB), f € AbCon. The set of all
complex numbers A such that AX —Y € A p is called the resolvent set of
Y and is denoted as p(Y'). Its complement (in the complex plane), denoted
as o(Y) is called the spectrum of Y.

The number

r(Y)=inf{r >0: e C, A >r=Xepl)}

is called the spectral radius of Y in A, xpg, denoted as r(Y).
The resolvent function Ry : p(Y) — Aaxp is defined as Ry (\) := (AX —
Y)~!, for every A € p(Y).

Even though (Aaxg, ||-||) is not a Banach algebra, a simple verification shows
that the following lemma holds.

Lemma 3.1.1. Let Y, Z € Ayxp and let A, 6 € p(Y), X € p(2).

1. The resolvent equations hold
Ry (M) — By (6) = Ry (6)(0 — N)XBy(\).
Ry (A) — Rz(A) = Ry(N)(Y — Z)Rz()).
2. The resolvent function is differentiable on p(Y'), in the sense that

. Ry(\) — Ry(0)
i S —

= (-1)(IX —Y)2



3.1. THE ALGEBRA Aaxp 39

3. The resolvent function vanishes at infinity, that is

lim Ry (\) = 0.
[A| =400

Corollary 3.1.3. [25, Corollary 2.3.] Let assumptions from Theorem 3.1.3
hold. Then f(AX B) has a non-empty bounded spectrum.

Proof. Put Y = f(AXB) € Asxp. There exists r(Y), such that, for every
complex number A with its modulus greater than r(Y"), it follows that A €
p(Y). Lemma 3.1.1 yields that the resolvent function Ry is differentiable on
p(Y).

Assume p(Y') = C. Then Ry is analytic on the entire complex plane. Further,
Ry(A) — 0, |\ — 400, so Ry is bounded. But then Liouville theorem
yields that Ry must be constant on C. Hence contradiction. Therefore there
exists a u € Csuch that |u| < r(Y) and pX =Y is not invertible in Ayxp. O

In what follows, we prove that under the same conditions, the spectrum is
not necessarily compact.

Theorem 3.1.4. [25, Theorem 2.4.] Let f € AbC'on and let r be an arbitrary
positive number. There exists a function g holomorphic on the open unit disc
and continuous on its closure, represented by the power series which is not
absolutely convergent on the boundary of the unit disc, with the property

If =gl <
Proof. Let f be represented as
+o00 “+o00
f(z) = Zakzk, lz| <1, Z | < 4-00.
k=0 k=0

There exists a power series
+oo
E eper2E 2] < 1,
k=0

with e, >0, ¢ €[0,27), k € Ny, such that

—+o00

“+00
g g e'?F converges and E € = 400.
k=0 k=0
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) too
Put B, := ay + & e+ and define g;(2) := > Bp2"*. Since
k=0

1Bl = | = Bl = | — o — en € | > [|ag| — |er e || = |ex — |l

+oo
for every k € Ny, it follows from the comparison criterion that » |5x| = +o0.
k=0
For every z € D let € : z + £(z) € (0,7) be a continuous real function.
Riemann conditional convergence theorem implies existence of a bijection

7 : Ny — Ny such that

eiw B = g(2).

. too .
Put B = ajw) + €jw) €¥® and define g;(2) == > 5j(k)z3(k). Note that
k=0

+00 +00
> |Bjmwy| = 4+00. By the assumption, the numerical series ) |y is (abso-
k=0 k=0
lutely) convergent, therefore, for any bijection p : Ny — Ny the following two

equalities hold

+00 +oo
z) = Zakzk = Zozp(k)zp(k), 2] <1
k=0 k=0
and
+oo +oo
> okl = eyl
k=0 k=0

But then
|95(2) !—\Zé‘ i W = —e(z), |2 <1,

and consequently
lg; = fIl <.

The sought function g is g;. O

Theorem 3.1.5. [25, Theorem 2.5.] Assume that Y € A% if and only if
X -Y e{f(AXB): f € AbCon}.

Then o(Y') is not compact.
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Proof. Corollary 3.1.3 yields ¢(Y) to be bounded. Thus it suffices to prove
that p(Y') is not an open set. Observe ¢ : C — A4 xp, defined as

Y(A) =X =Y.

Then
AR =X -Y: AX-Y Al

and consequently
p(Y) =0~ (Aaxs NR(9)).

Assume p(Y) to be an open set. Then A%z N R(¢p) is an open set as well.
Consequently, R(y) is an open set because the mapping ¢! is continuous
and R(y) is the inverse image of the open set C. Therefore, A% is an
open set. Now take x(Z) := X — Z, for any Z € Asxp. Obviously, y is
a continuous mapping and x(x(Z)) = Z. Consequently, {f(AXB) : f €
AbCon} is the inverse image of A} 5 via the continuous mapping y, hence
it is an open set. However, the mapping f — f(AXB) is continuous on
AbCon, and therefore AbCon is an open set, which contradicts Theorem
3.1.4, concluding that p(Y) cannot be an open set and that ¢(Y’) cannot be
a closed set. O

3.1.2 Algebraic Representations and Extensions
Let A, B € B(B(V1,V4)) be defined as
AX)=AX, B(X)=XDB, X eBW,V).

Trivially, A and B commute and AXB = (AoB)(X) = (Bo A)(X). The
following lemma obviously holds:

Lemma 3.1.2. [25, Lemma 2.2.] With respect to the previous notation,
algebra A4 xp is isometrically isomorphic to

{p(AoB)(X), pe P[C]}.

For the given set S of operators, let S~! be the set of all invertible operators
in S. Recall that

Ap i =1{Y € Auxp: Y is invertible in A,xp}

and for a given L € B(V), the set [L] represents the set of all operators from
B(V)) which commute with L. Consequently, L™ € [L], for every n € Ny.
Define

[AAXB] = [A] - Aaxp - [B] = {CDE C e [A],D € Aaxp, FE € [B]}
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and
Bixp = B(VQ)'.AAXB'B(Vl) = {FGH P e B(Vg),G € Aaxn, H € B(Vl)}

Now one takes natural extension of the multiplication from Asxp to [Aaxs]
and Baxp. More precisely, let C1D1Ey, CoDoFEy € [Aaxp] and let F1G1H;,
FyGoHy € Baxg. Then

(ClDlEl) . (CQDQEQ) = (Cl . 02) . (Dl . DQ) . (E1 . EQ)
and
(F1G1H1) : (FQGQHQ) = (Fl : Fg) : (Gl . Gz) . (Hl . Hg)

It is now possible to observe
[Aaxp] ™ = [A7 - Agxp - BT

One should note that Iy, € [A]™' and Iy, € [B]7}, so [A]7! and [B]™! are
non-empty and so is [Aaxp|~'. However if A and B are invertible, then A"
and B™ are invertible, and so are A™" and B™", for every n € N. In other
words, operators of the form A*X B* € [A,xp| ™!, for every k € Z. The set
[Aaxp]~! has some important properties, as illustrated below:

Theorem 3.1.6. [25, Theorem 2.7.] With respect to the previous notation,
the following statements hold

1. The ordered pair (A}, ) is an abelian group.
2. The ordered pair (B yz, ") is a group.
3. (A kg, ) is a subgroup of (B xp, ).

4. The centralizer and the normalizer for (A% p,-) in (Byxp,") are the
same set [Aaxp] '

Proof.

1. Since (Aaxp,+,-) is an algebra (Theorem 3.1.1), it follows that
(Aaxp\{0},") is a semi-group. Taking the set of all invertible elements
from Aaxp, that is, taking the set A%, we see that (A Ly, ) is
indeed a group. Commutation follows from Theorem 3.1.1.

2. Let FGH be an element from By, where F' € B(Va)™!, G € A xp
and H € B(Vy)™'. Tts inverse is F"'G™'H!, where each inverse be-
longs to the corresponding operator space. It follows that (B, ") is
also a group. It is not abelian, since invertible operators in general do
not need to commute.
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. Specially, Iy, € B(Vx)™', k=1,2, it follows that

Aixp = Iv, - Ay - Ivi C Byxp. Therefore, A% is a commutative
subgroup of B -

. Let CDE € [.AAXB]il. Then

CDE - A3
—={CDE - f(AXB) : f(AXB) € A %z}
={CDE - lim p,(AXB):  lim p,=f, [(AXB)e ALy (3.10)

={ lim (CDE) p,(AXB): lim p,=f [(AXB)€ Ajxp}

n—-+oo

Let ¢n(AX B) be given as

gm(AXB) =
AT XB™ 4+ a1 A™MIXB™ 4+ a0 AX B+ apX.

Then CDE - ¢,,(AX B) is given as
an(C-A™)-(D-X)-(E-B™)+...4aC(D-X)E.

Since A, A% ..., A™ C € [A], and the same goes (respectively) for B
and F, it follows that (applying X - D = D - X)

CDE - 4(AXB) = qu(AXB) - CDE,

for any polynomial ¢,,. This is also true for the polynomials p, that
occur in (3.10). Therefore,

{CDE - f(AXB) : f(AXB) € Ajxp} =
{f(AXB)-CDE : f(AXB)c Ajxzs},

so CDE- A xp = Ayxp'CDE. This proves that [A4x ]! is contained
in the normalizer of A7} 5 in By s

Now let PQR € By such that PQR - A %5 = A ks - PQR. Then
PeB(Vo)™, Qe Ajxpand R e B(Vi)™". Let f(AXB) € A xp be
arbitrary. It follows that there exists g(AX B) € A} 5 such that

PQR- f(AXB) = g(AXB) - PQR. (3.11)

Assume that
f(AXB) = lim p,(AXB)

n—-+oo
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and
g(AXB) = lim ¢,(AXB).

m——+00

For given n and m, we have
p(P-A")-(Q-X)- (R-B")+...+coP(Q-X)R
and

gm(AXB) - PQR =
dp(A" - P)-(Q-X)-(B™ - R)+ ...+ dyP(X - Q)R.

Now taking m and n — +oo, from (3.11) we have that
|PQR - p,(AXB) — 4,(AXB) - PQR| — 0.

But then for large enough n and m we have || A* P— P A¥|| — 0, for every
k € {1,...,min{n,m}}. This yields that P € [A]"! and R € [B]™',
so PQR € [Aaxp]™}, that is, [Aaxp] " is the normalizer for A% 5 in
B 5- The centralizer part goes completely analogously.

]

We summarize our algebraic representations with a brief discussion when A
and B are nilpotent and finite-dimensional operators.

Lemma 3.1.3. [25, Lemma 2.3.] Let n € N such that A"XB" = 0 and
AP 1X B 1 2£ 0. Then Asxp is isomorphic to

({restyn(pm(x)) : pm € PIC], m € No},+,),

where addition and multiplication are standard operations in the space of
polynomials.

Proof. For every k € {0,...,n — 1} put o((AXB)¥) := ¥, where 2* is the
polynomial  + 2*, for some independent variable z. O

For shorter notation, the set {rest,»(p,(z)) : pm € P[C], m € Ny} will
simply be denoted as rest,». Note that

{0, 1, = 2% ..., 2"} ={restym(z"), keNy}
The corresponding multiplication forms a structure

({0, 1, =, 2% ..., 2"} ) = ((T)restuns )
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where the multiplication is standard and is given as

P gl — Pt p+g<n
0, p+q=>0.

Theorem 3.1.7. [25, Theorem 2.8.] Let A and B be matrices. Then there
exist n, m € Ny such that the semi-group ({(AX B)*}ien,, -) is isomorphic to

(ZS—, +) s> (<x>restzny ) S¥ (<x>7’estzm7 ) S¥ (<x>7’est$min{myn}7 ) (312)

Proof. Since A and B are matrices, then so are the operators (AX B)¥, for
every k € N. From Jordan-Chevalley decompositions of A and B (see [9]),
we see that

A:Al + A27

where A is invertible on R(A™) and A, is nilpotent on N(A™4A). The
same decomposition holds for the matrix B

B =B+ B,

where B is invertible on R(B™(®)) and B, is nilpotent on N'(B™4(5)). Then
for every k € N,

A" =AY+ A5, B' =B+ Bj,
and consequently,
(AXB)* = (AY - ADYX (BY+ BY) = AAXBF - AF X B+ ALX BY - A X BY.

Let the nilpotency index of Ay be m and let the nilpotency index of B,
be n, for some m, n € Ny. Lemma 3.1.3 yields that (Aa,xg,,+,) is iso-
morphic to rest,». Analogously, (Aa,xp,,+,-) is isomorphic to rest,m and
(Aa,xBy, +, ) is isomorphic to rest minmny. But then the bases of the prior
spaces are isomorphic to the bases of later, respectively. So A%X B maps
to zF, for k < min{m,n}, and A5XBS maps to zero otherwise. Analo-
gous procedure goes for A5 X B¥ and A¥X BY. Finally, observe the invertible
part (AYXBF), k € N. Put o((A1XB))*) =k, p(X) := 0, and its in-
verse, ¢((A1 X B1)~%) := —k. It is now obvious that (Z, +) is isomorphic to
{(A1XBy)k,- : k € Z}. From all of the above, we see that the representation
(3.12) holds. O
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3.1.3 Applications of A,xp to some
operator equations

In this section we will illustrate how to apply the previous results to some
basic operator equations. Let V; and V, be Banach spaces, B € B(1}),
A e B(V,) and C € B(Vy,V3). The sets Aacn, [Aacs| and Bacp are defined
completely analogously as Aaxp, [Aaxp] and Baxpg, respectively, where in-
stead of X we write C. The problem at hand is the same: for given A, B
and C, find X € B(Vj, V3) such that the desired equality holds.

1. Operator equation X — AXB =C
Operator equations of the form
X —-—AXB=C (3.13)

are called Stein operator equations. From Lemma 3.1.2 we see that AXB =
(A oB)(X). If we assume ||A|| and ||B|| < 1, then ||[A o B|| < 1 and conse-
quently I — (A o B) is invertible in B(B(V1,V2)). Since X = Ipw, 1,)(X), we
have that (3.13) is equivalent to

(I —(AoB))(X)=C, (3.14)
which implies
X=({I—-(AoB)H0)= f(AoIB%)’“(C) = fA’“OBk. (3.15)

Remark. From (3.15) we see that X € Ascp. In addition, operator [ —AoB
is invertible, so the equation is solvable for every C.

When C' = 0, eq. (3.13) is called homogeneous Stein equation. From dis-
cussion set in Theorem 3.1.1, statement 2, we see that the only solution is
X =0, which agrees with the calculation in (3.14) and (3.15):

X=(U—-(AoB))*0)=0.

One can say that for given holomorphic function f, generalized Stein equation
is every operator equation of the form

X — f(AXB) =C. (3.16)
Applying Lemma 3.1.2, equation (3.16) transforms into
(I - f(AoB))(X) = C, (3.17)



3.1. THE ALGEBRA Aaxp 47

that is
+oo

X =(I—-f(AcB)™H(C) =) (f(AoB)*OC), (3.18)

k=0

provided that ||f(A o B)|| < 1, which supports Theorem 4.42. The same
methodology goes for AX — f(AXB), when A\ € C and the holomorphic

function f are provided in a way that they satisfy conditions of Theorem
4.42.

Corollary 3.1.4. [25, Corollary 3.1] Let f be a holomorphic function, A €
C\ {0}, A, B and X be provided as in Theorem 4.42.
If C € B(V1, V) is given such that

AX — f(AXB) =C
holds, then A xg = Aacs.

Proof. Obviously, C' € Aaxp so Aacs C Aaxp. Conversely, from the pre-
vious discussion X € A cp and consequently Aaxp C Aacs. O

For more results on this particular operator equation, an interested reader is
referred to [32], [34], [53], [84], [85].

2. Operator equations AX = C and AXB=C
In this section we recall how to solve the simplest operator equation,
AX =C, (3.19)

for given C' € B(V1,V,) and A € B(V,). Solvability conditions require that
R(A) D R(C). If A= 0, then the eq. (3.19) is solvable if and only if C' = 0.
Otherwise, if A # 0, then A is outer regular. Consequently, there exists
A®) € B(V;) such that

=[] (i) (47,

where Vo = R+ N(A?) = R(A®) + T, and in that case, A can be repre-
sented via the matrix

[ 81 (9 ()

It follows that AP A = Pr ).
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Proposition 3.1.1. Assume that A is outer regular. If there exists an outer
inverse for A, A® such that R(C) C R(A®), then the equation (3.19) is
solvable, and one of its solutions is X = A®@C.

For a more general problem, define operators A(L) := AL and B(L) := LB,
for every L € B(Vi,Vs), where B € B(V;) and A € B(V2). Then solving

operator equation
AXB=C (3.20)

reduces to two consecutive applications of Proposition 3.1.1. Consult [18],
32], [34], [38], [45], [61], [62] and references therein.

Proposition 3.1.2. If equation (3.20) is solvable, then C' € Asxp.

3.2 Singular Sylvester equation:
Algebra A,xp meets Fredholm theory

In order to solve the initial Sylvester equation, it suffices to find one particular
solution X, and all solutions X, to the homogeneous equation

AX — XB=0. (3.21)

Then every solution X to (3.1) can be obtained as X = X, + X;. The
following Theorem and Corollary concern the homogenized problem (3.21).

Theorem 3.2.1. [25, Theorem 3.4] Let A, X and B be provided such that
AX = XB. Then for every Y € A,xp it follows that AY = Y B. In other
words, every element from A, xp is a solution to the homogeneous Sylvester
equation (3.21).

Proof. First observe the basis of Axp:
X, AXB, A’XB?
Given the way A, B and X are provided, it follows that
A(A"XB") = A(A"'XB"™) = (A"XB")B, necN,

so (AXB)"™ is a solution to (3.21), for every n € N. Further, every finite
linear combination of the basis elements is a solution to (3.21). This proves
that p,(AX B) is a solution to the homogeneous Sylvester equation, for every
pn € P[C]. One should note that, in the bounded-operator case, the set of
solutions to the equation AX — X B = 0 is closed. This is directly verifiable.
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Nevertheless, let f be a holomorphic function on some Cauchy domain (2,
o(A), o(B) C Q, given as the limit of some complex polynomials

f(z) = lim p,(2), =ze€qQ.

n—-+o0o

Then Lemma 3.1.2 applies and
f(AXB) = lim p,(AXB)

n—-+o0
and

Af(AXB) = A(Ji_r}n pn(AXB)) =

lim Ap,(AXB) :°°hm (pn(AXB)B) = f(AXB)B,

N—oo N—oo

so Aaxp is contained in the set of solutions to the homogeneous Sylvester
equation. ]

Corollary 3.2.1. [25, Corollary 3.3.] Let A, B and X be provided such that
AX = X B, and let A and B be provided as in Lemma 3.1.2.
Then A, xp is isomorphic to

{p(A?)(X) :p € P[C]} (3.22)

and to

{p(B*)(X) : p € P[C]}. (3.23)

In order for AX = X B to be solvable, it is required for (3.22) and (3.23) to
be isomorphic to each other.

For a moment, assume that at least one solution to (3.1) is found. Then it
can be further exploited, via the algebra A4 xp introduced in this chapter.
Recall Lemma 1.2.3 from Chapter 1:

Lemma 3.2.1. [50, Lemma 2.1.] Assume X is a solution to (3.1). Then for

any k > 1
k—1

APX — XBF =) AFCOB (3.24)

1=0

In the following, we briefly describe algebraic properties (w. r. t. Asxp), of
one solution to the Sylvester equation (3.1).

Corollary 3.2.2. [25, Corollary 3.2.] Let A, B, C' and X be provided such
that (3.1) holds. Then C € [Aaxg| and for every k € Ny,

ARX — XB* € [Aacs).
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Proof. The first claim follows directly C = AX — XB € [Aaxg].

When k& =0 then X — X =0 € [Aacp]. When k > 1, then (3.24) applies,
and

A*X — XBY = A0+ .. 4+ CB" L
Since A® € [A] and B® € [B], for every s, £ € {0,...,k — 1}, it follows that
every addend on the right-hand-side is in [Aacp], and so is A¥X — X B*. O

Now all what is left to do, is to find one particular solution to (3.1), and
analogously, one particular non-trivial solution to (3.21). This is obtained in
the following section, with help from Fredholm theory.

3.2.1 Finding particular solutions:
Fredholm theory approach

Notation and results from [19], [20], [33] and [103]-[106] come in handy at
this point, and we briefly mention those which are relevant for this section.
For convenience, we denote the ideal of compact operators by C(V7, V5).

Recall that, for a bounded linear operator L € B(V'), the hyper range is
given by R*(L) = N, R(L™) and the hyper null space is given by N°°(L) =
U, N (L™). With asc(L) and dsc(L) we denote, respectively, the ascend and
the descend of the operator L. If asc(L) and dsc(L) are both finite, then
they are equal (to, say, p) and

V = R(LP) + N(LP).

Conversely, if
V =R(L™)+ N(L™),

for some m, then asc(L), dsc(L) < m. It is now clear that, if asc(L) < oo
and dsc(L) < oo, then

R>®(L) N N*(L) = {0}, V =R>(L)+ N>(L).
We introduce some standard definitions from Fredholm theory.

Definition 3.2.1. A (bounded) linear operator L € B(V;, V3) is upper semi-
Fredholm if «(L) = dimN(L) < oo and R(L) is closed in V5. The set of
upper semi-Fredholm operators is denoted as &, (V1, V3).

Definition 3.2.2. An upper semi-Fredholm operator L is a left upper semi-
Fredholm operator if there exists a bounded projection from V, onto R(L).
The set of all left upper semi-Fredholm operators is denoted by ®¢(V7, V5).
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Equivalently (see [106]), an upper semi-Fredholm operator L is a left upper
semi-Fredholm operator iff there exist L, € B(V,, V) and a finite rank oper-
ator F' € B(V}) (or equivalently, a compact operator K € B(V})), such that
L\L = I+ F (respectively, L1 L = I + K). The term left refers to the left
invertibility in the Calkin algebra, and therefore left upper semi-Fredholm
operators are sometimes called essentially left invertible operators, see [12]

and [44].

Definition 3.2.3. [106] Let L € B(V'). The point A € o(L) is a Riesz point
of L if V' is a direct sum of a closed subspace E(\) and a finite dimensional
subspace Fp()\), which are invariant for L and the reduction of L — A to
E () is invertible while the reduction of L — A to Fi(\) is nilpotent.

We now return to the general case, where V; and V5 are Banach spaces and
A, B and C are accordingly provided bounded linear operators, such that

o(A)Nna(B) #0.

Theorem 3.2.2. [26, Theorem 3.1.] Assume that there exists a bounded
embedding J : Vi — V;, with a closed range, such that R(.J) is complemented
in V5. Define operators

C e B(B(Vi, V), C(L):=CJ ' PreyL

and
S e BBV, V), S(L):=AL- LB.

There exists a solution to (3.1) if and only if
S-X=C (3.25)
is solvable in B (B(V1, V2)).

Proof. Denote by ) the bounded projection from V5 onto R(J). In addition
to S and C, define the following operators as previously,

AeB(B(W,V)), A(L)=AL, LeB(Vi, V),
BeB(B(Vi,V3),  B(L)=LB, LebB(W,).

If (3.25) is solved for X € B(B(V4,V4)), then (1.1) is solved by the operator
X(J). On the other hand, for every solution X to (1.1), it follows that

AX—-XB=C&SX)=Ce5-X(J)=C(J)),
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giving one bounded solution to (3.25) at point J, where X € B (B(Vy,V5)) is
given by X (L) = XJ'QL, for every L € B(Vy,V3).

We now proceed to solve (3.25). Since S = A — B and [A,B] = 0, it follows
that
o(S)Co(A)—a(B)={un—X: peoa(A), Neo(B)}.

Trivially, if 0 ¢ o(S), then S is invertible and X = $~'- C. Otherwise, the
eq. (3.25) can be solved by Proposition 3.1.1. O

Corollary 3.2.3. [26, Corollary 3.1.] If V] is a closed, complemented sub-
space of V5, then there exists a solution to (1.1) if and only if (3.25) is
solvable, where J = Py, .

In what follows, we extend the statement from Theorem 3.2.2 to a more
general case. For convenience, we define the following property for Riesz
points of a given operator.

Definition 3.2.4. [26, Definition 3.1.] Let B € B(V}) and let A € o(B) be
a Riesz point of B. Let operator L € B(V;, V), for some Banach space V,
be given such that a(L) = dim N (L) < +o00. Then operator L decomposes
operator B at point A in the Riesz sense if By := B [ar(z) has the property
that

Fp(\) = N*(By) + R™(By). (3.26)

Remark. Note that such L always exists: fact that Fg()) is a finite dimen-
sional B—invariant subspace of V; implies that B [p, ) F(A) = Fp(A) isa
square matrix. Every square matrix can be further decomposed into a sum of
an invertible and a nilpotent matrix, which naturally define the hyper range
and the hyper null space of B [, ().

Proposition 3.2.1. [26, Proposition 3.1.] Let B € B(V}), C € B(Vi, V,) and
A € B(V3) be given bounded linear operators on Banach spaces V; and V,
and let Iz be a finite dimensional B—invariant subspace of V;. Then there
exists a finite dimensional A—invariant subspace of V5, denoted by F)4, such

that C(FB) C Fy.

Proof. Since Fg is finite dimensional, it follows that C(Fp) is finite dimen-
sional as well. Then A [¢(r,) is a finite rank operator, which has finite ascend
and descend, therefore, there exists

Fa=N>(A o) + R(A lcry)),

which is A—invariant finite dimensional subspace of V5. O
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Theorem 3.2.3. [26, Theorem 3.2.] Let B € B(V}) such that A € o(B) is a
Riesz point of B. Assume there exists J € ®‘(V7, V3) such that it decomposes
B at point A in the Riesz sense. Let W and U be finite dimensional subspaces
of V1 and V4, respectively, defined as

W =R¥(B [nw) + N¥(B [nwy) = Fs(A) (by (3.26)) , (3.27)

U =R>(A Irciw) T NZ(A Ircrw)- (3.28)

If matrices B [w, C [w and A [y satisfy conditions (2.1), then there exist
infinitely many solutions to (3.1) if and only if

AX, — X.B) = Cy (3.29)
is solvable on Vjo, where V) = W + Viy and By = B |y, C1 = C |y,,.

Proof. Let J € ®Y(V1, V) be a left upper semi-Fredholm operator. Then
a(J) < oo and B [ is a finite dimensional operator. Let W be the finite
dimensional space introduced in (3.27), which is the finite dimensional space
Fg(A) on which B — X is nilpotent. Define By := B [y and Cy = C [w.
Then R(Cy) is a finite dimensional space as well. In that sense, let U be
provided as in (3.28) and similarly Ay := A [y. It follows that Ay : U — U.
Observe the finite dimensional spaces W and U, and operators defined on
them, that is,

By € B(W), Cw € B(VV, U), Ay € B(U)

They are all scalar matrices, so if conditions (2.1) hold, there exist infinitely
many solutions Xy to

AUXW — XwBW = CW

To complete the proof, note that V3 = N (J)+Vi1 = N(J)+(W N Vi1)+Vip =
W 4 Vi, and each subspace is closed. Let J; = J [y, and Jo = J; [y,,. Since
R(J) is closed and J; is injective, with R(J) = R(Jy), it follows that

R(J1) = Ji(W N Vi) + R(J2),

thus R(J3) is closed as well and because Js is injective, J; has a bounded
inverse from R(J2) to Vio. By assumption, J is a left upper semi-Fredholm
operator, so there exists a bounded projection @y from V5 onto R(J) =
R(J1). However, since R(J1 [wnvy,) is finite dimensional, it follows that
there exists a bounded projection @5 from V5 onto R(J3), so J is a bounded
embedding of V5 into V5, with a closed range, which is complemented in
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V5. Further, since V4, = W 4+ Viy and A is a Riesz point for the operator
B, it follows that Vi is a closed, B—invariant subspace of V;. Since J; is a
bounded embedding from Vi5 to V5, with a closed and complemented range
in V3, the equation (3.29) is solved via Theorem 3.2.2, if and only if the initial
equation (3.1) is solved in B(Vj, V3). Finally, every solution X to (3.1) can
be expressed in the form X = Xy + X, with respect to the decomposition
Vi=W 4 V. [

If B does not have a Riesz point in its spectrum, then Theorem 3.2.3 fails,
but Theorem 3.2.2 can still be applied. In that case, we proceed with the
construction firstly introduced by Berberian, which was applied to Fredholm
theory by Buoni, Harte and Wickstead (see [8], [12] and [44]). By {« (V1)
we denote the Banach space of bounded sequences in V;, equipped with the
supremum norm. By m(V}) we denote the subspace of ¢, (V}) which consists
of those bounded sequences in V; such that each sequence has a subsequence
which has a convergent subsequence, or, equivalently, every element of the
space m(V}) is totally bounded. Now introduce P (V1) = lo(V1)/m(V1),
equipped with the supremum norm. It follows that ||(x)| = ¢((z)), for every
(x) € P(V1), where ¢ is the measure of noncompactness

q((z)) =inf{0 > 0: (x) has a finite d-net}.

This defines a Banach space, and every bounded operator L € B(V}) induces
P(L) € B(P(V1)), defined entry-wise for each sequence (z) € P (V7). We
state some fundamental results obtained in [12] and [44].

Theorem 3.2.4. [12, Theorem 2] If T : V; — V4 is a bounded linear operator
between Banach spaces V; and V5, then the following are equivalent:

(a) P(T) : P(Vi) — P(V2) is one-one;

(b) T : Vi — Vj, is upper semi-Fredholm;

(c) P(T) : P(V4) — P(Vs) is bounded below.

Recall that every upper semi-Fredholm operator maps bounded but not to-
tally bounded sequences into bounded but not totally bounded sequences.
Further, if 7" sends every (z) € (V1) to m(V1), then T" must be a compact
operator, so B(P(V1), P(Vz)) = B(V4,V2)/C(V1, V2). In analogy to

Lr=0=2=0,
whenever L is injective, the implication

TU is compact = U is compact
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defines T as an essentially one-one operator. In analogy to the reverse-order-
law in dual spaces, the implication

UT is compact = U is compact
defines T" as an essentially dense operator.

Theorem 3.2.5. [12, Theorem 4] Let T be a bounded operator between two
Banach spaces. Then the following implications hold:

(a) T is left upper semi-Fredholm=- T is upper semi-Fredholm = 7' is essen-
tially one-one;

(b) T is right lower semi-Fredholm = T is lower semi-Fredholm = T is
essentially dense.

At this point we can generalize the statement from Theorem 3.2.3.

Theorem 3.2.6. [26, Theorem 3.5.] Define P(17), P(V2), P(B), P(C) and
P(A) as described above.

(a) If there exists J € ®¢(V;, V3), then there exists a solution to the quotient
equation

PAP(X)—-PX)P(B)="P(C) (3.30)
if and only if
P(S)- P(X) = P(C) (3.31)

is solvable, where

P(C)(P(L)) := P(CYP(J) " PripiyP(L).

(b) Let X € 04yp(B) such that the eigenspace Fp(p)(A) for P(B) which
corresponds to A is a finite dimensional subspace of P(V;). Assume there
exists an upper semi-Fredholm operator P(¢) € ®Y(P(V;),P(V3)), which
decomposes P(B) at point A in the Riesz sense and let P(W) and P(U)
be defined as in (3.27) and (3.28), with respect to operators P(A), P(B),
P(C) and P(p). If operators P(B) [pw), P(C) [pw) and P(A) [pw, sat-
isfy conditions (2.1), then there exist infinitely many solutions to (3.30) iff
P(A)P(Xl) - P(Xl)P(Bl) = P(Cl), where ,P(Xl), P(Bl) and P(Cl) are
defined as in (3.29) on Vo, Vi = W 4+ Vis.
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Proof. (a) From the discussion above, operator J defines an injective P(J),
with closed and complemented range in P(V3), so Theorem 3.2.2 applies to

(3.30).
(b) Similarly, all conditions of Theorem 3.2.3 hold, so (3.30) has infinitely
many solutions. O

Corollary 3.2.4. [26, Corollary 3.2.] Let A € o4,,(B) such that X is a Riesz
point of P(B) and assume that P(p) € &, (P(V;), P(V2)) is an upper semi-
Fredholm operator which decomposes P(B) at point A in the Riesz sense.
Then ¢ ¢ &, (V1, V5).

Proof. Assume that P(y) is an upper semi-Fredholm operator, which de-
composes P(B) at point A in the Riesz sense. If ¢ € ®,(V3,V5), then (by
[12]) P(y) is one-one, that is, N(P(p)) = {0}. But by assumption, P(y)
decomposes P(B) at point A in the Riesz sense, so the finite dimensional
part (as in (3.26)) is equal to zero:

Fp)(A) = {0}.

Then P(B) — A is invertible in P(V}), which contradicts the fact that A €
op(P(B)). O

Corollary 3.2.5. [26, Corollary 3.3.] If there exists J € ®“(V;,V3), then
there exists X € B(V1, V2) such that

AX — XB € C(W,Va). (3.32)

Proof. Immediately from Theorem 3.2.6 (a), we have that the equation (3.30)
is solvable. Taking C' = 0 completes the proof. O

3.3 Some applications

As previously mentioned, Sylvester equations have numerous applications in
both theoretical and applied mathematics, physics, engineering and computer
science. Simply knowing when a Sylvester equation is solvable, gives suffi-
cient conditions for some quite important results, such as operator matrix
diagonalization, perturbation analysis, commutator problems, etc. consult
[10] and numerous references therein. In this section we illustrate how our
results contribute to such applications.



3.3. SOME APPLICATIONS 27

3.3.1 Fréchet derivatives and commutators

Expressions AX — X B are known as generalized derivations or weighted
commutators, and are in close relations to the Fréchet derivatives (see [31],
[97] and [98]). When V; = V, = V, let f(A) = A% Then the Fréchet
derivative of f(A) at point B is the expression (which is a bounded linear

operator on V),
Dfa(B) = AB + BA.

Observe the abstract ODE
Dfa(B) =C.

Question 1. At which points B does the Fréchet derivative of f at point A
take the value C'?

Assuming that o(A) No(—A) # 0 it follows from Corollary 3.2.3 that there
exists a B, which is the solution to the abstract ODE if and only if (3.25) is
solvable.

Question 2. When can an operator be expressed as a commutator of two
idempotents?

The problem of commuting idempotents has been characterized in the fol-
lowing

Theorem 3.3.1. [36, Theorem 1.] An element ¢ in a ring R is a commutator
of a pair of idempotents if and only if there exist v € R and s € R such that
W =1 ut+tu=0su—us=0,st—ts=0and s> =t*+ 1.

Although we cannot simplify the statement of the Theorem 3.3.1, our results
can enable solvability of the commutator equations that appear in the paper
[36]. Let R = B(V) and let C € B(V') be given such that o(C)No(—C) # 0.
Define g(C') = C?* + 1 and let f(L) = L?, as before. Then finding U such

1
that U? = I and CU + UC = 0 reduces to

Notice that, in order for U to be non trivial, we require o(U) = {—1,1}. In
order to apply Theorem 3.2.2 and Corollary 3.2.3, assume that we can solve
the abstract Cauchy problem (if the equation were regular-which it isn’t, one
could simply apply results from [83])

Dfy(C)=UC+CU =0, U?=1. (3.33)

It follows that there exists L € B(V) which solves the following system of
homogeneous Sylvester equations

CL—LC=0, UL-LU=0, f(L)=g(C)
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if and only if C' is a commutator of two idempotents.

3.3.2 Connections to compact operators

Question 3. For a bounded linear operator A € B(V') given on a Banach
space V', is there a bounded linear operator B € B(V'), such that AB+ BA is
a compact operator? More generally, what conditions must hold for A and B,
such that there exists an X € B(V), making AX — X B a compact operator,
as in formula (3.32)7

If 6(A)No(—A) = 0, then for every compact operator C' € C(V), there exists
a unique B € B(V') such that AB+ BA = C. However, if 0(A)No(—A) # 0,
then Corollary 3.2.5 gives an affirmative answer.

In general, for given operators A, B and X in B(V'), when can we claim that
they form a compact derivation, i.e. when is AX — X B a compact opera-
tor? Formula (3.32) from Corollary 3.2.5 gives an answer to this question.
Furthermore, let ¢ : & — C be an analytical function, defined in a region
2 C C such that o(A) and o(B) are both contained in that region. Then
the Spectral mapping theorem yields that

o(A)No(B) # 0= o(p(A)) No(p(B)) # 0.

Thus Corollary 3.2.5 gives sufficient conditions for A, B and ¢, in order for
©(A)X — Xp(B) to be a compact operator, for some X € B(V). This is
very important for majorization theory and its applications, because there
are numerous problems which concern comparing expressions AX — X B and
©(A)X — Xp(B) in various norms, see [9], [27], [55], [56] and [80]. Similarly
to perturbation analysis conducted on matrices A and B in Chapter 2, it
is very convenient to know when the said expressions are trace-class oper-
ators, Ky-Fan-k-class operators, Schatten-p-class operators etc. consult [9],
[55], [56], [66], [67], [72], [80], [105] and rich references therein. Recall that
each of the afore-mentioned classes of operators consists of operators which
are necessarily compact operators, and every class has its own unitarily in-
variant norm (trace-norm, Ky-Fan-k-norm, Schatten-p—norm and so on).
Ergo it is suitable to know under which conditions expressions AX — X B
and p(A)X — Xp(B) are compact, trace-class, Ky-Fan-k—class, Schatten
p—class and so on.
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Recall that two bounded operators T and L, defined on two different Banach
spaces Vi and V5 respectively, are said to be equivalent after extension, if
they can both be extended to Vi + Vo, T':=T + Iy, L = I, + L, and in
addition satisfy T=U ZV, for some bounded and invertible linear operators
U and V on V; + Va. Specially, if V; = {0} or V5 = {0}, then 7" and L, which
are equivalent after extension, are said to be equivalent after one-sided ex-
tension. Note that if 7" and L are compact operators which are equivalent
after extension, then 7" and L are Fredholm operators, which means that
they have a Riesz point in their spectra.

Question 4. When are compact operators L and T equivalent after exten-
sion?

It suffices to find an invertible U such that LU = UT. This is now solvable by
Theorem 3.2.1, Theorem 3.2.3 or Theorem 3.2.6, Corollary 3.2.4 or Corollary
3.2.1. A necessary condition was obtained in [48], where operator ideals are
constructed, which are similar to the operator algebra A4xp introduced by
the author in [25].

Definition 3.3.1. [48, Defitinion 2.1.] Let T' € B(V;, V3) be a Banach space
operator. For any Banach spaces Z; and Z,, we define

IT(Zl,ZQ) = U { R]TR; . Rj € B(‘/Q,ZQ), R; € B(Zl,‘/l)} .
1

neN \ j=

Denote by Zr the (proper) class UZLZ2 Ir(Zy,Zs), and refer to Iy as the
operator ideal generated by T.

Theorem 3.3.2. [48, Theorem 2.5.] Let T' € B(V;) and L € B(V2) be two
compact operators defined on Banach spaces V; and V5, resp. If T and L are
equivalent after extension, then Zy = Z;.

Remark. Necessary condition from Theorem 3.3.2, Z; = Zr, agrees with
Corollary 3.2.1.

3.3.3 LTI systems and Schur coupling for
operators in Banach spaces

One of the main applications of Sylvester equations is in systems engineering
and modeling of linear time-invariant (LTI) systems (see [5], [7], [40] and
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[88]). For now, we restrict our attention to finite scalar matrices, as that
is the most exploited case in the systems engineering. FEvery linear time-
invariant system, continuous in time, can be represented by a generalized
state-space model of the form

2'(t) = Ax(t) + Bu(t), t >0,
y(t) = Cx(t) + Du(t), t>0, (3.34)
(0) =0,

8

where t represents the time parameter, while variables u, x, y, ' and matrices
A, B, C and D have a direct physical interpretation:

e z(-) is the state vector with n dimensions, z(-) € R™;
e y(-) is the output vector with ¢ dimensions, y(-) € RY;

e u(-) is the input vector with p dimensions, u(-) € R?;

A is the state (or system) matrix, A € R"*";

B is the input matrix, B € R"*P;

C is the output matrix, C' € R7*";

D is the feedthrough (or feedforward) matrix D € R?7*P. If the system
does not have a direct feedthrough, then D = 0;

o 2'(t) = La(t).

Matrices A, B, C' and D are constant if the system is time-invariant. Oth-
erwise, they are time dependent. The matrix Gi()\) :== D + C(A — A)"!'B,
where A € p(A), resembles a state space realization of the transfer function
G1(+) of the given system.

Often, matrices A, B, C' and D are sparse and in those cases the initial
system (3.34) is replaced by a so-called minimal system (see e. g. [7]), which
is:

e Controllable!, that is,

rank [B AB A’B ..., A”le} =n;

'The state controllability condition implies that it is possible by admissible inputs to
steer the states from any initial value to any final value within some finite time window.
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e Observable?, that is,

rank [C CA cA* ... cAY]T

e Has exactly the same transfer function Gi(-) as the starting system
(3.34).

Case 1. If D = 0, then the system can be solved via Luenenberg’s scheme
(see [5], [7], [40] and [88]): namely, if we introduce another dynamical system

2 (t) = Hz(t) + Fy(t) + Gu(t), =z(0)= 2" (3.35)

such that (A, C) is observable, and (H, F') is controllable, then there exists
a unique full-rank solution to

HX — XA=—FC,

as this reduces to a regular matrix Sylvester equation. In addition, if G from
(3.35) allows the decomposition G = X B, then z : [0,400) — R", which is
a solution to (3.35), is the state observer for (3.34), meaning that, for some
nonsingular Z € R™*" and the state vector z(t) for (3.34), we have

2(t) — Za(t)]| — 0,  t — +oo.

Case 2. On the other hand, if D # 0, then LTI system (3.34) can be analyzed
via Schur coupling. At this point, we can generalize the system (3.34) in a way
that A, B, C' and D are bounded linear operators on appropriate Banach
spaces, as this scenario is also covered by Schur coupling and the arising
singular Sylvester equations with bounded linear operators as their entries.
In general, Schur complements for Banach space operators, Schur coupling,
and their applications to LTT systems have been studied, among others, in
2], [5], [13], [21], [48], [49] and [63]. Introduce an operator matrix M,
A B
v-e bl

and assume that A is invertible. Then Gy := D — CA™'B is in fact the
first Schur complement of operator A in matrix M, often denoted as Ay, or
Wi (M). Similarly, if D is invertible, then G5 := A — BD~'C' is the second
Schur complement for operator D in matrix M, often denoted by Wo(M).

20bservability is a measure for how well internal states of a system can be inferred by
knowledge of its external outputs.
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Schur complements are important, because they are involved in the Schur
decomposition of a given operator matrix:

M= I 0| | A 0 |1 A-'B
T locAT T 0 D—CA'B 0 1 ’
Conversely, given bounded linear operators L and T are Schur coupled if
there exists an operator matrix M, with bounded and invertible A and D,

such that L = Wy (M) and T' = Wy(M). Hence it is very important to answer
the following question:

Question 5. When are two given operators L and T Schur coupled?

In the following, we formulate a result from [49], which answers Question 5.
Notice that the answer is surprisingly similar to the one for Question 4, and
is once again solved by the results obtained in this chapter, particularly, by
Theorem 3.2.1, Theorem 3.2.3, Theorem 3.2.6, Corollary 3.2.4 or Corollary
3.2.1. Recall that an operator L € B(V) is said to be inessential, if LT is a
Riesz operator (quasi-nilpotent in the Calkin algebra), for every T' € B(V),
see [106].

Theorem 3.3.3. [49, Theorem 1.1.] Let L € B(V;) and T € B(V3) be
inessential operators. The following statements are equivalent:

(a) L and T are Schur coupled,;
(b) L and T are equivalent after extension;

(¢) L and T are equivalent after one-sided extension.



Chapter 4

The closed operator case

4.1 The ,,regular” unbounded equation

When the operators A, B and C' are not bounded, a different analysis is
required. To start, their domains are compromised because the operators are
not automatically defined on the entire spaces. Consistency conditions always
yield the operators A and B to be densely defined on the corresponding
Banach spaces, and that Dg C D¢. In that sense, the Sylvester equation in
the unbounded setting has the form

AXu — XBu = Cu, u € Dp. (4.1)

The problem when A and — B are given as generators of analytical semigroups
and Cp—semigroups, has been studied in [60] and [83]. These results provide
a nice way to extend solvability of the equation (4.1) to quantum mechanics
(see [70], [99] and [101]) and abstract differential equations, see [79]. For
example, it is very convenient to note that the abstract Cauchy problem

{%X(ti— AX(t) - X(t)B (4.2)

X(0)=C

is uniquely solved by
X =c4Ce P, (4.3)

and that solution is uniformly exponentially stable when the semigroup gen-
erated by —B and the semigroup generated by A have negative growth limits
(see below). Furthermore, the abstract inhomogeneous problems

u'(t) = Au(t) + f(t), u(0) =z (4.4)

63
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can be rewritten as

U = [A 5

2 oo, vo =@, (45)
0 &

observed on the space V5 X [, where F is the space of Vo—valued functions,
defined on R, with dy(f) = f(0) being an unbounded operator in f. Recall
from Chapter 1, that if the operator matrix in (4.5) is diagonalizable, then
Cauchy problem (4.4) can be drastically simplified. Because of these, and
several other reasons, it is important to study the Sylvester equation (4.1)
when A, B and C are unbounded operators. Throughout this chapter, a
strong background in closed operators and spectral theory is required. An
interested reader is referred to books [37], [43], [59], [86], [99], [100] and [102].

Theorem 4.1.1. [60] Let A and —B be generators of Cy—semigroups (7'(t))
and (S(t)), t > 0, on Banach spaces V2 and V7, respectively and let C' be an
operator from V; to V5. Let

Qt): Dy CVi—=Va: QM)(f) :=TE)CSH)(f), t=0,

R(t):DpCcVi—=Va: R(t)(f):= —/tQ(s)fds, t>0.
0
Assume that:

1. The weak topology closure of {Q(t)f}:>o contains zero, for every f €
Dp;

2. R(t) has a continuous extension to a bounded linear operator, for every
t > 0 and the family {R(t)};>o is relatively compact with respect to
the weak topology.

Then the equation (4.1) has a bounded solution. Contrary, if (4.1) has a
bounded solution then R(t) is bounded, for every ¢ > 0. Furthermore, if
for every bounded linear operator Y from V; to V, the operator T'(t)Y S(t)
converges towards zero when t — 400 in the weak (resp. strong, uniform)
operator topology, then the solution X to the equation (4.1) is unique and
R(t) converges to X in the weak (resp. strong, uniform) topology.

Definition 4.1.1. [60] For the semigroup (7(t));>o generated by an operator
A, the value w(A) represents the semigroups growth limit, and is provided
as

w(A) = inf{\ € R: 3IM > 0 such that |T(t)|| < M, Vt>0}.

If w(A) < 0, then the semigroup (7'(t));>o is called uniformly exponentially
stable.
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Theorem 4.1.2. [60] Let w(A)+w(—B) < 0 and assume the family (R(t)):>o
from the Theorem 4.1.1 to be uniformly exponentially stable. Then the
equation (4.1) has a unique bounded solution.

4.2 The singular equation

Contrary to the regular equation, singular eigenproblems that stem from
Sturm-Liouville theory, partial differential equations, quantum mechanics
and mathematical physics often yield the corresponding operator equations
to be singular. In what follows, we solve the unbounded singular Sylvester
equation (4.1) in detail. Afterwards, we illustrate our results on explicit ex-
amples where such equations emerge. The author obtained these results in
his individual paper [24] and in joint work with his PhD mentor [29].

In this section we assume the spaces V; and V5 to be Banach spaces and
A € L(V;) and B € L(V;) to be closed linear operators with non-empty
point spectra. We introduce a weak solution to the given inhomogeneous
and homogeneous equation.

Definition 4.2.1. [29] Linear operator X is a weak solution to the equation
(4.1) if

1. DcNDg # 0.
2. Dx C DpNDe, R(X) C Dy and Dy is B—invariant subspace of V7.
3. For every u € Dx (AX — XB)u = Cu.

Definition 4.2.2. [29] Linear operator X is a weak solution to the homoge-
neous equation (4.1) if

1. Dx C Dp, R(X) C D4 and Dy is B—invariant subspace of V.
2. for every u € Dx AX(u) = XB(u).

Remark. If A, B, C' and X are bounded linear operators then Dg = D¢ =
Dx = Vi and R(X) C Dy = V5 and V; is a B—invariant subspace of V;. In
other words, the previous definitions of a weak solution extend the definitions
of a solution in the bounded operator case.

For convenience and simpler calculations, the results regarding solvability
of the unbounded Sylvester equation are broken down into two cases, one
regarding the homogeneous equation, and the other regarding the inhomo-
geneous equation.
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4.2.1 The homogeneous equation

Let V be an arbitrary vector space over the field F' and let I be an arbitrary
index set. The set of different vectors {a;};c; from V' is said to be a Hamel
or an algebraic basis for V, if every vector a € V can be represented as a
unique finite linear combination of vectors from the family {a;}icr:

(VaeV) (@neN) Glay, ... a4, € {aikicr) Flar,...,an € F)a=) aray.

k=1

It is known that every vector space has a Hamel basis. Unique representation
of every vector from V| in terms of the Hamel basis {a; };c; of V, implies that
{a;}ies are linearly independent vectors.

All Hamel bases of the same vector space have the same cardinality. Hence
the term ”dimension” of the given space can be extended to infinitely di-
mensional vector spaces. Lin(S) or span(S) stands for a lineal (finite linear
span) over the set of vectors S.

At this point we assume V] and V; to be linear (vector) spaces and A € L(V3),
B € L(V}) to be both one-to-one (injective). We will return to the case of
closed operators in Banach spaces later. We also assume that there exists
W < Dp < Vi which is a B—invariant subspace of Vi. Let U = {u;}ies
be an algebraic basis of W. Further, since {u;},cs is a basis for W, it
follows that {B(u;)}ics is a basis for B(W). Operator B is injective, so
card({w; }ies) = card({ B(u;) }ier). Therefore, there exists a linear bijection
Tw : {B(u;) }ier — {u;}icr, such that for each i € I there exists unique j € T
so that Ty B(u;) = w;.

For every u € U, we define the class of u as

[u] = {(TwB)"(u) : n € Z}.
Now {[w;] : i € I} forms a partition of &. We define a binary operation -p
on every [u], u € U. Put [U] := {[u,] : i € I}. For every [u] € [U], fix one
u € [u]. Tt follows that

[u] = {(TwB)"(u) : n € Z} = [u],

so u can be treated as the generating element of its equivalence class [u].
Define -5 : [u] X [u] = [u] :

(Vn,m € Z) (T B)" (@) -5 (T B)™(@) := (Ty B)™™ (@)
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Lemma 4.2.1. [29, Lemma 2.1.] Let u € U.

1. If [u] has a finite number of different elements, say &k of them, then

1
([u],-p) is isomorphic to (Zy, +);

2. If [u] has infinitely many different elements, then ([u], -g) is isomorphic
to (Z,+).

Proof.

1. Let TwB(z) € [u] be the generating element for [u]. Define h(z) := 0.
For every n € N, define h((Tw B)"(z)) := n mod k. If [u] has k € N
different elements, then h([u]) = {0,1,...,k—1}, and the isomorphism
([u], B) ¥ (Zg,+) is now obvious.

2. Assume that [u] has infinitely many different elements and let = be
its generating element. Define h(z) := 0, and for every m € Z,
h((TwB)™(x) :==m.Now h([u]) = {...,—|m|,...,—1,0,1,...,|m|,...},
for every m € Z, and the isomorphism ([u], -g) — (Z, +) is now obvious.

]

Let Z < D4 < V, be an A—invariant subspace of V; and let V = {v;},c; be
an algebraic basis for Z. Let Sz € L(A(Z), Z) be a bijective linear operator,
such that Sz(V) C (V). For every v € V, define [v] using SzA, in the
analogous way we defined [u], using Ty B, when u € U. For every [v] define
-4 using Sz A in the analogous way we defined -5 using Ty B for every [u].

Corollary 4.2.1. [29, Corollary 2.1.] For every v € V, ([v],-4) is isomorphic
to exactly one of the elements in {(Zy,+¢) : k € N} U{(Z,+)}.

Remark. The aforementioned isomorphisms between elements of {([u],g),
([v],-4)} and elements of {(Z,+), (Z, +«) : k € N} will be denoted as 72"

Theorem 4.2.1. [29, Theorem 2.1.] (The shifted injective homogeneous
equation) Let Vi and V5 be vector spaces and let B € L(Dg,Vi), A €
L(Da,Vs) be one-to-one linear operators, where D C V; and Dy C Vs,
and let W C Dpg be a B—invariant subspace of V} and let Z7 C Dy be an
A— invariant subspace of V5. Let Ty and Sz be provided as in the previous
discussion. Then there exists a linear operator X € L(W, Z) which is a weak

solution to the equation
XTwB = S;AX, (4.6)

defined on W.
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Proof. Let U and V be the algebraic bases for W and Z, respectively, on
which Ty and Sy are respectively defined.

Step 1. For u € U, we define X (u) as described below.
Assume that ([u],-5) = (Z,+). If there is some v € V such that ([v],-4) =
(Z,+), then

X (u) :=w.

Further, for every m € Z, we define
X((TwB)™(u)) := (SzA)™(v).

Notice that X is a correctly defined map on u because Ty B and Sz A are
injective. Therefore, if u; = u then

and

But then for every m € Z we have

X((TwB)™(u)) = (SzA)™(v) = (SzA)™ (X (u1))
= (SzA)" 1 (SzA) X (u)
= (SzA)" ' X(TywB(uw)) = ... = X((TwB)™(u)),

so X is correctly defined on the entire class [u].
If there is no v € V such that ([v],-4) = (Z,+), then X ([u]) := Oy,.

Either way, we verify that Sz A(X(p)) = X(Tw B(p)), Vp € [u].
Now assume ([u], ) = (Zg, +x), for some k € N. If there exists v € V such
that ([v],-4) & (Zy, +x), then

where v’ is the generating element of [u], and v’ is the generating element of
[v]. Further, for every m € {1,...,k — 1}, define

X((TwB)™ () := (SzA)™ (V).

X is a correctly defined map on u' because Ty B and SzA are injective.
Therefore, if u} = «’ then

X(u')=X(uy) =
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and
X(TwB(u})) = X(TwB(u')) = SzA(V).

But then for every m = 1,k — 1 we have

X(TwB)™(u) = (SzA)" (V') =
= (SzA)™(X (u})) = (SzA)™H(SzA) X (u)) =
= (SzA)" ' X (TwB(u})) = ... = X ((Tw B)™(u})),

so X is correctly defined on the entire class [u].
If there is no v € V such that ([v],-4) = (Zg, +1), then X ([u]) := Oy,.

Either way, we verify that S;A(X (p)) = X(TwB(p)), Vp € [u].

Step 2. For any given u € W, with the unique algebraic representation in U

n
u:Zakuk, ur €U, ar,e€C, k=1n, neN,
k=1

define .
X(u) := ZakX(uk).
k=1

X is correctly defined for each uy, k = 1, n, and w is uniquely represented via
{uq,...,u,}, hence X is well-defined in u. Now part 1. of the proof implies
that

SzAX (1) = SzAX(D ) = > ar(SzAX ()

k=1 k=1

= Zak(XTWB(uk’)) = XTwB(Z apuy) = XTw B(u).

k=1 k=1

Combining observations from Steps 1. and 2. we conclude that X is a well
defined linear operator from W to Z and is a solution to (4.6). Also we have
that Dx = W C D, 5, R(X) = Z C Dg,4 and W is Ty B—invariant, so X
is indeed a weak solution. O]

Remark. The previous theorem provides a solution to the shifted injective
equation (4.6). Notice that the proof only required existence of invariant
subspaces and the operators to be one-to-one. So Theorem 4.2.1 holds in
general linear spaces, for given one-to-one operators and the corresponding
invariant subspaces.
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Remark. The solution X is not uniquely determined in the sense that it
depends on the choice of algebraic bases and it maps one equivalence class
onto another equivalence class, where the former is isomorphic to the lat-
ter. Theoretically, there could be an infinite number of different equivalence
classes, which are all isomorphic to the fixed one. Therefore, there could be
infinitely many different solutions to the equation (4.6).

We now return to our observation in Banach spaces and closed operators.

Theorem 4.2.2. [29, Theorem 2.3.] (The homogeneous equation) Let V;
and V5 be given Banach spaces, B € L(V}) and A € L(V3) closed opera-
tors, such that N (B) and N (A) have topological complements in V; and V5,
respectively. If (o,(B) No,(A))\ {0} # 0 then the homogeneous equation

AX —XB=0 (4.7)
has a non-trivial weak solution.

Proof. Since B is a closed operator on V;, then N'(B) is a closed subspace
of V4. Since N (B) has a topological complement in V3, V; can be split into
a direct sum:

Vi =N(B)+ V.

In other words, (Vu € Dp) (3luy € N(B),us € V/ N Dg) such that u =
uy + ug. Put Vi(B) := V/ N Dg. In that sense, define By : Vi(B) — 1}
as: Bj(ug) := B(u). This way, By is one-to-one, so 0 ¢ 0,(B;). Note that
o (B)\ {0} = 0, (By).

Assume the same thing is done with A and the Banach space Vo: V5 =
N(A)+ V3, put Va(A) :=DaNV] and A; : Vo(A) — Vs defined as A;(vq) :=
A(v), whenever v € Dy and v = v1 + v2, v; € N(A) and v, € V5(A). Now
A is one-to-one and 0 ¢ 0,(A;). Also note that o,(A) \ {0} = 0,(A;). Now
conditions of the theorem yield that o,(A;) No,(B1) =0 # 0.

Let {\;}ier = o, for some index set I, where \; = \; = i = j. Let u; € Dp,
and v; € Dy, such that Bju; = M\u; and Ajv; = A\jv;, whenever ¢ € 1. It
follows that {u;};cr and {v;};er are families of linearly independent vectors.
Now put U := {u; }ier and V = {v; }se;. It is now obvious that W := Lin(U)
is a Bj—invariant subspace of V; and Z := Lin(V) is an A;— invariant
subspace of V5.

For each i € I define bounded linear operators T; and S; on Lin(u;) and
Lin(v;) respectively as

(Vu € Lin(u;)) Ti(u) :== A\ 'u, and (Vo € Lin(v;)) Si(v) :== A\ .

1
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Finally put
Tw(u,) = E(UZ), Sz(vi) = Sz(vz>

Since Lin(u;)NLin(u;) = {0} whenever i # j, it follows that Ty is a correctly
defined operator on > Lin(u;) (which is an eigenspace for B; and therefore
il
for B). Analogously, Sz is a correctly defined operator on ) Lin(v;). Now
iel
all conditions of Theorem 4.2.1 are satisfied, so there exists a linear operator
X from W to Z such that

XiTw By = SzA1.Xy

holds.

Further, we see that ([w;],-p,) = ([vi],-4,) = (Za,+2) for every ¢ € I. For
u € W, we have:

SzAle(u) = SzA1X1<Z akuk) = Z akSZAle(uk)

k=1 k=1
= ZakSZAl Ug) Z Sz (Akvk) Zakvk = Z%Xl(uk) =
k=1 k=1 (4.8)
1
- ZOéMkXﬂ)\—Uk ZOéMle(TW ug)) ZakX1TW(>\kUk)
k=1 k=1 k=1
= ZaleTwB1<uk) = XITWBI(Z akuk) = XlTwBl(u)
k=1 k=1

Since Sz and Ty act in the same way on the corresponding spaces, it directly
follows that:

Ale(u) = Ale(Z akuk Z akAle Uk Z CkkAl Uk

k=1 k=1

= Zak)\kvk Zak)\le uk Zale )\kuk) (49)
k=1

k=1 k=1
=Y aXi(Bi(u)) = X1B1 () ewuy) = X1 By (u).
k=1 k=1

Therefore, X; € L(W, Z) where Dx = W < D and R(X) = Z < R(A), so
X is a weak solution to the equation:

Ale == XlBl-
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Let N € L(N(B),N(A)) be arbitrary. Put

N 0

1

] X € L(Dx,(N(A) + 2)),Dx = N(B) + W.

We see that X is a weak solution to (4.7) (domains of X and B intersect, as
the images of X and A do. Further, N (B) + W is a B—invariant subspace
of 11). O

Remark. When constructing the injective operators A; and B;, one en-
counters the problem of losing information about the null-spaces of A and
B. However, this property is not as restrictive as it may seem at the first
sight. In particular, suppose that

{0} = 0p(A) N oy(B).

Then N (B) and N (A) are the corresponding eigenspaces of B an A, re-
spectively, which correspond to the shared eigenvalue A = 0. But then an
arbitrary operator N € L(N(B),N(A)) (provided in the proof of Theorem
4.2.2) is the desired map that maps the 0-eigenspace of B into the corre-
sponding 0-eigenspace of A. In other words, one could simply put

X:{]gg]

However, this case is somewhat irrelevant because both X B and AX vanish
on N(B). Nevertheless, Theorem 4.2.2 holds even if

ap(A) Nap(B) = {0}.

This assertion agrees with the classification of solutions conducted in the
matrix case, in particular, the eigenproblem (2.5) in Chapter 2.

Remark. Theorem 4.2.2 provides results which concern Banach spaces and
closed operators defined on them (defined on their subsets, to be precise),
whose point spectra intersect. However, the only reason why we required A
and B to be closed operators was to ensure closedness of the null spaces N (A)
and N (B). Note that this could be weakened in the following sense: let V)
and V4 be Banach spaces and let B € L(V}) and A € L(V4) be (arbitrary)
linear operators such that N'(B) and N (A) are closed subsets of Vi and V5,
respectively, and have topological complements in the corresponding vector
spaces. If 0,(A) No,(B) # 0, then the same statements from Theorem 4.2.2
hold.
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Recall that every closed subspace M of a given Hilbert space ‘H has a topo-
logical complement N. Furthermore, N can be provided such that M and N
form an orthogonal sum, i. e. H =M & N.

Corollary 4.2.2. [29, Corollary 2.2] Let ‘H; and Hs be Hilbert spaces, A €
L(Hy) and B € L(H;) closed operators. If 0,(A) No,(B) # 0 then the
homogeneous equation (4.7) has a non-trivial weak solution.

If we restrict the previous analysis to finite dimensional spaces, we obtain
the same results as in Chapter 2:

Corollary 4.2.3. [29, Corollary 2.3.] Let K € {R,C} and let H; and H,
be vector spaces over the field K, dim(H;) = m, dim(Hz) = n and let
A€ M,(K) and B € M,,(K) be square matrices with entries and spectra in
K. If A and B share some eigenvalues, then the matrix equation AX = XB
has a non-trivial solution. Further, that solution (as proved in the Chapter 2)
must be in such a form that it maps the appropriate eigenspaces of B into the
appropriate eigenspaces of A, where the generating eigenvectors correspond
to the shared eigenvalues.

The next example concerns the case where A, B and C' are matrices, but it
is solved with Theorem 4.2.2.

Example 4.2.1. [29, Example 2.1.] Let A, B be some linear operators such
that, according to the standard basis {ey, €9, e3} for V} and {Ey, Ey} for Vo,
appropriate matrices are A = A\l and B = A3 for some A\ # 0 (the case
where A = 0 is trivial). We have o(A) No(B) = {\} and the eigenvectors
corresponding to the eigenvalue \ are precisely {ej, €2, €3} with respect to B
and {E, E»} with respect to A.

Therefore, U = {e1,ea,e3}, W = Lin(d) = Vi and V = {Ey, Es}, Z =
Lin(V) = V5. Now, Ty := 1/A-m3 and Sz := 1/\-my, where 7, denotes some
n x n permutation matrix (recall that there are n! of them), for n € {2, 3}.
Indeed, V = {E1, Es}, A(Ey) = AE1, A(E2) = AE,, and Sz is a matrix
which maps either AE, — Ei, AE; — FEs, or A\Ey — Ey, A\Ey — Ej, so there
are two different choices for the matrix Sy :

1[0 1
=510

1110
SHHEI U

O >
>= O
>= O

O >
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Similar can be done for & and B, but there are now 6 possibilities for Ty :

1
A

O = O
o O =

10
I, 0 0
0 1

O = O
S = O

10 01
00l,l00
0 1 10

S = O
o = O

0 1 0
0 01,0
10 1
Therefore, Tyy B = 73, Sz A = 7.

In order to find the appropriate equivalence classes and construct some so-
lutions, we note the following:

2 2 9 2 3 _ .3 2
Mgy = Ta13 = T391 = T123, Ma3; = M312, Tg33 = 7123 = 7319, M310 = 7213,

where 7, denotes the permutation (1]2,‘:’), ie. w(l) =14, m(2) =7, ©(3) = k.

The equivalence classes [e;];;x of the vector e; when the permutation m;j;, is
chosen are:

o [ei]iog = {Tiys(e1) 1 n € Z} = {mas(e1)} = {e1},
® [e1]iz = {7132(61)77%32(61)} = {mza(e1), mas(er)} = {e1},

[61]213 = {7213(61),7T%13(€1)} = {7T213(€1)77le3(€1)} = {62761},

[61]231 = {7231(61),W%31(€1),7T§31(€1)} = {77231(61),7T312(€1),7T123} = {62, 63761},

L [61]312 = {77312(61),7312(61),7@12(61)} = {7312(61)77231(61),7T123} = {63, 62761},
® [e1]zn = {77321(61)77@2,21(61)} = {maz1(e1), mas(e1)} = {es, e1}.

The same should be done for both es, e3 and Ey, F5. All possible combinations
(actually, the partitions of & and V) are:

o {ei}, {ea}, {es},

o {er}, {ea,ea); {en,ea}), {es})s {er,es}, {ea},
o {e1,e9,€3},

o {Ei}, {Ea),

o {E£),Ey}.

Now we can construct the solution X in each of the cases:
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o [e;] ={ei}, i=1,3, [E;] ={E,}, j =1,2: Each class is isomorphic to
(Zy,41) so X(e;) can be any E;, and there are precisely 8 possibilities:

[E1E1E1]={1 1 1}’

0 00

110
[ElElEQ]_[001:|7

0 00

o [e)] ={ei}, i=1,3, [E1] = [Es] = {E), Es} : since ([eg], ) = (Z1, +1),
but ([E1],-4) = (Za, +2), it follows that X = 0. The same is true when
le1] = {e1, €2, e3} and [Ey] = {Ey, Es}.

o [e1] = {er}, [ea] = [es] = {ez,e3}, [E1] = {E1}, By = {Ey} : In this
case X(ey) is either Ey or Es, while X(es) = X(e3) = 0. Therefore,
solutions in this case are:

wmm:{égglmgom:{gggy

The analogous is true for {e1,ex}, {es}; and {e,es}, {ea}, respectively.

o [ei] = {e1}, [e2] = [es] = {ea, e}, [En] = [Eb] = {Ey, E2} : In this case
X(e1) =0 and X(eg) = X(e3) is either E) or Es, so the solutions are

m&ah{gééym@@h[gggy

4.2.2 The inhomogeneous equation

We now return to the inhomogeneous equation (4.1), where A and B are
closed operators on the corresponding Banach spaces V5 and Vi, respectively,
and C' € L(V1,V3) is an arbitrary linear operator. Our main result on this
topic, Theorem 4.2.3 below, concerns the case where the point spectra of A
and B intersect. This theorem is proved by reducing the equation (4.1) to
the homogeneous equation.
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Lemma 4.2.2. [29, Lemma 2.2.] Let V; and V, be Banach spaces, B, ¥; €
L(WV1), A, Uy € L(V,) closed operators and C' € L(Vi, Va), such that for every
u € Dy, NR(¥1) N De we have C(u) € Dy, and

UyC(u) — CVy(u) = C(u). (4.10)
Suppose Dy,ND4 # () and Dy, "Dy # (). Finally, we require that N (A—Ws)
and N (B — ¥;) have topological complements and
(0p(A—Ty)No,(B —Ty))\ {0} #0. (4.11)
Then for every Y € L(Dy,R(Y)), Dy = Dy, NR(V1) N D¢, R(Y) C Dy, N
D4, which is a weak solution to

the operator X :=Y + (' is a weak solution to the inhomogeneous Sylvester
equation (4.1) iff it is a weak solution to the homogeneous equation

(A— U)X — X(B — ;) =0. (4.13)

Proof. Assume there exists Y such that the equation (4.12) is satisfied. Put
X =Y +C. By applying Theorem 4.2.2, we see that (4.11) yields that there
exists a non-trivial weak solution X to the equation (4.13). Finally, we verify
that
(A-Uy)X - X(B-V¥,) =0«
AX —XB=V,X - XV, &
AX - XB=U,Y + 0,0 -YV¥, —CV¥; =C.

]

Remark. Such U, and VU, always exist, e.g. Vo = (a+ 1)1, Uy = af for
any « € C.

Before we formulate Theorem 4.2.3, we give some preliminaries.

Let V; and V4 be Banach spaces, B € L(V;), A € L(V3) closed operators such
that N(B) and N(A) have topological complements (denoted respectively
by V/ and VJ) in V} and V3, respectively. The projector from V5, to Vi will
be denoted as Py;. Let C' € L(V4,V3) be such that Do N Dp # () and
O(DC N DB) C R(A)

We assume that (0,(B) No,(A))\ {0} # 0 and label such intersection as

7 = (0,(B) Na,(4)) \ {0}
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Theorem 4.2.3. [29, Theorem 2.4.] (The inhomogeneous equation) With
respect to the previous notation, if o contains two disjoint families of different
non-zero elements

{1i}ies U{Ni}ier C o, (4.14)
where {y1;}jes and {\;};e; have the following properties:

L. For every j € J let u; € DN De NV such that Bu = p;uj; and
C(uf) = 0.

2. For every i € I, let u; € Dg N De N V] such that Bu, = A\u; and
C(u;) # 0, C(u;)) € R(A— NI) and C(u;) is linearly independent
with vectors from {(A — A\I) ™' PyyC(ug)}rer. We also require that
{C(u;) }ier are linearly independent different vectors.

Then there exists a weak solution to the inhomogeneous equation (4.1), de-
fined on

(M(B)ND¢) + (Lm({u;}jg)) + (Lin({u; }ier)) -

Remark. Notice that Lin({u}}jcs) N Lin({u;}ics) = {0}, where v and u;
are eigenvectors for B which correspond to different eigenvalues 1, and \; of
B. Therefore, the direct sum Lin({u}};jcs) + Lin({ui}ics) exists. We now
proceed to prove the stated theorem.

Proof. Since B and A are closed operators, the corresponding null spaces
are closed subspaces in Vi, V5, respectively. The subspaces N (B) and N (A)
have topological complements, so V; and V5 can be split into direct sums.
Let Vi = N(B) + V{ and V, = N(A) + V3 as stated in the theorem. Put
Vi(B) == V/ N Dp and Va(A) := VJ N Dy. Define one-to-one operators
B, € L(Vi(B), V1) and Ay € L(V2(A), V3) like in the proof of Theorem 4.2.2.
We now have 0,(A;) = 0,(A) \ {0} and 0,(B;1) = 0,(B) \ {0}.

Let u € N(B) N De. Since C(u) € R(A) = R(A;) there exists a unique
v € Va(A) such that C(u) = Ayv = Av. Put N(u) :=v. It follows that

AN(u) — NB(u) = AN (u) = A(v) = C(u), (4.15)
for every u € N(B) N De.

Now observe V{, Vj and B; and A;. We define closed one-to-one opera-
tors \1150) € L(Lin({u}}jes), Vi) and \Iféo) € L(Lin({v}}jes), Va) such that

\Ilgg)u;- = Eul, \I/(zo)vé = 5, for every j € J. Then

{5} co@no,?) 0
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and p; = p; = 1 = j. Since N(@?) = 0y, and N(\Ilgo)) = Oy, then N(\Ilgo))
and N (\I/g))) have topological complements in V/ and Vj, respectively. Now
Theorem 4.2.2 implies that there exists a non-trivial weak solution

YO € L(Lin({u};e), Lin({t) i),

such that
vy O _yOgl =g (4.16)

holds. Further, for every j € J we have YO (u}) = v} (see proof of Theorem
4.2.2). Note that

0¢ {2} coB—u)noy (4 - ) £0,
2 J)jes

and {u)};e; and {v}};c; are the corresponding eigenvectors, respectively.
Due to the assumption 1. of the theorem, C(u}) = 0, so (Y + C)(u}) = v},
for every j € J. Since By — U!” is one-to-one on Lin({u}}jes) and Ay — o
is one-to-one on Lin({v}};cs), we can apply Theorem 4.2.2 and conclude that

Y© 4 C is a weak solution to the injective equation
(4 — U)X — x(B; — V) =0, (4.17)
defined on Lin({u}};cs). But then for every v’ € Lin({u}};c,),

=(4, - \Iﬂo)( <0>+0>< '>—< YO 4 0)(B — o) ()

:A1(Y C)(u') — ) - (O)O( )
W®+cﬁﬂU+Ym (>+CW( ) (4.18)
=4 (YO 4 O)() — (YO > ()

(qj(o)y() (O\DO)(u’) ( e — C\Ij )( )

=AY+ O)w) = (YO 4 C)By() ~ C(w),

where we used (4.16) and
\vé%*(u') —CUP (W) =0=C(), ' € Lin({u}}e)).
Put X© .= C +Y©

Condition 2. of the theorem implies the following. For every ¢ € I, define

\Ill(ul) = %Bl(u,)
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Then o,(¥;) D {)‘7}Z <, and {u;}ier are the corresponding eigenvectors. Also

note that
Ai

{5}1@ C 0y(B1 — )

and u; are the corresponding eigenvectors. Now define

Uy (C(wy)) == (1 + %) O(uy).

Further, since C(u;) € R(A — A1), there exists unique v; € Vi N Dy such
that

that is,

Since {C(u;) }ier are linearly independent vectors, it follows that {v;},cr are
linearly independent vectors. Define

Ai
qu(Ui) = E’Ui + C(’Uq)

Since {C(u;) }ier are linearly independent vectors with respect to {v; }ier, we
conclude that W, is well defined on Lin({C'(u;) }icr) + Lin({v; }ier). Now

Ai
W(v; = Clw)) = 5 (v = Cluwy)).
In other words, {/\?}zel C 0,(Vy) and v; — C(u;) are the corresponding eigen-
vectors. Also
A\

y Ai i
(Al — ‘I/2>’Ui = A1<UZ') — EZUZ' — C’(uz) = A1<'Ui) — E'Ui — (Al — )\zI>UZ = 51)7;,

SO
Ai

{5}2'61 C o,(A1 — Uy)

and v; are the corresponding eigenvectors. Now

A
{E} - O'p<A1 — qu) N O'p(Bl — \Ill)
i€l

Since N'(A; — Uy) = 0y, and NV (B — ¥y) = 0y, it follows that N(A; — W)
and N (B; — ¥;) have topological complements in V3 and VY, respectively, so
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(applying Theorem 4.2.2) there exists XV, which is a weak solution to the
equation (4.13), and it is defined as

XU () = v, (4.21)
(see proof of Theorem 4.2.2). Put
Y (u) = XV () — C(ug) = v; — Cluy).
We verify that (4.12) holds:

UoY (u;) — YWy (u;) = Wa(v; — C(uy)

|
>~<
N
o | >
£
N————"
I

%vi + C(u;) — Ua(Cluy)) — %u + %C(ui) - (4.22)
(1+ ﬁ)C(ui) — U,(C(u;)) = 0.

2
Finally, we verify that (4.10) holds:

i Ai
Put X = N+ X© 4 X1 Combining the observations from (4.15) to (4.23),

we see that X is a weak solution to (4.1), defined on
WN(B)NDc) + (Lin({uj}jes)) + (Lin({ui}ier))
[l

Remark. Once again, if 0,(A) N o,(B) = {0} then then every solution to
the inhomogeneous Sylvester equation is obtained with operator N from the
equation (4.15).

4.2.3 Extensions to Schauder bases

The previous results provide weak solutions to the equation (4.1), defined on
finite linear combinations of the corresponding eigenvectors. One naturally
wonders under which circumstances the can aforementioned solutions be ex-
tended i.e. do the solutions have to be defined on finite linear combinations
of the eigenvectors.

When dealing with the (partial) differential operators, the solutions to the
provided (P)DEs are always represented as the Fourier series of the given
eigenfunctions. Hence we wonder whether the solutions to the Sylvester
operator equation (4.1) can be defined on infinite sums generated by the cor-
responding eigenvectors (see [65]).
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Definition 4.2.3. Let V' be a Banach space over the field F. A Schauder
basis is an ordered sequence {b, },en of elements from V' such that for every
element v € V there exists a unique sequence {a;, }nen of scalars in F' such

that
v = Z apby,

neN
where the convergence is understood in the norm topology

dim o~ ;anbnﬂ =0.
From unique representation of v via {b, } nen it follows that {b, } ey is a family
of linearly independent vectors. There is no exact criterion which yields when
a given Banach space has a Schauder basis. However, the necessary condition
is obtained in the following two well-known theorems (see [37], [43], [59], [86],
[99] and [102]).

Theorem 4.2.4. Let V' be Banach space. Then its algebraic basis is either
finite or has the cardinality of at least ¢ (continuum).

Theorem 4.2.5. Let V be Banach space and suppose it has a Schauder
basis. Then V' must be separable.

Contrary, if the provided Banach space V' is separable, that does not imply
that it has a Schauder basis. A counterexample was provided by P. Enflo
[51] in 1973.

The most important examples of Schauder bases are probably the power se-
quence basis {1,¢,¢%,...} in ¢y and ¢7 spaces, when 1 < p < oo and the
sequence of trigonometric polynomials {1,sin 2, cos I sin 2 cos 2% .} in
the L?[0, 2d] space, for some d > 0. In that case, the corresponding scalars a,
are the Fourier coefficients of the given function with respect to the provided

basis. It is a well-known fact that ¢°>° space does not have a Schauder basis.

Recall arbitrary linear spaces V; and V5 and one-to-one operators B € L(Dg, V1),
Dp C Vi and A € L(Da,Vs), Dy C Vs, defined on them.

Suppose there exists W < Dp a B—invariant subspace of V;, which allows a
Schauder basis W = {w,, : n € N} (consequently, W must be separable). It
is not difficult to see that there exists a bijective operator T € L(B(W), W)
such that T'(w,) € W, for every n € N, because B is assumed to be one-to-
one. Now for every w € W define

[w] ={(T'B)"(w) :n € Z}
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and define a binary operation -5 on [w] as
(Vn,m € Z)(TBY (1) -5 (TB)"(w) := (TB)"™*™ (w)

Lemma 4.2.1 yields that ([w],-p) is isomorphic to exactly one element from
the set {(Z,+)} U{(Zg, +x) : k € N}.

Analogously, assume there exists Z < D4 which is an A—invariant subspace
of V4, which allows a Schauder basis Z = {z, : n € N} and define a bijective
operator S € L(A(Z), Z) such that for every n € N it follows that S(z,) € Z.
For every z € Z, define

[z] = {(ZA)"(z) :n € Z}
and define -4 on every class [z] as
(Vn,m € Z)(SA)"(w) -4 (SA)™(w) := (SA)" ™™ (w).

Lemma 4.2.1 yields that ([2],-4) is isomorphic to exactly one element from
the set {(Z,+)} U {(Zy, +r) : k € N}.

The following Corollaries are immediate consequences of Theorem 4.2.1, The-
orem 4.2.2 and Theorem 4.2.3, respectively.

Corollary 4.2.4. [29, Corollary 2.5.] (The shifted injective homogeneous
equation) With respect to the previous notation, there exists X € L(W, Z)
which is a weak solution to the equation

XTB = SAX, (4.24)

defined on

Wy = {Z Wy, W, € W, o, € C,n € N and ZanX(wn) converges in Z} )

neN neN

Proof. 1) For w € W, define X (w) as described below.
1.1) If ([w],-B) = (Z,+), and if there is some z € Z such that ([z],-4)
(Z,+), then X(w) := z. Further, for every m € Z, put X ((T'B)"(w)
(SA)™(z). If there is no z € Z such that ([z],-4) = (Z,+), then X ([w]

{0V2}‘

1.2) If ([w], ) = (Zg, +r), for some k € Ny, then there exists w’ such that
it is the generating element of [w]. If there exists z € Z such that ([z],-4) =

I

)
)
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(Zy, +1), then there exists 2’ € [z] which is the generating element of [z]. Put

X(w') := 2" and for m = 1,k — 1, put X((TB)™(w')) := (SA)™(2'). If no
such z € Z exists, then X ([w]) := {0y, }.

2) For any given w € Wy, with unique Schauder representation in W

w:Zanwn, w, €W, «a,€C, neN,

neN

define X (w) := > a, X (w,) (which converges by the choice of Wy). Defined

neN
this way, X is a weak solution to the equation (4.24), defined on W,. O

Corollary 4.2.5. [29, Corollary 2.6.] (The homogeneous equation) Let V;
and V4 be given Banach spaces, B € L(V;) and A € L(V3) closed operators,
such that A (B) and N (A) have topological complements in V;, V5, respec-
tively, i.e. Vi = N(B)+ V] and Vo = N(A) + V5. If 0,(B) No,(A) # 0 and
the corresponding eigenvectors form Schauder bases for some S < Dg N V/
and Sy < Dy NVy, respectively, then the homogeneous equation

AX - XB=0 (4.25)
has a non-trivial weak solution, defined on some subset of 5.

Corollary 4.2.6. [29, Corollary 2.7.] (The inhomogeneous equation) Let V;
and V5 be Banach spaces, B € L(V;), A € L(V3) closed operators such that
N(B) and N(A) have topological complements in Vi, V5, respectively. In
that sense, put V; = N(B) + V{ and Vo = N(A) + V;. Let C € L(Vi,V3)
such that Do N Dp # {0} and C(De NDp) C R(A).
If

{nitien U{Aitien C (0p(B) Nop(A)) \ {0} (4.26)
where {1;};en and {\;};en are disjoint families of different elements with
following properties:

L. For every j € N let u; € Dp N Dc N V] such that Buj = p;u; and
C(u}) = 0. Assume {u}};jen to form a Schauder basis for some S; <

DN DeN V.

2. Forevery i € Nlet u; € DpNDeNV/ such that Bu; = \ju; and {u; }ien
forms a Schauder basis for some S; < Dp N De N V/. Assume that
{C(u;) }ien are linearly independent different non-zero vectors, which
form a Schauder basis for some Se < R(A) N R(A — N\ 1), and vectors
{Pyy(A - MNI)7rC(u;) bien to form a Schauder basis for some Sy <
D4 N V3, such that So N Sy = {0}.
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3. We require S; N Sy = {0}.

Then there exists a weak solution to the inhomogeneous equation (4.1), de-
fined on

(N(B)NDe)+ (Sy)+ (Sr).

4.3 Applications to Sturm-Liouville operators

In this section we will illustrate our results on Sturm-Liouville operators.
Entire theoretical background regarding Sturm-Liouville operators is taken
from [65]. For more on differential and pseudo-differential operators, consult
[81], [82] and rich references therein.

Definition 4.3.1. [65] Let d > 0 and let p € C'[0,d], p(z) # 0, q € C[0,d]
be real-valued functions. Operator £ : C?[0,d] — C[0,d], given as

£0) = 1= (p0)5)  g)et)

T dx
is called a Sturm-Liouville operator.

For the given Sturm-Liouville operator £, we formulate the boundary prob-
lem: find the non-trivial solution to the ordinary differential equation

L(p) +  w(x)p(x) =0, 0<z<d, (4.27)

where A € C and w € C|0, d], which satisfies boundary conditions

a'(0) — Bp(0) = 0,
v¢'(d) + dp(d) = 0, (4.28)
a?+5%2>0, 2462 >0.

Definition 4.3.2. [65] Complex values A for which problem (4.27)-(4.28) has
a non-trivial solution are called eigenvalues and the corresponding solutions
are called eigenfunctions (eigenvectors) of Sturm-Liouville operator L.

Theorem 4.3.1. [65] For a provided weight function w € C[0, d], the space

Laulod = {o: [ Ptz < oo

is the w—weighted Hilbert space, with the scalar product

(f,9)w = /0 f(@)g(x)w(z)dz.
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The following theorem provides sufficient conditions for the existence of so-
lutions to the problem (4.27)-(4.28).

Theorem 4.3.2. [65] (Regular Sturm-Liouville boundary problem) Assume
that in (4.27) functions satisfy the following conditions

peC0,d], p(xr)>0, 0<zx<d;
q€Cl0,d], q(z) >0, 0<z<d;
w e Cl0,d], w(z)>0, 0<z<d,

and in (4.28) constants satisfy
a,B3,7,6>0 a+pB>0 ~v+09>0.
Then:

1. Eigenvalues of Sturm-Liouville operator are non-negative (if g(x) # 0
or 5§ > 0, then they are all positive), non-repeating and form a strictly
increasing unbounded sequence 0 < \; < Ay < ...

2. The corresponding eigenvectors are w—orthogonal and form a complete
system in the Hilbert space Ly [0, d].

3. For every function f € C?[0,d] which satisfies boundary conditions
(4.27)-(4.28) and

p)f'(x) = q(2) f(z) < CyVw(z), € (0,d),

(which is always satisfied whenever w(0) > 0 and w(d) > 0), the series

Vw(@) f) =) ap/w(z)es(@),

(frpr)

converges absolutely and uniformly on [0, d|, where a), = onz are the

Fourier coefficients.

In what follows, we illustrate how the singular Sylvester equation applies to
Sturm-Liouville eigenvalue problems.

Example 4.3.1. [29, Example 3.1.] Assume that w(z) = 1, for every = €
[0,d], d > 0, and let Ly, L5 be two different Sturm-Liouville operators whose
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point spectra intersect. In this example we will illustrate how to find X such
that the homogeneous equation holds

LoX = XL (4.29)

Let £, be a Sturm-Liouville operator such that its eigenvalues are A\, = ﬁkT”,

and the corresponding eigenfunctions are

up(z) = dsin(v/ M),

for z € [0, d].
Let £5 be a Sturm-Liouville operator such that its eigenvalues are p; = %T”,
and the corresponding eigenfunctions are

() = 3 sin(7ie),
when z € [0,d]. For every (k € N) A3 = pag, so we put

X (ugk(z)) := vor (). (4.30)
Now let f(x) € C*(0,d) NC*0, d] be represented as

flz) = Za3ku3k($)7 (4.31)

where .

 Jo df(@)sin(Vger) da (f, ugg) (4.32)
[ sin(v/ Az || [|uar]? .

are the Fourier coefficients for the function f on [0,d] with respect to func-

tions ugg. It is known that Fourier series converges uniformly and is uniformly

bounded, when dealing with functions from the class C(0,d) NC[0, d], hence

we can resume to prove our identity. We also require that series

Y agoa(z) = Y %v%@) (4.33)

k=0

Qs

converges uniformly and is unifromly bounded on C?*(0,d)NC'[0,d]. Observe

XLi(f(x) = XLy (Z 043kU3k(93)) =X <Z @3k£1(u3k(95))>

=X (Z agk/\gku?,k(l')) = Z Ozgk/\gkX (U3k(ZL’)) (434)
k=1 k=1

“+oo
= Z Oézkﬂzkvzk(fc)-
k=1
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On the other hand, we have

LoX (f(x)) = LoX (Z a%u%(;ﬁ)) =L, (Z ozgkX(u3k(x))>
=L, (Z &3kU2k($)) = Z s Lo (vo(x)) (4.35)

= Za%ﬂgkvgk(%) = XL, (f(fL’)) )

so the solution (4.30) is a weak solution to the homogeneous equation (4.29),
defined where ever the series (4.33) converges. L]

In linear algebra, a vector v is said to be the generalized eigenvector for the
given operator A with respect to the eigenvalue A(A) if (A — A(A))v is an
eigenvector for A with respect to the eigenvalue A(A). In other words,

(A= XA =0.

Let w be positive non-constant weight function, continuous on [0, d], for some
d > 0. We define w—generalized eigenfunction of first and second order for
the given Sturm-Liouville operator.

Definition 4.3.3. [29] Function f is said to be w—generalized eigenfunction
of the first order for Sturm-Liouville operator £ with respect to the eigenvalue
Aif

(L4 \w)*f = 0.
Function g is said to be w—generalized eigenfunction of the second order for
Sturm-Liouville operator £ with respect to the eigenvalue X if

(L4 N)(L+ Mw)g =0.

In the following example we will illustrate how to transform w—weighted
Sturm-Liouville problem (4.27)—(4.28) with the weight function w to the
Sturm-Liouville problem (4.27)—(4.28) where w(z) = 1, x € [0, d].

Example 4.3.2. [29, Example 3.2.] Let £ be a Sturm-Liouville operator
such that eigenvalues of the problem

L(g)+Ap=0 (4.36)
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are {\ }ren and the corresponding eigenfunctions are Sy (x), k € N. Let w(x)
be such that w(z) > 0, for every = € [0, d], and the problem

L(p(x)) + Aw(z)p(z) =0 (4.37)

has the same eigenvalues { A }ren-

Define an operator

Then
(B=A)(p) =0 L(p) +Ap =0,

50 0,(B) = { Mk }ken. Further, put

It follows that
(A= AD)(p) =0 L(p) + dw(z)p(r) = 0,
50 0p(A) = { A }ren. Finally, put
1

w(x)

(ﬁﬁk(ip)) keN

is a family of linearly independent functions. By solving the inhomogeneous
equation

C(Br(z)) = Br ().

It follows that

AX - XB=C (4.38)

over the space of corresponding eigenfunctions, (Bk (x)) reye We will obtain a
transformation that transforms eigenfunctions of (4.36) into w—generalized

eigenfunctions of second order for (4.37).
In order to solve (4.38), we must find gi(z) such that (see proof of Theorem
4.2.3, expressions (4.19), (4.20) and (4.21))

1

w(z)

(A= AeD)gr(z) = C(Bi(x)) = Pr ().

Multiplying by w(x), we obtain the following

—L(gr(x)) — Asw(x)gr(x) = Bi(x). (4.39)
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In other words,
(L+ M) (Br(x)) = (L + Md)(L+ Npw(z))(gr(z)) =0 (4.40)

so the weak solution X to the inhomogeneous Sylvester equation (4.38) maps
eigenfunctions fi(z) to w—generalized eigenfunctions of second order gi(z):

X(Br(@)) = gu(x). (4.41)

Since X is obviously a one-to-one map, defined on the space whose Schauder
basis is (ﬁk(a:)) e the operator X ~! maps the w—generalized eigenfunctions
of second order gi(x) onto the eigenfunctions [y (z):

X Ygr(2)) == Bp(z) keN. (4.42)

[ )

4.4 A special case: self-adjoint operators on
Hilbert spaces

Weak solutions introduced in this chapter are defined on particular eigen-
spaces of B, which correspond to the shared eigenvalues with operator A.
The previous section illustrates how those solutions apply in the associated
eigenproblems from Sturm-Liouville theory. A natural question rises, and
that is when can the weak solutions be extended to the largest domains pos-
sible? Furthermore, when can the inhomogeneous equation (4.1) be solved, if
the spectral intersection of operators A and B occurs in parts of the spectra
which are not the eigenvalues? Luckily, problems where closed operators ap-
pear (and the corresponding operator equations), usually require the spaces
V1 and V5 to be separable Hilbert spaces, and the operators to be self-adjoint
or symmetric operators on those spaces (consult [37], [43], [59], [77], [99] and
[102]).

Example 4.4.1. Let L*(R) be the standard Hilbert space, equipped with
the usual || - |2 norm. It is known that the Schwarz space S(R) equipped
with the sup —norm is dense in L?(R) (see [37], [102]). The position operator
P and the momentum operator @) are defined on S(R), and their domains
are therefore dense in L?(R). They are unitarily equivalent, by virtue of the
Fourier transform (see [99]), and are essentially self-adjoint (meaning that
they have extensions in the graph topology, which are self-adjoint operators).
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Furthermore, they both have purely absolutely continuous spectra, which
consist of the entire real line,

0(P) = 0ac(P) = 0(Q) = 04.(Q) = R.

Operators P and @ satisfy the basic equation of quantum mechanics (consult
[70], [99] and [101]):

h
PQ-QP = 1. (4.43)

where h is the Planck constant!. This example is essential in the sense that
it does not have an analogue in the bounded operator setting, because the
identity can never be represented as a commutator of two bounded operators
(more generally, the unity in a unital Banach algebra can never be represented
as a commutator of two elements from that algebra). &

The equation (4.43) can be viewed as a Sylvester equation, where A = B = P
and @ = X (or vice verca) and C' = QLM.I . However, this implies that
d(A)No(B) = R and the spectral intersection occurs in the absolute con-
tinuous parts of the spectra, and not in the point spectra. Therefore, it
is convenient to analyze the problem of singular Sylvester equations under
these circumstances. For more on operator equations that stem from quan-
tum mechanics, consult [70], [99] and [101].

From this point on, we assume that V] and V5, are separable Hilbert spaces and
A and B are self-adjoint unbounded operators whose spectra intersect. Recall
that, if S is a self-adjoint operator, it is then a closed and densely defined
operator, and its spectrum o(S) is purely approximate point spectrum, that
is,

() = 0upp(5) = 0(S) Uae(S),  0e(S) = dapp(55) \ ().

We formulate the Spectral mapping theorem for self-adjoint operators (con-
sult books [37], [59] and [102]):

Theorem 4.4.1. (Spectral mapping theorem for self-adjoint operators) For
a self-adjoint operator L, densely defined on a separable Hilbert space V,
there exists a unique decomposition of identity, (E\ : X € R), consisting of
orthogonal projectiors FE), such that

1. The representation

+00
L:/ N E, (4.44)

o0

Lh 2 6.62607004 x 10~3*m?kg/s.
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holds, where Dy, consists of those x € V' such that the integral

+00
L/m A\ d|Eyxl? (4.45)

o

converges.

2. The function A — FE) is strongly continuous from above. Furthermore,
points of discontinuity of the function are precisely the eigenvalues for
the operator L. In that case, if \j is an eigenvalue of L, then E, —FE),—o
is the orthogonal projector from V' onto the eigenspace W), of L, which
corresponds to .

3. The operator L commutes with every F\. Furthermore, an operator S
commutes with L if and only if it commutes with every projector F).

An elegant proof involving a geometric way of thinking was provided by
Leinfelder in [64]. Separability of the space V, as well as density of the
domain Dy, play essential roles in the proof: important consequences follow
immediately, which are applied in this section as well.

Proposition 4.4.1. With respect to the previous Theorem, the space V
allows an orthogonal decomposition

V= ®.Vi, (4.46)

where V,, is an L—invariant subspace of V| such that L, := L(Dy NV,) is
a bounded linear self-adjoint operator on V,, with Dy, = Dy NV,. In that
case,

L=&,L,. (4.47)
Proposition 4.4.2. Let V be a separable Hilbert space and let
V=¢,V, (4.48)

be an orthogonal sum of mutually orthogonal closed spaces V,. If (L,),
is a sequence of self-adjoint bounded linear operators, L, € B(V,), then
there exists a unique self-adjoint operator L € L(V'), such that every V,, is
L—invariant, and that L restricted to V,, coincides with L,,. The domain Dy,
consists of those vectors z € V' such that the series

+oo
P
n=1

converges, where z,, = Py, x. If sup{||L,| : n € N} is finite, then L is a
bounded operator.
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We proceed with the problem at hand, and that is to solve the singular
Sylvester equation (4.1), if A and B are self-adjoint operators, defined on
separable Hilbert spaces, whose spectra intersect. Once again, we denote

0 #o(A)No(B)=:o0.

4.4.1 The case when o = 0,(A) No,(B)

In this particular subsection, it is assumed that
0 = 0y(A) Nop(B),

that is, the only shared points of the spectra are some eigenvalues. For more

elegant notation, denote by E3 = N (B—\I) and £} = N (A—\I) whenever

A € o. Different eigenvalues generate mutually orthogonal eigenvectors, so

the spaces B3 form an orthogonal sum. Put Ep := Y E}. It is a closed sub-
)

space of V] and there exists E§ such that V; = Ep® Efg. Take B = Bg® B;
with respect to that decomposition and denote Cy = C’PEé.

Theorem 4.4.2. [24, Theorem 2.1.| (The point spectrum case) For given
separable Hilbert spaces Vi and V3, let A € C(V3) and B € C(V;) be densely
defined self-adjoint operators such that o(A) No(B) = 0,(A) No,(B) = 0.
Further, let C' € L(V3,V5) be an arbitrary densely defined linear operator,
such that Dg C De.

1. If the condition
C(N(B—=X)) CR(A—=)I), (4.49)

holds for every A € o, then there exist infinitely many solutions Xp to
the equation (4.1), defined on Dp

{u eEN(B-X): Xeo, ZPN(A_)\I)L(A — M)7'Cu converges } .
A€o

(4.50)
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2. In addition, B is a densely defined closed self-adjoint operator as well,
By : Dp, — E%. Assume that Dp, C Dg,, and that the following
implication holds

0€o(A)No(B1) = 0¢€ 0,(A)Noy(By), and  (4.51)
C(N(By)) C R(A). (4.52)

Then there exist infinitely many solutions X; to the eq. (4.1), defined
on ( with respect to inclusion) the largest subspace Dy, C Ep.

3. The solutions X := Xg+ X, obtained in parts 1 and 2 of this theorem,
defined on their largest domains ( with respect to inclusion) Dg + Dy,
are unique in the quotient class of operators from

L(Vi/(Ep +N(B1)),Va/(Ea+ N(A))), (4.53)
defined on the same domain.

Remark. This theorem is proved in a very similar manner Theorem 2.1.1 was
proved. In addition, Statement 3. and expression (4.53) naturally generalize
the characterization of matrix solutions obtained in the eigen-problem (2.5).

Proof. For every \ € o, let E%, Eg, B, Bg, By and Cy be provided as in
the previous paragraph.

1. Define E4 = Y E and split D, into orthogonal sum
X

Dy = (DaNEs)® (ExNDy).

Decompose A = Agp® A; with respect to that sum. Then A; is injective
on Ex NDy and Ajv = Aw, for every v € Ex NDy. For every A € o
let Ny € L(Ey, E}) be arbitrary. For every u € E, by assumption
(4.49), there exists a unique d(u) € (E;\‘)L N D, such that

(A= A)d(u) = Cu. (4.54)

Define
X3 u Nyu+ d(u), u € EjyNDpg. (4.55)
Then X3 : DpNEy — B3 @ (PEQL(Al - )\I)*lCEg> defines a linear
map. What is left is to check whether Xp := /\ZGDUX 2 is a solution to

the equation
AXp — XgBg =CPg, (4.56)
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restricted to Ep N Dg. However, this is directly verifiable. For any
u € Ep N Dg there exist unique scalars ay, and unique uy € Exy N Dg,
A € o, such that u = Y ajuy. Then

(fi)(E —-)(Elg)itiz fljg:(lk)(gle-— EE:AACIA)(gle::

A€o A€o
D (aa(A = A1) (Nyuy + d(un)) = > axCuy = Cu.
A€o A€o

2. We now conduct analysis on F5. The space Ep is B—invariant sub-
space of Vy, then for every a € EgNDp and every b € E5NDp = Dp,
we have (recall that Dp is dense in the enitre V)

0 = (Ba,b) = (a, Bby = (a, B,b),

so By : Dy, — E# defines a closed, densely defined, self-adjoint opera-
tor in E3. Since 0 C o(Bg) C {0} U, it follows that

o(By) C{0}Uc(B)\o.

Case 1. Assume that o(B;) No(A) = 0. Closed operators A and B
allow spectral decompositions with respect to the Spectral Mapping
Theorem: let (Py: A€ R)and (Q,: p € R) bespectral resolutions
of the corresponding identities such that

+00 +o0
A:/ Ad Py, Blz/ pd @y,

where the spaces £ and V, are decomposed as
Eg =@V,  Va=,Vy, (4.57)

and every Vi; (Va;) corresponds to (Q,, — Qo) E5 (respectively,
(P,\j — P)\j_o) Vo). For fixed i € N, let C; = C(Q, — Qu—o0) and let
J (i) be the set of indices j such that

TG0y =45 RGNV, £ 0P,

Define
Vasay = BjesVay-

2J (i) must be non-empty, because (4.57) exausts the entire space V5.
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There exists unique X; which is a bounded operator in B (Vu, Vs J(i)),
which is a solution to

A <P)‘J(i) - PAJ(irO) X; —X;B (Quz - Quﬁo) = Ci. (4-58)

Note that C; is defined wherever B; is defined, as is bounded on that
set. Then X; = @;X; is a unique solution to (4.1), defined on its
natural domain Dy, , that is, wherever the sum ®;.X; converges.

Case 2. Assume that o(A)No(By) # 0. It follows that o(A)No(B;) =
{0}. Define A : Dy/N(A) — V4 in a natural way, that is, for every v €
D, decompose v = vy + vq, where v; € N'(A) and vy € D(A)NN(A)*L.
Then A (vs + N(A)) := Avy = Av. Similarly, define

Co: Doy — D(A)N(A),  Cou) = PyayCou, u € Doy,
and
B, :D(B)/N(B) = R(B1),  Bi(u+N(By)) = B, u€ D(B).

Then O'(A\) N 0(23\1) = (), and Case 1. of this proof applies, i.e. there
exists a unique X defined on its natural domain Dy such that

AX — XB, = Cy (4.59)

holds. Similarly to part 1. the condition (4.52) implies the following
analysis. Let Ny € L(N(B1),N(A)) be an arbitrary linear operator,

and take
~ 1~
as in (4.55), where A\ = 0, that is, define
~\ 1~
Xou = N()U + P,/\/’(A)J- (A) Cu, u e N(Bl> (460)

Finally, adding X; := X + X, gives (one of the) desired solution(s),
defined on Dx, = Dy + Dx,.

3. Adding the operators Xg and X7, obtained in parts 1. and 2. gives the
solutions of the form X = Xg + X;. Zorn’s lemma proves that there
exist domains Dg and Dy, such that Dy is the largest set possible,
with respect to inclusion. Now assume there exits another Y that is
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a solution to the said Sylvester equation, defined on the same domain
as X. Decompose Y = Yg @ Y] with respect to Eg and Eé. Since
the equation AX; — X;B = (] has a unique solution in the class
L(E3 /N (By), Va/N(A)), it follows that Y; € X; + LN (By), N (A)).
Further, for every shared eigenvalue A, the element d, € (Eﬁ“)l defined
in (4.54) is uniquely determined. Thus Y* : E — dy+E7}. This proves
that X =Y =0+ L(Eg + N(By), E4 + N(A)).

[]

Corollary 4.4.1. [24, Corollary 2.1.] (Number of solutions) With respect to
the previous notation, let all assumptions from Theorem 4.4.2 hold. Denote
by > and 2 the sets of linear operators such that

Y={N,: N,=®Ny, Ny€LE}E), Aco}

and

Q= {No € LN(B1), N(4))}.

Let S be the set of all solutions to (4.1), which are defined on the largest
domains possible. Then |Q| - |X| = |5].

Proof. Proof follows directly from Theorem 4.4.2, because choices for solu-
tions depend solely on N, and Ny, whenever A € o, as illustrated in (4.55)
and (4.60). O

Remark. Due to Corollary 4.4.1, the solution Xy, 4n,) € S, with N, € X
and Ny € €, can be referred to as a particular solution. However, this im-
plies that the particular solutions depend on the choice of the corresponding
eigenvectors of A and B. Consequently, the solutions are unstable to small
perturbations, because even the slightest changes in operators A and B can
generate drastically different corresponding eigenvectors.

4.4.2 The case when o = 0,,,(A) N 04(B)

We now investigate the general case, where the spectral intersection occurs in
the approximate point spectra of A and B. Let L € {A, B}, and assume that
A € o4p(L), that is, there exists a sequence (z,) C Dy such that ||z,| =1
while ||(L — Al)z,|| — 0 as n — oco. The main idea is to construct a set
which resembles an approximate eigenspace with respect to A, in order to
apply the same method from the previous case.
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The problem of transferring the approximate point spectrum to the set of
eigenvalues was firstly solved by Berberian in [8], which was further applied
to bounded Fredholm operators by Wickstead, Buoni and Harte in [12] and
[44]. To start, assume that L is a bounded normal operator on a Hilbert space
V. Then for fixed p and X\ € o4,,(L), there exist two normed sequences (z,)
and (y,), such that |[(L — A)x,| and |[(L — ul)y,|| simultaneously tend to
zero as n approaches infinity. Then for every n:

|(/~L - /\) <xn7yn>| = |</\l'n - Lxmyn> + <xn7 L*yn - ﬂyn>|
< |[Azy = Lanl| + | Lyn — vyall,

which tends to zero as n — 4o00. This implies that approximate eigenvec-
tors corresponding to different approximate eigenvalues tend to behave in an
orthogonal manner, similarly to the exact eigenvectors corresponding to the
actual different eigenvalues. This motivates the characterization of the ap-
proximate point spectrum of all bounded linear operators L € B(V'), which
goes as the following (see [8]). Denote by ¢, (V') the space of all bounded
sequences with values in V', equipped with the sup —norm. The set of all se-
quences which converge to zero is denoted by co(V'). It follows that ¢ is, with
respect to the relative topology inherited from ¢..(V'), a proper closed sub-
space, and defines a quotient space £, (V)/co(V) in a natural way. What is
left is to enclose this space, in a manner that £ (V')/co(V') forms a complete
inner product space, with inner product defined via the generalized limits
(called Banach limits) in (V') (see [8] for a more detailed construction).
For a sequence (x,), € ¢5(V'), a bounded linear operator L € B(V') defines
a bounded linear map on (V) as

L'((z0)n) = (L) € Loo(V).

Furthermore, it follows that L'(x,) € ¢o(V'), whenever (z,,) € ¢o(V'). Hence,
Ly i loo(V)/co(V) = Loo(V)/co(V') defines a bounded linear operator, such
that Lj ((x)n/co(V)) = (L'(xn)) /co(V), for every (x,) € lo(V). This im-
plies that || L|| = || L], and that L{ extends continuously to the entire space
loo (V) /co(V'), and that extension is denoted again by L.

Theorem 4.4.3. [8, Theorem 1] For every L € B(V), 0upp(L) = 04pp(Lf) =
op(Lyp)-

Combining the previous discussion with the spectral mapping theorem for
self-adjoint operators (Theorem 4.4.1), we modify Theorem 4.4.3 and apply
it to our own problem.
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Lemma 4.4.1. [24, Lemma 2.1.] Let V be a Hilbert space and let L be a
densely defined bounded self-adjoint operator on V. Then there exists Ly
defined in the previous manner. For that Lj we have o4,,(L) = 0,(Lj) =

Uapp(L/O)-

Proof. Again, observe the spaces (V') and ¢o(V). For every (x,), € ¢(V)
such that z,, € Dy, for every n, boundedness of L implies that (Lx,), €
¢(V). This defines a bounded operator L'(z,), — (Lx,)n, from Dy, to (V).
The operator L is densely defined in V' then so is L’ in ¢(V'). Similarly,
boundedness of L implies that L' : D Neo(V) — ¢o(V), and Dy, is dense
in co(V). For simpler notation, denote by D$° = Dy, and DY = Dr N¢y(V).

Now define an operator Lj, : Dy — £(V)/co(V), where Dy = D /DY is
densely defined in ¢(V)/co(V). Now trivially, if A € 04p,(L) \ 0,(L), then
there exists a normed sequence (), C Dy, such that (L — ) z,), € DY,,

but this means that
(L—=M)o(L=A) ), =0€(V)/co(V),
thus proving that
A € o,(Lg).

On the other hand, if A\ € 0,,,(L{), then direct computation shows that
A € 0gpp(L), thus

Tapp( L) C Oapp(L) C 0,(Lg) C Tapp(Ly)-
Il

Theorem 4.4.4. [24, Theorem 2.3] (The general case) Let A € L(V;) and
B € L(V4) be closed densely defined self-adjoint operators on separable
Hilbert spaces V; and V5, with spectral resolutions of identities

+o00
B = / pd Fy, Vi=®,Vi,,, B,:Vi, = Vi, is a bounded operator

- (4.61)
and

+oo
A= / Ad E)y, Vo=, Vs, A,:V, — Vs, is a bounded operator.

(4.62)
Assume that 04, (B) N o4p(A) =: 0 # 0 and let C € L(V3, Va) be arbitrary
densely defined linear operator, such that Dg C D¢. For every n, let opera-
tors (By), and (A,); be defined as in the previous paragraph and let (C,,);
be defined accordingly. If operators (A4, )q, (Bn), and (Cy,); satisfy conditions
(4.49)—(4.52) from Theorem 4.4.2, then there exist infinitely many solutions

0 (4.1), defined on the largest subsets of V} possible.
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Proof. The first step is to apply spectral decomposition as in (4.61) and
(4.62). Now if 0 = 0,(A) N o,(B), then Theorem 4.4.2 applies. Otherwise,
apply Lemma 4.4.1 to each B, and A,, respectively. Then the problem is
transferred to the first case, that is, the spectral intersection occurs in the
point spectra. If the conditions (4.49)—(4.52) are satisfied, then Theorem
4.4.2 applies and the proof is complete. n
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NpeTnocTaBKOM [a je OHa UK HepeLurBa unv aa uma
BGeckoHa4yHO MHOrO pellera. JegHauynHa ce nocmarpa y
BULLIE pPa3ySIMYUTUX Crydaja, Hajnpe y MaTpU4HOM
cny4ajy, 3aTuM y crnyyajy kaga cy y nutawy orpaHuyeHu
nHeapHu onepaTtopy Ha baHaxosuMm npocTtopuma u
KOHA4YHO Yy cnyyajy Kaga cy y nutawby 3aTBOPEHMU
nNHeapHu onepartopu Ha baHaxoBum nnu XmnbepToBnm
npoctopuma. Y cBakoM of NOMeHyTUX cLeHapuja ce npBo
N3BOAE AOBOSbHN YCINOBU PELUMBOCTY MOrasHe
jedHa4yuHe, a oHAa ce nod TUM npeTnocTtaBkama npenasu
Ha KEeHO pellaBane. [lonasun ce 40 er3akTHUX pellera y
3aTBOpPEHO] (hopmu, Te ce npenasn Ha HUXoBY
Krnacudvkaumjy n kapakrepusaumnjy, oqHOCHO, nokasyje ce
Aa cy ussegeHum nocynumma obyxsaheHa csa moryha
pellera cuHrynapHe CunsecTtepoBe jeAHaunHe.
[MocebHa naxwa je noceBeheHa anpokcumauunjama
pewetra. [JobnjeHn pesyntat cy nnyctpoBaHn Ha HEKUM
caBpemMeHuM npobnemmma 13 Teopuje onepaTtopa, Kao
LUTO Cy cnekTpanHu npobrnemmn orpaHuyeHnx u
HeorpaHM4YeHuX NIMHeapHUX onepaTopa, MHBEP3HU
npobnemun Wtypm-JinyBunose teopuje n onepatopcke
jeOHa4vvHe Koje ce jaBrbajy Y KBAHTHO] MeXaHuuM.
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Abstract, AB: This thesis concerns singular Sylvester operator equations,
that is, equations of the form AX-XB=C, under the premise that
they are either unsolvable or have infinitely many solutions.
The equation is studied in different cases, first in the matrix
case, then in the case when A, B and C are bounded linear
operators on Banach spaces, and finally in the case when A
and B are closed linear operators defined on Banach or Hilbert
spaces. In each of these cases, solvability conditions are
derived and then, under those conditions, the initial equation is
solved. Exact solutions are obtained in their closed forms, and
their classification is conducted. It is shown that all solutions
are obtained in the manner illustrated in this thesis. Special
attention is dedicated to approximation schemes of the
solutions. Obtained results are illustrated on some
contemporary problems from operator theory, among which are
spectral problems of bounded and unbounded linear operators,
Sturm-Liouville inverse problems and some operator equations
from quantum mechanics.
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