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Nǐs, 2020.





Data on Doctoral Dissertation 

 

Doctoral  

supervisor: 

 

 

Title: 

 

                                                                                                   

Abstract: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scientific 

field: 

 

Scientific 

discipline: 

       

Key words: 

   

UDC: 

 

 

CERIF 

classification: 

 

Creative 

common 

licence: 

 

 

 

 

 

 

Nebojša Dinčić, full professor at Faculty of Sciences and mathematics, University of Niš 

Singular Sylvester equation and its applications 

This thesis concerns singular Sylvester operator equations, that is, equations of the form AX-

XB=C, under the premise that they are either unsolvable or have infinitely many solutions. 

The equation is studied in different cases, first in the matrix case, then in the case when A, B 

and C are bounded linear operators on Banach spaces, and finally in the case when A and B 

are closed linear operators defined on Banach or Hilbert spaces.  In each of these cases, 

solvability conditions are derived and then, under those conditions, the initial equation is 

solved. Exact solutions are obtained in their closed forms, and their classification is 

conducted. It is shown that all solutions are obtained in the manner illustrated in this thesis. 

Special attention is dedicated to approximation schemes of the solutions. Obtained results are 

illustrated on some contemporary problems from operator theory, among which are spectral 

problems of bounded and unbounded linear operators, Sturm-Liouville inverse problems and 

some operator equations from quantum mechanics. 

                                    Mathematics 

 

Functional analysis 

Sylvester equation; operator equations; operator algebras; spectral theory of operators; closed 

operators; Fredholm theory; Banach algebras. 

517.983.23; 517.983.24; 517.983.5; 517.986.3; 517.984; 517.984.3; 517.984.4 

P140: Series, Fourier analysis, functional analysis 

CC BY-NC-ND 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Подаци о докторској дисертацији 

 

Ментор: 

 

 

Наслов: 

 

                                                                                                   

Резиме: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Научна  

област: 

 
Научна 

дисциплина: 

       

Кључне 

речи: 

   

УДК: 

 

 

CERIF 

класифи-

кација:  

 

Тип    

лиценце 

креативне  

заједнице: 

 

 

 

 

 

Небојша Динчић, редовни професор Природно-математичког факултета Универзитета у 

Нишу 

Сингуларна Силвестерова једначина и њене примене 

У овој дисертацији се изучава сингуларна Силвестерова операторска 
једначина, односно, операторска једначина облика 
 AX-XB=C, под претпоставком да је она или нерешива или да има бесконачно 
много решења. Једначина се посматра у више разчличитих случаја, најпре у 
матричном случају, затим у случају када су у питању ограничени линеарни 
оператори на Банаховим просторима и коначно у случају када су у питању 
затворени линеарни оператори на Банаховим или Хилбертовим просторима. У 
сваком од поменутих сценарија се прво изводе довољни услови решивости 
полазне једначине, а онда се под тим претпоставкама прелази на њено 
решавање. Долази се до егзактних решења у затвореној форми, те се прелази 
на њихову класификацију и карактеризацију, односно, показује се да су 
изведеним посупцима обухваћена сва могућа решења сингуларне 
Силвестерове једначине. Посебна пажња је посвећена апроксимацијама 
решења. Добијени резултати су илустровани на неким савременим 
проблемима из теорије оператора, као што су спектрални проблеми 
ограничених и неограничених линеарних оператора, инверзни проблеми 
Штурм-Лиувилове теорије и операторске једначине које се јављају у квантној 
механици. 

                                       Математичке науке 

 

Функционална анализа 

Силвестерова једначина; операторске једначине; алгебре оператора; спектрална теорија 

оператора; затворени оператори; Фредхолмова теорија; Банахове алгебре. 

517.983.23; 517.983.24; 517.983.5; 517.986.3; 517.984; 517.984.3; 517.984.4 

P140: Класе, Фуријеова анализа, функционална анализа 

CC BY-NC-ND 

 



 

 



Podaci o mentoru i članovima komisije
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i

Abstract

The main goal of this doctoral dissertation is to investigate behavior of sin-
gular Sylvester equations, i. e. behavior of operator equations

AX −XB = C,

under the assumption that they are either unsolvable or have infinitely many
solutions. Once solvability conditions are derived, characterization and clas-
sification of the solutions is conducted and an explicit general formula for
those solutions is provided, thus forming the general solution of the given
Sylvester equation.

Standard techniques, such as the generalized inverses, are omitted, because
the assumption that A and B have closed ranges which are complemented
in the corresponding Banach spaces is dropped. Instead, new and original
methods are developed for solving this problem, and they are the original
scientific contribution of the author, published in papers [24]–[29].

The dissertation is broken down into several chapters. Chapter 1 is the in-
troductory chapter, where regular Sylvester equation (which has a unique
solution) is introduced and solved. Some important applications of the equa-
tion are mentioned.

Chapter 2 concerns the singular case where A, B and C are matrices. The re-
sults are obtained by the shared-eigenvalue discussion for matrices A and B,
and by the analysis of the corresponding eigenspaces. Generalized commu-
tators of matrices A and B are characterized, and the solutions are approxi-
mated when possible. Perturbation analysis is conducted, using majorization
theory for matrices. The main results in this chapter were obtained by the
author and his PhD advisor in their joint works [28] and partially [29], and
by the author in his individual paper [27].

Chapter 3 concerns the singular case when A, B and C are bounded linear
operators on Banach spaces. Since the spectra of A and B do not necessarily
consist of eigenvalues only, an alternative approach is required. First, a
special operator algebra is introduced, which is not a Banach algebra per se,
but still allows a functional calculus of its elements. This algebra gives a
different form of the general solution to the given Sylvester equation, and
solves every basic operator equation

AX −XB = C, AXB = C, X − AXB = C,
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in the same manner, discarding regularity of the equations (only their solv-
ability is required). The advantage of this method compared to the gener-
alized inverses techniques (which are commonly used in singular equations)
is that it does not require complementedness of the appropriate ranges and
null-spaces, but rather solves each equation directly. This algebra is intro-
duced and studied in detail by the author in [25]. Afterwards, this algebra is
used to solve the initial Sylvester equation, with help from Fredholm theory.
The author obtained these results in [26]. Applications to some contempo-
rary problems in Banach spaces are illustrated as well.

Chapter 4 concerns the singular case when A and B are densely defined closed
operators on Banach spaces, and C is a densely defined linear operator. The
initial premise is that the point spectra of A and B intersect, and in that case,
weak solutions X are obtained, which are defined on appropriate eigenspaces
of B. Techniques used involve decompositions of the given operators and
spaces. Further, the results are extended to Schauder bases when possible,
and are applied to Sturm-Liouville operators. These results were achieved by
the author and his PhD advisor in the joint work [29]. Afterwards, a special
case is analyzed, where A and B are densely defined self-adjoint operators on
Hilbert spaces, while the point-spectrum-intersection assumption is dropped.
In that case, the weak solutionsX obtained in [29] are extended to the largest
domains possible, which are constructed by the Spectral mapping theorem
for self-adjoint operators and by the Berberian-Buoni-Harte-Wickstead con-
struction. These results were obtained by the author in [24] and they are
illustrated on an example which stems from quantum mechanics.
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Abstrakt

Glavni cilj ove doktorske disertacije je ispitivanje prirode singularne Silves-
terove jednačine, odnosno, operatorske jednačine oblika

AX −XB = C,

pod pretpostavkom da je ona ili nerešiva, ili da ima beskonačno mnogo
rešenja. Najpre bi se obezbedili dovoljni uslovi rešivosti jednačine, a po-
tom bi se sprovela karakterizacija i klasifikacija rešenja. Ta rešenja bi se
zatim izvela analitčkim i egzaktnim metodima, u zatvorenom obliku, čime bi
formirala opšte rešenje polazne jednačine.

Za razliku od standarndih metoda korǐsćenih za rešavanje singularnih op-
eratorskih jednačina, poput uopštenih inverza, u ovoj disertaciji se, izmed̄u
ostalog, posmatraju i slučajevi u kojima dati operatori nisu uopšteno in-
vertibilni, odnonso, njihova jezgra i njihove slike ne moraju biti zatvoreni
sa topološkim komplementima u odgovarajućim prostorima. Stoga se dati
problem analizira na nov i originalan način, što je ujedno i naučni doprinos
autora ovoj temi. Originalni rezultati autora, na kojima se i bazira ova dis-
ertacija, publikovani su u radovima [24]–[29].

Sama disertacija je podeljena u nekoliko glava. Glava 1 je uvodnog karaktera,
u kojoj se uvodi i rešava regularna Silvesterova jednačina (polazna jendačina
koja ima jedinstveno rešenje). U ovoj glavi su pomenute neke od najbitnijih
primena ove jednačine.

U Glavi 2 se posmatra singularna Silvesterova jednačina, pod pretpostavkom
da su A, B i C skalarne matrice. Rezultati prikazani u ovoj glavi su izve-
deni diskusijom po zajedničkim sopstvenim vrednostima matrica A i B, kao i
pomoću analize sprovedene na odgovarajućim sopstvenim prostorima tih ma-
trica. Okarakterisani su uopšteni komutatori matrica A i B. Sama rešenja
su aproksimirana u slučajevima kada je to bilo moguće. Sprovedena je per-
turbaciona analiza pomoću teorije majorizacija za matrice. Glavni rezultati
ovog poglavlja izvedeni su u zajedničkim radovima autora i njegovog mentora
[28] i delimično [29], kao i u samostalnom radu autora [27].

U Glavi 3 se proučava singularna Silvesterova jednačina, pod pretpostavkom
da su A, B i C ograničeni linearni operatori zadati na Banahovim prostorima.
S obzirom da spektri operatora A i B ne moraju da se sastoje isključivo od
sopstvenih vrednosti tih operatora, neophodan je drugačiji pristup u odnosu
na matrični slučaj. Za početak, uvedena je specijalna algebra operatora,
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koja nije Banahova algebra kao takva, ali dopušta funkcionalni račun svo-
jih elemenata. Ova algebra pruža drugačiji oblik opšteg rešenja singularne
Silvesterove jednačine, i direktno rešava svaku od elementarnih operatorskih
jednačina oblika

AX −XB = C, AXB = C, X − AXB = C,

na isti način, zanemarujući regularnost samih jednačina (zahteva se samo
njihova rešivost). Prednost ovog metoda, u odnosu na upštene inverze, je ta
da se ne zahteva zatvorenost i komlementarnost odgovarajućih slika i jezgara
datih operatora. Ova algebra operatora je uvedena i analizirana od strane au-
tora u samostalnom radu [25]. Nakon toga, ta algebra operatora je iskorǐsćena
za rešavanje singularne Silvesterove jednačine pomoću Fredholmove teorije.
Ove rezultate je autor izveo u samostalnom radu [26]. Prikazane su primene
dobijenih rezultata na neke savremene probleme koji se javljaju u teoriji op-
eratora.

U Glavi 4 se izučava singularna Silvesterova jednačina pod pretpostavkom da
su A i B zatvoreni operatori sa gustim domenima u Banahovim prostorima,
dok je C proizvoljan gusto definisan linearan operator. Polazna pretpostavka
je ta da se tačkasti spektri operatora A i B seku, i u tom slučaju su izvedena
slaba rešenja X, koja su definisana na odgovarajućim sopstvenim prostorima
operatora B. Ova rešenja su dobjena pomoću raznih dekompozicija opera-
tora i prostora. Dobijena slaba rešenja X su potom proširena na Šauderove
baze kada je to bilo moguće, i ilustrovana su na spektralnim problemima iz
Šturm-Liuvilove teorije. Ove rezultate je autor izveo u koautorstvu sa svo-
jim mentorom u radu [29]. Nakon toga, specijalan slučaj je analiziran, u
kome su A i B samokonjugovani neograničeni operatori, definisani na sep-
arabilnim Hilbertovim prostorima, dok je pretpostavka o preseku njihovih
tačkastih spektara izbačena. U tom slučaju, slaba rešenja X izvedena u radu
[29] su proširena na najveće moguće domene. Ona su proširena pomoću spek-
tralne teorije samokonjugovanih operatora i pomoću konstrukcije uvedene od
strane Berberijana, Buonija, Hartea i Vikstida. Autor je ove rezultate izveo
u samostalnom radu [24], a potom ih je ilustrovao na primeru iz kvantne
mehanike.



A word from the author

Other than being a fifth grader’s worst nightmare, mathematical equations
are the most recognizable ”things” from the math world, a claim stated by an
innocent bystander.

,,Imagine trying to compare two variables A and B, which can simultane-
ously take any value as they please. Rarely enough, they sometimes do take
the same number, and in those moments you can say that A and B are
equal. Other times, one is always larger or smaller than the other. That
is, of course, when the variables A and B are real-valued entities, which is
usually not the case”, is how I tried to explain the dissertation to my middle
school students. Those bright, curious minds, who demanded an explana-
tion to why their algebra teacher was sometimes distracted and frustrated.
Luckily, math majors were a bit more sympathetic to their teaching assis-
tant. ,,Is it difficult?” some of them would ask me, with the usual existential
follow-ups (as one mathematician tends to ask another) ,,What’s the point
of such results? Are there any real-world applications?” At the time being,
I spectacularly failed to answer these questions. With a long overdue, I am
finally stating my reply:

Beauty and poetry of mathematics hide in its irregularities. Because, fact
that a butterfly will flap its wings and simply fly away will not send shivers
down your spine; but the idea that the flapping might start a series of events
which could lead to a tsunami will surely get you there. The world does not
function in a regular manner, but rather experiences chaotic behavior in ev-
ery possible situation, therefore it cannot be modeled with regular equations.
It demands to be studied and analyzed with the equations which behave in an
irregular fashion, which are called ”singular” equations. I can only hope that
one day humanity will benefit from the results obtained in this dissertation,
in its attempt to understand the world around us.

An endless ”thank you” goes to all my students, current and former, who

v
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managed to keep me on my toes all these years, pulling me out of my comfort
zone in every way imaginable.

I was fortunate enough to get such an amazing PhD advisor, professor
Neboǰsa Dinčić, who introduced me to this wonderful area of mathemat-
ics. Not only he’d been an extraordinary mentor during the process, but
became a close friend as well. He always knew the perfect balance between
pushing me forward and letting me figure it out on my own. Thank you for
all the patience, knowledge and wisdom you shared with me.

Academician Vladimir Rakočević and professors Dragan Djordjević, Snežana
Živković-Zlatanović, Dijana Mosić, Milica Kolundžija and Marko Djikić are
just few of the many who taught me everything I know about functional anal-
ysis and operator theory. I am forever in their debt. Academician Stevan
Pilipović and professor Marko Nedeljkov showed me beauty and necessity of
distributions and weak partial differential equations. Academician Miodrag
Mateljević helped me bridge the gap between spectral theory and complex
analysis. I am grateful to them for helping me understand importance of
mathematical analysis at a deeper level. Professor Peter Šemrl carefully
read the manuscript and gave me constructive tips which improved quality
of the dissertation. For doing so, I am very thankful to him.

A special ”thank you” goes to my colleagues from Mathematical Institute
of the Serbian Academy of Sciences and Arts, dean Zoran Ognjanović and
fellows Djordje Baralić, Mladen Zekić, Stefan Ivković and Luka Milićević.
Their assertiveness and selflessness showed me just how fruitful a work en-
vironment can be. On that note, I would also like to thank my dear friends
Martin Ljubenović, Dragan Rakić and Miloš Cvetković for including me in
their seminars on Linear Operators, Theory and Applications. I promise, the
next time we’ll get it.

Last, but not the least, I would like to thank my entire -Dord̄ević family,
parents Dragan and Olivera, brother Dušan, sister-in-law Katarina, aunt
Snežana and grandparents Gospava and Sreten, for their endless love and
support during the process. Believe me, the pleasure was all mine.
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Chapter 1

Introduction: Significance of
the Sylvester equation

1.1 Notation

Throughout the dissertation, notation used for various mathematical entities
is a standard one; by V , W , V1, V2, K, H, . . . we denote vector spaces
(often Banach spaces), unless stated differently. Elements of such spaces are
vectors, usually denoted by u, v, w and so on. The symbol ∥ · ∥ stands for a
(given) norm, and ⟨·, ·⟩ stands for the scalar product. By ·⊥ we denote the
orthogonal complement of the given entity. Two spaces W and V , form a
direct sum denoted by W +. V , while W ⊕ V stands for the orthogonal sum
of W and V . An open disc in the complex plane, with the center a ∈ C and
the radius r > 0 is denoted by D(a; r). Letters A, B, C, X, Y , L, S and
so on denote linear operators. I stands for the identical operator, Iu = u,
for every u ∈ V . L(V,W ) denotes the set of all linear operators S, with
domains (denoted by DS) being subsets of V , while their images (denoted
by R(S)) are subsets of W . If V = W , we simply write L(V ). For normed
spaces V1 and V2, the set of bounded (continuous) linear operators from V1

to V2 is denoted by B(V1, V2), where it is understood that the operators are
defined on the entire space V1. If such exists, the inverse of an operator
S ∈ L(V ) is denoted by S−1 (unless stated differently, we require both S and
S−1 to be bounded and defined on the entire V ). The set of all λ ∈ C such
that S − λI is not an invertible operator in L(V ) is denoted by σ(S), while
ρ(S) := C \ σ(S) denotes the resolvent set, i.e. the set of all λ ∈ C such that
S − λI is an invertible operator1. The set of all vectors u such that Su = 0

1If S is a bounded linear operator, then σ(S) is a non-empty compact set and ρ(S) is
a non-empty unbounded set.

1



2 CHAPTER 1. SIGNIFICANCE OF THE SYLVESTER EQUATION

is the null-space of S, denoted by N (S). A value λ ∈ σ(S) is called an
eigenvalue for S if there exists u ̸= 0 such that Su = λu, i.e. u ∈ N (S−λI);
the vector u is then called an eigenvector for S which corresponds to λ. For
given Hilbert spaces V and W , for arbitrary L ∈ L(V,W ), the unique closed
(if such exists) L∗ ∈ L(W,V ) which satisfies

⟨Lu, v⟩ = ⟨u, L∗v⟩,

for every u ∈ DL and every v ∈ DL∗ , denotes the Hilbert-conjugate (or ad-
joint) operator of the operator L.

In this chapter we introduce Sylvester equations. We state existing results
on this topic, which mostly concern regular Sylvester equations (this will be
explained shortly). Some of the original proof are modified by the author, in
order to make them more mathematically accurate and more applicable for
the rest of the dissertation. These alterations are clearly pointed out in the
text. Afterwards, singular Sylvester equations are introduced and motivation
for their analysis (and motivation for writing this thesis) is explained.

1.2 The regular equation

Let V1 and V2 be given Banach spaces. Equations of the form

AX −XB = C (1.1)

are called Sylvester equations, where, in general, A ∈ L(V2), B ∈ L(V1)
and C ∈ L(V1, V2), are given linear operators. Such equations were firstly
introduced by Sylvester himself in 1884, in the matrix case, when he proved a
fundamental result, which today serves as a starting point for contemporary
results in matrix analysis.

Theorem 1.2.1. [96] Let A, B and C be matrices of appropriate dimensions.
The equation (1.1) has a unique solution X if and only if σ(A) ∩ σ(B) = ∅.
It wasn’t until the mid 1900s when Rosenblum generalized the result to
bounded linear operators.

Theorem 1.2.2. [89] Let V1 and V2 be Banach spaces and let A, B and C be
bounded linear operators defined on the appropriate spaces. The equation
(1.1) has a unique solution if σ(A) ∩ σ(B) = ∅.
Remark. The converse statement does not hold for bounded linear oper-
ators, that is, there can be a unique solution to (1.1) even though σ(A) ∩
σ(B) ̸= ∅. This is because in matrices, being invertible is equivalent to being
injective.
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For given Banach spaces V1 and V2, and bounded linear operators A ∈ B(V2)
and B ∈ B(V1), condition σ(A) ∩ σ(B) = ∅ implies that for any given C ∈
B(V1, V2) there always exists a unique bounded solution X ∈ B(V1, V2) to
(1.1), which means that the problem is regular. More precisely, if one defines
the Sylvester operator,

S(L) := AL− LB, S ∈ B(B(V1, V2)), L ∈ B(V1, V2),

then σ(A) ∩ σ(B) = ∅ implies S to be invertible in B(B(V1, V2)), with a
bounded inverse also belonging to B(B(V1, V2)). In that sense, the sought
solution X to (1.1) is always X = S−1(C), for any afore-given C ∈ B(V1, V2).
For this reason, the equation (1.1) is said to be regular whenever A, B and
C are bounded linear operators on the corresponding Banach spaces and
σ(A) ∩ σ(B) = ∅. Regular equations have been studied extensively so far,
with various applications in theoretical and applied mathematics, physics
and engineering, see [1], [3], [4], [10], [14], [35], [40], [42], [47], [50], [52], [55],
[56], [60], [69], [70], [83], [88], [89], [90], [91], [93] and numerous references
therein. In addition, there are several results regarding a unique bounded
solution to (1.1), while the operators are unbounded, consult [60], [75] and
[83]. These results have a huge impact on mathematical physics and quan-
tum mechanics. However, these results impose certain solvability conditions
for operator C (this will be discussed in Chapter 4).

Proofs for Theorems 1.2.1 and 1.2.2 rely on Lemma 1.2.1 below. Notice
that proof of the lemma, as well as proof of Theorem 1.2.2, have a direct
generalization to unital Banach algebras, see [30], [34], [37], [39], [41], [43],
[72], [80], [86], [92], [99], [100], [102].

Lemma 1.2.1. If A and B are commuting bounded linear operators on a
Banach space V , then

σ(A− B) ⊂ σ(A)− σ(B).

Proof. Proof provided in [10] follows from Gelfand theory of commutative
Banach algebras. Imbed A and B in a maximal commutative subalgebra of
the algebra of operators. Then the spectrum of an operator is equal to its
spectrum, relative to a maximal commutative subalgebra. The spectrum of
an element of a commutative Banach algebra with identity is the range of its
Gelfand transform. This gives

σ(A− B) = {φ(A− B) : φ is a nonzero complex homomorphism} =

{φ(A)− φ(B) : φ is a nonzero complex homomorphism} ⊂ σ(A)− σ(B).



4 CHAPTER 1. SIGNIFICANCE OF THE SYLVESTER EQUATION

Proof of Theorem 1.2.1 and Theorem 1.2.2. Define operators A(X) := AX
and B(X) := XB. Then A, B ∈ B (B(V1, V2)) and they commute. Trivially,
the Sylvester operator S satisfies S = A−B, therefore, Lemma 1.2.1 applies
and σ(S) ⊂ σ(A)− σ(B) ̸∋ 0. This proves the statements.
Conversely, if A and B are matrices and for every matrix C there exists
a unique solution X to (1.1), then σ(A) ∩ σ(B) = ∅. This is verified by a
direct computation. Assume that, in addition with the previous assumptions,
there exists λ ∈ σ(A) ∩ σ(B). Then λ̄ ∈ σ(A∗) and there exist (non-zero)
eigenvectors u and v for B and A∗, respectively, which correspond to λ and
λ̄, respectively. Define Cu := v and let X be a unique solution to the
appropriate Sylvester equation. Then

0 = λ⟨Xu, v⟩ − λ⟨Xu, v⟩ = ⟨Xu, λv⟩ − λ⟨Xu, v⟩
= ⟨Xu,A∗v⟩ − ⟨λXu, v⟩ = ⟨AXu, v⟩ − ⟨XBu, v⟩
= ⟨(AX −XB)u, v⟩ = ⟨Cu, v⟩ = ⟨v, v⟩ = ∥v∥2 > 0,

which is impossible. �

That the converse does not hold for bounded linear operators is illustrated
in the next example obtained by the author and his PhD mentor:

Example 1.2.1. [29, Example 1.1.] Let V1 = V2 be infinite dimensional
Banach spaces and let A = C = 0. Assume that B is onto but is not
injective. Then σ(A) ∩ σ(B) = {0}, while the only solution to the equation
AX −XB = C ⇔ XB = 0 is X = 0. ♣

The author is here generalizing the statement to noncommutative unital Ba-
nach algebras.

Lemma 1.2.2. Let A be a noncommutative unital Banach algebra that is
infinite dimensional. Let a, b and c ∈ A such that a = c = 0A and let b
be a left zero divisor, which is not simultaneously a right zero divisor. Then
ax− xb = c has only one solution and that is x = 0A.

Proof. Obviously σ(a) = {0} while 0 ∈ σ(b), since b is a left zero divisor.
Furthermore,

ax− xb = c ⇔ xb = 0A ⇔ x = 0A.
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Conversely, if there are no solutions, or there exist infinitely many solutions,
the equation is said to be singular. More generally, by singular equations we
can (and we will in Chapter 4) consider equations of the form (1.1), where
we discard boundedness of the given operators and the equation itself does
not have a unique bounded solution. It is quite trivial to give an example of
a Sylvester equation which is unsolvable:

Proposition 1.2.1. Let V be a Banach space and let A ∈ B(V ). Then
equation AX −XA = I does not have a bounded solution.

This statement can directly be generalized to unital Banach algebras as well.
Since the proof is identical, we only prove the statement below.

Proposition 1.2.2. Let A be a unital Banach algebra, with 1 as its unity.
Then 1 is not a commutator in A, meaning that, there are no a, b ∈ A such
that ab− ba = 1.

Remark. Note that proof can be found in numerous books on functional
analysis and operator theory, to name a few, see [30], [34], [37], [39], [41],
[43], [72], [80], [86], [92], [99], [100], [102]. Here, the author states his proof.

Proof. Let a, b ∈ A and let σ(a), σ(b) denote the spectra of a and b, re-
spectively, in A. Then σ(ab) ∪ {0} = σ(ba) ∪ {0}. On the other hand, if
ab = 1 + ba, then σ(ab) = σ(1 + ba) = 1 + σ(ba) = {1 + λ : λ ∈ σ(ba)}.
Consequently,

σ(ba) ∪ {0} = σ(ab) ∪ {0} = {1 + λ : λ ∈ σ(ba)} ∪ {0}.

Denote by K = σ(ba), which is a compact subset of C. We are going to prove
that it is impossible to have the set equality

K ∪ {0} = 1 +K ∪ {0}.

Since K is a compact set, it has a finite diameter, therefore, there exists an
m ∈ Z+

0 such that m > diam(K).
Case 1. Assume that K ∩Z = ∅. Then for every k ∈ K we have k ∈ K +1,
that is, k − 1 ∈ K. Consecutively, it follows that k ∈ K and k − m ∈ K,
which is impossible.
Case 2. Now assume that there exists k ∈ K ∩ Z such that k < 0. Then
k ∈ K ⊂ K + 1 ∪ {0}, ergo k ∈ K + 1 and k − 1 ∈ K. Similarly to the
previous case, it follows that k−m ∈ K as well as k ∈ K, which is impossible
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by the choice for m.
Case 3. Assume that there exists k ∈ K ∩ Z such that k > 0. Then by the
same argument, k + 1 ∈ K + 1 ⊂ K ∪ {0}, that is, k + 1 ∈ K. Therefore,
k +m ∈ K as well as k ∈ K, which is not possible.
Case 4. What remains is that K∩Z = {0}. But then, K = {0}∪K1, where
K1 ∩ Z = ∅. Then diam(K1) ≤ diam(K) < m and for any k ∈ K1, Case 1
applies which leads to k+m ∈ K1, which is not possible. Therefore, K1 = ∅
and K = {0}. But then σ(ab) = σ(ba) = {0} and σ(ab) = 1 + σ(ba) = {1},
which is not possible.

It is important to state that the equation AX −XA = I can be solved (un-
der certain conditions) if the operator A is unbounded and in that case, the
solutions X are unbounded as well. This example is the pillar for the the-
ory of closed operators, as such equations stem quite naturally in quantum
mechanics, consult [70], [99] and [101]. For this reason, it is very important
to study singular Sylvester equations with unbounded operators. This will
further be discussed in Chapter 4.

The previous proposition illustrates that, when the equation is singular, solv-
ability of the equation is not automatically achieved, but rather requires a
special attention. This will be emphasized in appropriate places of the dis-
sertation. So far, singular Sylvester equations have not been studied that
extensively. This dissertation is a collection of original results on that topic,
published by the author in individual papers ([24]–[27]) and in joint work
with his PhD mentor, professor Neboǰsa Dinčić ([28] and [29]).

1.2.1 Solution to the regular equation

There are numerous ways to construct the solution X in the regular case,
both analytically and numerically. In what follows, we enlist some of the
most common methods for obtaining the solution, as these expressions come
in handy throughout the dissertation. Unless stated differently, we assume
V1 and V2 to be Banach spaces and operators A, B, C and X are bounded
linear operators, defined on the appropriate Banach spaces. Note that, if
σ(A)∩σ(B) = ∅, then A or B is invertible. Similarly to the previous remarks,
note that most of the functional calculus can be directly transferred to unital
Banach algebras.

Theorem 1.2.3. [10] Suppose that A is an invertible operator, such that

there exist δ1 > δ2 > 0, σ(B) ⊂ D(0, δ2) and σ(A) ⊂
(
D(0, δ1)

)c
. Then the
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solution X to eq. (1.1) can be provided as

X =
+∞∑
n=0

A−n−1CBn. (1.2)

Similarly, if B is invertible with σ(B) ⊂
(
D(0, δ1)

)c
and σ(A) ⊂ D(0, δ2),

then

X =
+∞∑
n=0

AnCB−n−1. (1.3)

Proof. If A is invertible such that σ(B) ⊂ D(0, δ2) and σ(A) ⊂
(
D(0, δ1)

)c
,

then the spectral radius theorem implies that ∥A−1CB∥ ≤ δ2
δ1
∥C∥. Therefore,

the sum in (1.2) converges and defines a bounded linear operator. Direct
verification shows that

A

(
+∞∑
n=0

A−n−1CBn

)
−

(
+∞∑
n=0

A−n−1CBn

)
B = C.

Analogous procedure holds for (1.3).

Theorem 1.2.4. [89] Let Γ be a union of closed contours in the complex
plane, with total winding number around σ(A) equal to 1 and total wind-
ing number around σ(B) equal to zero. Then the solution to (1.1) can be
expressed as

X =
1

2πi

∫
Γ

(A− ξ)−1C(B − ξ)−1 d ξ. (1.4)

Proof. Assume that (1.1) holds. Then for every ξ ∈ C,

(A− ξ)X −X(B − ξ) = C.

Take ξ such that both A− ξ and B − ξ are invertible. This gives

X(B − ξ)−1 − (A− ξ)−1X = (A− ξ)−1C(B − ξ)−1.

Integrating over Γ and noting that∫
Γ

(B − ξ)−1 d ξ = 0,

∫
Γ

(A− ξ)−1 d ξ = 2πi

finishes the proof.
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In the case when A, B and C are matrices, a polynomial construction is the
most fruitful. If dimA = m and dimB = n, let a and b the characteristic
polynomials of A and B respectively:

a(s) =
m∑
i=0

αis
i, (1.5)

b(s) =
n∑

i=0

βis
i. (1.6)

Similarly to the previously stated, for given k ∈ N0, define

η(k,A,C,B) =
k∑

i=0

Ak−iCBi. (1.7)

The following polynomial equations hold.

Lemma 1.2.3. [50, Lemma 2.1.] With respect to the previous notation, if
X is the solution to (1.1), then for every k ∈ N the following equality holds

AkX −XBk =
k−1∑
i=0

Ak−i−1CBi = η(k − 1, A, C,B). (1.8)

Proof. When k = 1, the eq. (1.8) holds by assumption. When k = 2, we
have

A2X−XB2 = A(AX)−(XB)B = A(AX−XB)−(XB−AX)B = AC+CB.

The rest is proved analogously, by mathematical induction.

Combining η(k,A,C,B) with the characteristic polynomial b of B, we define

ϕ(A,C,B) =
n∑

k=1

βkη(k − 1, A, C,B). (1.9)

Theorem 1.2.5. [50, Theorem 2.2.] If matrices A and B have no common
eigenvalues, then (1.1) is equivalent to

b(A)X = ϕ(A,C,B). (1.10)
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Spectral mapping theorem implies that b(A) is an invertible matrix, so

X = b(A)−1ϕ(A,C,B). (1.11)

Remark. Formulas (1.2)–(1.11) motivate further inspection of expressions
of the form AnCBn and AnXBn. These expressions have been studied in
detail by the author in [25], and Chapter 3 relies heavily on those results.

For further results on analytical and numerical solutions to the regular Sylvester
equations, the reader is referred to [7], [14], [39], [42], [52], [68], [69], [71],
[73], [74], [75], [88], [89], [90], [91], [93], [94], [95] and references therein.

1.3 Some applications

1.3.1 Diagonalization of operator matrices

Simply knowing when the Sylvester equation is solvable (discarding unique-
ness of the solution), gives quite interesting information about the operators
A, B and C. One of the most basic consequences is the diagonalization of an

operator matrix. Consider the 2 × 2 bounded operator matrices

[
A C
0 B

]
and

[
A 0
0 B

]
, defined on V2 × V1. When are these two matrices similar?

Note that every operator of the form

[
I2 X
0 I1

]
is invertible in B(V2 × V1),

and its inverse is

[
I2 −X
0 I1

]
. Thus the given matrices are similar if there

exists an X satisfying[
A C
0 B

] [
I X
0 I

]
=

[
I X
0 I

] [
A 0
0 B

]
.

Multiplying out the matrices and equating the corresponding entries gives
four operator equations, of which only one is not automatically satisfied.
That equation is AX+C = XB, or AX−XB = −C. Ergo, if the later equa-
tion is solvable, then the afore given matrices are similar. Simple application
of mathematical induction generalizes this statement to n-dimensional up-
per triangular operator matrices, consult [10]. The diagonalization problem
is essential in applied operator theory and matrix analysis, as it drastically
simplifies computational procedures, such as computation of the matrix (or
operator) sign function, linear model reductions etc. consult [7], [9], [10],
[14], [35], [46], [47], [54], [60], [70], [75], [83], [88], [91], [94] [95] and [100].
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1.3.2 Lyapunov stability theory

Let H be a Hilbert space and let A ∈ B(H) be a bounded linear operator on
H. Observe the abstract differential equation

dZ

d t
= AZ(t), t ∈ [0,+∞), Z : [0,∞) → H. (1.12)

Translating it to 0 and homogenizing the initial conditions, it follows that
either all solutions to (1.12) are stable or unstable in the Lyapunov sense,
where the solution Z(t) is stable if and only if

∥Z(t)∥ → 0, t → +∞.

Theorem 1.3.1. [10, Theorem 7.1.] With respect to the previous notation,
if the spectrum of A is contained in the open left half plane, then there exists
a unique (strictly) positive operator X satisfying AX +XA∗ = −I.

Proof. It immediately follows that σ(A) ∩ σ(−A∗) = ∅, therefore operator
equation AX + XA∗ = −I has a unique solution. Taking the Hilbert con-
jugate of the operators, it follows that X∗ is a solution to the equation as
well, indicating that X = X∗ so X is self-adjoint. In order to prove that X
is positive, it suffices to show that σ(X) ⊂ R+. Without loss of generality,
we can assume that the numerical range of A is contained in the open left
half plane as well.

If λ is an eigenvalue of X then there exists a normed u such that Xu = λu
and

⟨−u, u⟩ = ⟨(AX +X∗A)u, u⟩ = ⟨AXu, u⟩+ ⟨Au,Xu⟩ = 2λ⟨Au, u⟩.

Since Re⟨Au, u⟩ and ⟨−u, u⟩ are both negative, λ must be positive. For the
same reason, it follows that λ ̸= 0.

If the operator X does not have an eigenvalue, the proof provided in [10] is
completed by Weyl–von Neumann Theroem (see e. g. [57]):

Theorem (Weyl–von Neumann): Any self-adjoint operator differs from
a pure point spectrum operator by an operator of arbitrarily small Hilbert-
Schmidt norm.

However, this does not imply that all approximate eigenvalues of the operator
X are positive. Here the author provides his own proof, which transfers the
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problem to the elegant construction introduced by Berberian, see [8]. What
is already proved, is that X is a self-adjoint operator, therefore σ(X) =
σapp(X). If X has no eigenvalues, then every point λ from the spectrum of X
is its approximate eigenvalue. The problem of transferring the approximate
point spectrum to the set of eigenvalues was firstly solved by Berberian in
[8], which was further applied to bounded Fredholm operators by Wickstead,
Buoni and Harte in [12] and [44]. To start, assume that L is a bounded
normal operator on a Hilbert space V . Then for fixed µ and λ ∈ σapp(L),
there exist two normed sequences (xn) and (yn), such that ∥(L−λI)xn∥ and
∥(L− µI)yn∥ simultaneously tend to zero as n approaches infinity. Then for
every n:

|(µ− λ)⟨xn, yn⟩| = |⟨λxn − Lxn, yn⟩+ ⟨xn, L
∗yn − µ̄yn⟩|

≤ ∥λxn − Lxn∥+ ∥Lyn − νyn∥,

which tends to zero as n → +∞. This implies that approximate eigenvec-
tors corresponding to different approximate eigenvalues tend to behave in an
orthogonal manner, similarly to the exact eigenvectors corresponding to the
actual different eigenvalues. This motivates the characterization of the ap-
proximate point spectrum of all bounded linear operators L ∈ B(V ), which
goes as the following (see [8]). Denote by ℓ∞(V ) the space of all bounded
sequences with values in V , equipped with the sup−norm. The set of all se-
quences which converge to zero is denoted by c0(V ). It follows that c0 is, with
respect to the relative topology inherited from ℓ∞(V ), a proper closed sub-
space, and defines a quotient space ℓ∞(V )/c0(V ) in a natural way. What is
left is to enclose this space, in a manner that ℓ∞(V )/c0(V ) forms a complete
inner product space, with inner product defined via the generalized limits
(called Banach limits) in ℓ∞(V ) (see [8] for a more detailed construction).
For a sequence (xn)n ∈ ℓ∞(V ), a bounded linear operator L ∈ B(V ) defines
a bounded linear map on ℓ∞(V ) as

L′((xn)n) := (Lxn)n ∈ ℓ∞(V ).

Furthermore, it follows that L′(xn) ∈ c0(V ), whenever (xn) ∈ c0(V ). Hence,
L′

0 : ℓ∞(V )/c0(V ) → ℓ∞(V )/c0(V ) defines a bounded linear operator, such
that L′

0 ((x)n/c0(V )) := (L′(xn)) /c0(V ), for every (xn) ∈ ℓ∞(V ). This im-
plies that ∥L∥ = ∥L′

0∥, and that L′
0 extends continuously to the entire space

ℓ∞(V )/c0(V ), and that extension is denoted again by L′
0.

Theorem 1.3.2. [8, Theorem 1] For every L ∈ B(V ), σapp(L) = σapp(L
′
0) =

σp(L
′
0).
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Now applying this construction to the operator X defined on the Hilbert
space H from Theorem 1.3.1, where AX+XA∗ = −I, it follows that X ′

0 is a
self-adjoint operator as well, but with the pure point spectrum. In that case,
we conclude that X ′

0 has strictly positive eigenvalues (we simply analyze the
equation A′

0X
′
0 + X ′

0A
∗′
0 = −I ′0 in the same manner we analyzed the initial

equation AX +XA∗ = −I in the first part of the proof of Theorem 1.3.1),
therefore, all approximate eigenvalues of operator X are strictly positive,
thus completing the proof.

Theorem 1.3.3. [10, Theorem 7.2.] With respect to the previous notation,
if the spectrum of A is contained in the open left half plane, then every
solution to the abstract differential equation (1.12) is stable in the Lyapunov
sense.

Proof. Let X be the positive solution of the operator equation A∗X+XA =
−I. Define the real-valued non-negative function f : [0,+∞) → R as f(t) =
⟨XZ(t), Z(t)⟩. Then

f ′(t) = ⟨XZ ′(t), Z(t)⟩+ ⟨XZ(t), Z ′(t)⟩.

However, Z ′(t) = AZ(t) so

f ′(t) = ⟨XAZ(t), Z(t)⟩+ ⟨XZ(t), AZ(t)⟩ = −∥Z(t)∥2.

Choose d > 0 such that X ≥ dI. Then

f(t) ≥ d∥Z(t)∥2

and
f ′(t)

f(t)
≤ −∥Z(t)∥2

d∥Z(t)∥2
= −1

d
.

Therefore

ln f(t) ≤ −(t/d) + C,

for some constant C, that is,

d∥Z(t)∥2 ≤ f(t) ≤ eC−t/d .

Taking t → +∞ finishes the proof.
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1.4 The homogeneous equation: generalized

commutators

Specially, when C = 0, the equation (1.1) is said to be homogeneous. If
the homogenous equation is regular, then the only solution is the zero op-
erator. However, in the singular case, we characterize the set of generalized
commutators of A and B:

{X : AX = XB}.

It is important to emphasize that if X is a generalized commutator of A and
B, then every restriction of X is a generalized commutator for A and B as
well. Therefore, we are always interested in characterizing those X which
have the largest possible supports, w. r. t. the inclusion. Furthermore, it
is quite common to characterize the set of solutions to the inhomogeneous
equation (1.1) as X = Xp + Xh, where Xp is one particular solution to
the inhomogeneous equation (1.1), while Xh is an arbitrary solution to the
appropriate homogeneous equation. Therefore, homogeneous equations play
an important role when it comes to singular Sylvester equations, and special
attention will be dedicated to them in the appropriate sections.
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Chapter 2

The matrix case

In this chapter we consider the case where dimV1, dimV2 < ∞, that is, the
case where A and B are square matrices of appropriate dimensions, which
share s eigenvalues and C is a rectangular matrix of appropriate dimensions.
Results presented in this chapter were obtained by the author, in joint work
with his PhD mentor (papers [28] and partially [29]), and in author’s indi-
vidual paper [27].

Denote by σ the spectral intersection of matrices A and B:

{λ1, . . . , λs} =: σ = σ(A) ∩ σ(B).

For more elegant notation, we introduce Ek
B = N (B−λkI) and Ek

A = N (A−
λkI) whenever λk ∈ σ. Different eigenvalues generate linearly independent

eigenvectors, so the spaces Ek
B form a direct sum. Put EB :=

s∑
k=1

Ek
B. It

is a closed subspace of V1 and there exists E⊥
B such that V1 = EB ⊕ E⊥

B .
With respect to that decomposition, denote BE := BPEB

, B1 := BPE⊥
B
and

C1 = CPE⊥
B
.

2.1 Solvability of the equation

We begin with the following proposition (see any functional analysis text-
book).

Proposition 2.1.1. Let V be a Hilbert space and L ∈ B(V ). If W is
L−invariant subspace of V , then W⊥ is L∗−invariant subspace of V .

Proof. Let w ∈ W . Then Lw ∈ W . For any u ∈ W⊥ we have

0 = ⟨Lw, u⟩ = ⟨w,L∗u⟩,

15
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thus L∗u ∈ W⊥ for any u ∈ W⊥.

Theorem 2.1.1. [28, Theorem 2.1.] (Existence of solutions) For every k ∈
{1, . . . , s}, let λk, E

k
A and Ek

B be provided as in the previous paragraph. If

N (C1)
⊥ = R(B1) and C

(
Ek

B

)
⊂ R(A− λkI), (2.1)

then there exist infinitely many solutions X to the matrix equation

AX −XB = C. (2.2)

Proof. For every 1 ≤ k ≤ s, let Ek
B, EB, E

⊥
B , BE and B1 be provided as in

the previous paragraph. Note that N (C1)
⊥ = R(C∗

1), where C∗
1 ∈ B(V2, V1),

with R(C∗
1) ⊂ E⊥

B .

Step 1: solutions on E⊥
B .

We first analyze E⊥
B . The space EB is BPE⊥

B
−invariant subspace of V1 and

Proposition 2.1.1 yields E⊥
B to be (BPE⊥

B
)∗− invariant subspace of V1, so

without loss of generality we can observe restriction of B∗
1 as B∗

1 : E⊥
B → E⊥

B .
Since σ(BE) = {λ1, . . . , λs}, it follows that

σ(B∗
1) ⊆ {0} ∪ σ(B∗) \ {λ̄1, . . . , λ̄s}.

Case 1. Assume that σ(B∗
1) ∩ σ(A∗) = ∅. Then there exists a unique

X∗
1 ∈ B(V2, E

⊥
B ) such that

X∗
1A

∗ −B∗
1X

∗
1 = C∗

1 ,

that is, there exists a unique X1 ∈ B(E⊥
B , V2) such that

AX1 −X1B1 = C1

holds.

Case 2. Assume that σ(A∗)∩σ(B∗
1) ̸= ∅. It follows that σ(A∗)∩σ(B∗

1) = {0}.
A∗ cannot be nilpotent. Truly, if σ(A∗) = {0} = σ(A), then by assumption,
σ(B)∩σ(A) ̸= ∅, therefore, 0 ∈ σ(B), that is, 0 ∈ σ. If u ∈ N (B1), it follows
that B1u = 0 and u ∈ E⊥

B , but then Bu = B1u = 0, so u ∈ N (B) ⊂ EB,
therefore u ∈ EB ∩ E⊥

B = {0}. Hence contradiction, implying that A∗ is not
nilpotent, but rather has finite ascend, asc(A∗) = m ≥ 1, where N ((A∗)m)
is a proper subspace of V2.
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Now observe B∗
1 : E⊥

B → E⊥
B , which is not invertible by the assumption. Take

arbitrary operator Z∗
0 ∈ B(N (A∗),N (B∗

1)). Then for every d ∈ N (A∗), there
exists (by (2.1)) a unique u ∈ N (B∗

1)
⊥ such that

B∗
1u = C∗

1d.

DefineX1
∗
Z∗
0
onN (A∗) asX1

∗
Z∗
0
d := Z∗

0d+u. Since asc(A∗) = m, the following
recursive formula applies.
Assume that m = 1. Precisely, decompose V2 = N (A∗) ⊕ N (A∗)⊥ and
A∗ = 0⊕ A∗

1. Then A∗
1 is injective from N (A∗)⊥ to N (A∗)⊥ and X∗

1 can be
defined on N (A∗)⊥ as restriction of X∗

1 from Case 1.

Assume that m > 1. Then A∗
1 is a restriction of A∗ to N (A∗)⊥ and proceed

to decompose N (A∗)⊥ = N (A∗
1)⊕N (A∗

1)
⊥ and and define X∗

1 on N (A∗
1) as

X∗
1N∗

1
u := N∗

1u + d, where Z∗
1 ∈ B(N (A∗

1),N (B∗
1)) is an arbitrary operator

and
B∗

1u = C∗
1d.

If A∗
1 is injective on N (A∗

1)
⊥, i.e. if m = 2, then X1 can be defined on

N (A∗
1)

⊥ as restriction of X1 from Case 1. If not, then proceed to decompose
N (A∗

1)
⊥ = N (A∗

2)⊕N (A∗
2)

⊥ and so on. Eventually, one would get to iteration
no. m, in a manner that

V2 = N (A∗)⊕N (A∗
1)⊕N (A∗

2)⊕ . . .⊕N (A∗
m)⊕N (A∗

m)
⊥,

where A∗
m : N (A∗

m)
⊥ → N (A∗

m)
⊥ is injective. Then σ(B∗

1) ∩ σ(A∗
m) = ∅,

ergo define X∗
1 on N (A∗

m)
⊥ as restriction of X∗

1 from Case 1 to N (A∗
m)

⊥ .
Further, for 0 ≤ n ≤ m, let Z∗

n ∈ B(N (A∗
n),N (B∗

1)) be arbitrary matrices.
Then define X∗

1 on N (A∗
n) as

X∗
1Z∗

n
d := Z∗

nd+ u,

where once again u ∈ N (B∗
1)

⊥ is the unique element such that B∗
1u = C∗

1d.
Equivalently, there exists X1 ∈ B(E⊥

B , V2) such that

AX1 −X1B1 = C1, (2.3)

where
X1 = X1(Z0,Z1,...,Zm).

The condition R(C∗
1) = N (B∗

1)
⊥ = R(B1) implies X1 to be well defined on

the entire E⊥
B .
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Step 2: solutions on EB.

We now conduct our analysis on EB. Define EA =
s∑

k=1

Ek
A and split V2 into

an orthogonal sum V2 = EA ⊕E⊥
A . Decompose A = AE ⊕A1 with respect to

that sum. Then A1 is injective on E⊥
A and A1v = Av, for every v ∈ E⊥

A . For
every k ∈ {1, . . . , s} let Nk ∈ B(Ek

B, E
k
A) be arbitrary. For every u ∈ Ek

B, by

the assumption (2.1), there exists a unique d(u) ∈
(
Ek

A

)⊥
such that

(A− λkI)d(u) = Cu.

Define

Xk
E : u 7→ Nku+ d(u), u ∈ Ek

B.

ThenXk
E : Ek

B → Ek
A⊕
(
P
Ek

A
⊥(A1 − λkI)

−1CEk
B

)
defines a linear map. What

is left is to check whether XE :=
s∑

k=1

Xk
E is a solution to the equation

AXE −XEBE = CPEB

restricted to EB. However, this is directly verifiable. For any u ∈ EB there
exist unique α1, . . . , αs ∈ C (or R) and unique uk ∈ Ek

B, 1 ≤ k ≤ s, such
that u =

∑
αkuk. Then

(AXE −XEB)u = A
s∑

k=1

αkX
k
Euk −

s∑
k=1

λkαkX
k
Euk

=
s∑

k=1

(αk(A− λkI)) (Nkuk + d(uk))

=
s∑

k=1

αkCuk = Cu.

It follows that

X =

[
XE 0
0 X1

]
. (2.4)

is a solution to the eq. (1.1).

Theorem 2.1.1 naturally inquires answers to the following questions:

Question 1. Is every solution to the equation (2.2) of the form (2.4)?
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Question 2. Under which conditions is the solution to (2.2) unique?

Both of these questions have affirmative answers, which is justified by the
analysis of the following eigen-problem associated with the given Sylvester
equation:

Assume that 0 ∈ σ = σ(A) ∩ σ(B) and let Nλ ∈ B(Eλ
B, E

λ
A) be arbitrary,

for every λ ∈ σ. Define Nσ :=
∑
λ∈σ

Nλ. Find a solution X to the Sylvester

equation such that the following eigen-problem is uniquely solved:{
AX −XB = C

Xuλ := P(Eλ
A)⊥(A− λI)−1Cuλ +Nλuλ, uλ ∈ Eλ

B, λ ∈ σ (σ ∋ 0).

(2.5)

Theorem 2.1.2. [28, Theorem 2.2.] (Uniqueness of the solution to the eigen-
problem) With respect to the previous notation, assume that 0 ∈ σ.

1. If the condition (2.1) holds for every shared eigenvalue λ ∈ σ, then the
solution X depends only on the choice of operator Nσ, that is, for fixed
Nσ, there exists a unique solution X such that (2.5) holds.

2. Conversely, for every solutionX to (2.2) and for every shared eigenvalue
λ for matrices A and B, there exists a unique quotient class (A −
λI)−1C(N (B − λI)) ⊕N (A− λI) such that X is the unique solution
to the quotient eigen-problem (2.5).

Proof. Recall notation from proof of Theorem 2.1.1.

1. The first statement of the theorem is proved directly. Namely, take
V1 = EB ⊕ E⊥

B , B = BE ⊕ B1, V2 = EA ⊕ E⊥
A , A = AE ⊕ A1 like in

Theorem 2.1.1. Then there exists X = XE ⊕X1, which is a solution to
(2.2). By construction, since σ(B1)∩σ(A) = ∅, Case 1. applies and X1

is uniquely determined in B(E⊥, V2) while Xλ
E is uniquely determined

in the class B(EB/E
λ
B, V2/E

λ
A) for every λ ∈ σ. Varying λ in σ com-

pletes the proof.

2. Conversely, let X be a solution to the eq. (2.2). Let λ be one of the
shared eigenvalues for A and B and fix u as a corresponding eigenvector
for B. Then XBu = λXu. Hence

AXu−XBu = (A− λI)Xu = Cu.
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Split Xu into the orthogonal sum Xu = v1+v2, where v1 ∈ N (A−λI)
and v2 ∈ (N (A− λI))⊥. Then v2 is the sought expression PN (A−λI)⊥(A−
λI)−1Cu and Xu ∈ v2 +N (A − λI). Condition (2.1) follows immedi-
ately. Repeating the same procedure for every shared eigenvalue for A
and B completes the proof.

Corollary 2.1.1. [28, Corollary 2.1.] (Number of solutions) let Σ be the
set of all Nσ introduced in the eigen-problem associated with given Sylvester
equation (2.5), that is

Σ =
{
Nσ : Nσ =

∑
λ∈σ

Nλ, Nλ ∈ B(Eλ
B, E

λ
A), λ ∈ σ(A) ∩ σ(B) = σ ∋ 0

}
.

Let S be the set of all solutions to (2.2) which satisfy condition (2.1). Then
|Σ| = |S| .

Proof. For arbitrary Nσ ∈ Σ, there exits a unique X ∈ S such that (2.5)
holds. Further, for arbitrary X ∈ S and arbitrary λ ∈ σ there exist quotient
classes Eλ

A and Eλ
B such that (2.5) holds. Define Nλ : Eλ

B → Eλ
A to be

bounded. Then Nσ =
∑
λ∈σ

Nλ. It follows that Nσ ∈ Σ. There is a one-to-one

surjective correspondence S ↔ Σ.

Remark. Due to Corollary 4.4.1, for fixed Nσ ∈ Σ, the solution XNσ ∈ S
can be referred to as a particular solution.

Corollary 2.1.2. [28, Corollary 2.2.] (Size of a particular solution) With the
assumptions and notation from Theorem 2.1.1, Theorem 2.1.2 and Corollary
4.4.1, norm of XNσ is given as

∥XNσ∥2 = ∥XE∥2+∥X1∥2 ≤ ∥Nσ∥2+
s∑

k=1

∥P(Ek
A)⊥(A−λkI)

−1CPEk
B
∥2+∥X1∥2,

(2.6)

where equality holds if and only if the sum
s∑

k=0

Ek
B is orthogonal.

Proof. Taking the same decomposition as in Theorem 2.1.1, let XNσ = XE +
X1. Since XE annihilates E⊥

B and X1 annihilates EB, it follows that

∥XNσ∥2 = ∥XE +X1∥2 = ∥XE∥2 + ∥X1∥2.

By the same argument, taking

∥XE∥2 ≤ ∥Nσ∥2 +
s∑

k=1

∥P(Ek
A)⊥(A− λkI)

−1CPEk
B
∥2,
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where the equality holds if and only if the sum
s∑

k=1

Ek
B is orthogonal.

Corollary 2.1.3. [28, Corollary 2.3.] (Singularities on E⊥
B ) Assume that

0 /∈ σ but 0 ∈ σ(A) ∩ σ(B1) and let dsc(A) = m ≥ 1. For every 0 ≤
n ≤ m, define Zn ∈ B(R(B1)

⊥,R(An+1)⊥ ∩ R(An)) and let Z =
m∑

n=0

Zn. If

N (C1)
⊥ = R(B1), then there are infinitely many solutions to (2.2) on E⊥

B .
Those solutions depend only on choice for Z, that is, if Z is fixed then there
exists a unique solution X1(Z) on E⊥

B .

Proof. Proof is the same as part 1) in Theorem 2.1.2. Note that dsc(A) =
asc(A∗) = m and R(An+1)⊥ ∩ R(An) = N ((A∗)n+1) ∩ N ((A∗)n)⊥. Then
proceed to Case 2. of proof of Theorem 2.1.1.

2.1.1 Homogeneous equation

Recall that the equation (2.2) is said to be homogeneous when C = 0. In that
case, X1 from Theorem 2.1.1 and Theorem 2.1.2 is always the zero matrix,
and X = 0 + XE. This brings our attention to the set of all X, such that
AX = XB. The following corollary speaks of the cardinality of such set.

Corollary 2.1.4. [29, Corollary 2.4.] Let λ1, . . . , λs be the s different com-
mon non-zero eigenvalues for square matrices A and B. For every k = 1, s,
let Ek

B be the eigenspace for B which corresponds to λk and let Ek
A be the

eigenspace for A which corresponds to λk. For every k = 1, s, put

qkB := dimEk
B and qkA := dimEk

A.

There are at least
s∏

k=1

(
qkA
)qkB

different non-zero solutions to the homogeneous equation (2.2), acting from
s∑

k=1

Ek
B to

s∑
k=1

Ek
A, which are non-zero on every eigenspace Ek

B, k = 1, s.

2.2 Perturbation analysis:

majorization theory

It is not difficult to show that if A and B are altered, then their eigenvectors
(and consequently, the corresponding eigenspaces) are changed drastically.
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This makes perturbation analysis quite difficult, because the solutions XE,
defined on the said eigenspaces, are in that case incomparable. This naturally
inquires the question: how far are the solutions, if A and B are changed?

If one observes the Sylvester operator, S(X) = AX −XB, and a perturbed
Sylvester operator S ′(X) = A′X−XB′, where ∥A−A′∥, ∥B−B′∥ < δ, then
∥S − S ′∥ gives an upper bound for the perturbation analysis. For simpler
calculations, we can restrict our observation to Hermitian matrices only, as
any square matrix can be presented as a combination of two Hermitian ma-
trices. Similarly, instead of the sup−norm, ∥ · ∥, we observe the Frobenius
norm, ∥ · ∥2, of the given (daigonal) Hermitian matrix A,

∥A∥22 =
n∑

i=1

|aii|2.

For any two real numbers a and b, recall the parallelogram law

|a+ b|2 + |a− b|2 = 2|a+ ib|2.

A similar statement holds in the matrix setting: if A and X are square
Hermitian matrices of the same dimensions, then (see [11])

∥AX +XA∥22 + ∥AX −XA∥22 = 2∥AX + iXA∥22.

Consequently, it follows that for any square matrix X, and a Hermitian A,
we have

∥AX +XA∥2 ≤
√
2∥AX + iXA∥2.

This implies that ∥AX +XB∥2 ≤
√
2∥AX + iXB∥2, for any square X and

any square Hermitian A and B. Under certain conditions, this estimate can
be extended to a much broader class of matrix norms.

A norm ∥| · ∥| is said to be unitarily invariant (u. i. for short), if ∥|A∥| =
∥|UAV ∥|, for every matrix A and every unitary U and V . It is not difficult
to see that u. i. norms depend on the singular values of matrix A, see [9]
and [11]. Classic examples of u. i. norms are the trace norm, the Frobenius
∥ · ∥2−norm, the Ky-Fan k−norm, and the Schatten p−norm. In what fol-
lows, we state the results obtained in [11] and [27] which concern the u. i.
norms and basic majorizations that involve the Sylvester operator.

For a square n−dimensional matrix A, the matrix A∗ represents the complex
Hilbert conjugate matrix of A, and |A| = (A∗A)1/2. Notation p .d. denotes a
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positive definite, and n. d. denotes a negative definite matrix (operator) for
shorthand. Analogously, p. s. d. denotes a positive semi definite matrix, and
n. s. d. denotes a negative semi definite matrix. The value λj(A) represents
an eigenvalue of the matrix A. If A is Hermitian, then we require

|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λn(A)|.

Similarly, sj(A) represents a singular value of the matrix A, i. e. sj(A) =√
λj(A∗A). Hence, we always assume that singular values are ordered in a

non-ascending manner:

(if A is Hermitian, then) ∥A∥ = s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) ≥ 0.

Note that for arbitrary square complex matrices A and B, the following chain
of implications holds:

(|A| − |B|) is p. s. d. (2.7)

⇒ for every 1 ≤ k ≤ n, sk(A) ≥ sk(B) (2.8)

⇒ for every 1 ≤ k ≤ n,
k∏

j=1

sj(A) ≥
k∏

j=1

sj(B) (2.9)

⇒ for every 1 ≤ k ≤ n,

k∑
j=1

sj(A) ≥
k∑

j=1

sj(B) (2.10)

Relation (2.10) is called the weak majorization of the singular values of B
by the singular values of A, and it is denoted as {sj(B)} ≺w {sj(A)}. The
relation (2.9) is called the logarithmic weak majorization of the singular val-
ues of B by the singular values of A, and it is denoted as {sj(B)} ≺log(w) {A}.

Relations (2.10) and (2.9) are important, because they state that, if (2.10)
holds, then ∥|A|∥ ≥ ∥|B|∥, for any unitarily invariant norm. This prop-
erty can be extended to the trace class operators, and the corresponding
s−numbers, consult [55], [56], [66], [67], [80] and references therein. This con-
nection with compact and trace-class operators will be mentioned in Chapter
3.

Basic estimates regarding relations (2.7)–(2.10) were obtained by Bhatia and
Kittaneh in [11].

Theorem 2.2.1. [11, Theorem 1.1] Let A and B be n×n Hermitian matrices.
Then

{sj(A+B)}j ≺w

√
2{sj(A+ iB)}j. (2.11)
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If A is positive semidefinite, then we have the stronger inequality

{sj(A+B)}j ≺log(w)

√
2{sj(A+ iB)}j (2.12)

If both A and B are positive semidefinite, then this can be strengthened
further to

sj(A+B) ≤
√
2sj(A+ iB). (2.13)

There exist 2 × 2 Hermitian matrices A and B for which (2.12) is not true.
There exist a 2 × 2 p. s. d. matrix A and Hermitian B for which (2.13) is
not true. There exist 2× 2 p. s. d. matrices A and B for which the matrix
inequality

A+B ≤
√
2|A+ iB|

is not true.

The proof uses a minimax principle derived in [9]. If A is a Hermitian matrix,
then

λj(A) = max
M<Cn

dimM=j

min
x∈M
||x||=1

⟨x,Ax⟩. (2.14)

Moreover, if A is an arbitrary linear operator on Cn, then

sj(A) = max
M<Cn

dimM=j

min
x∈M
||x||=1

||Ax||. (2.15)

Further, we have:

k ∈ {1, . . . , n} =⇒
k∑

j=1

sj(A) = max |
k∑

j=1

⟨yj, Axj⟩|, (2.16)

where the maximum is taken over all k-tuples of orthonormal vectors x1, ..., xk

and y1, ..., yk. Finally, we have:

k ∈ {1, 2, . . . , n} =⇒
k∏

j=1

sj(A) = max | detW ∗AW | (2.17)

where the maximum is taken over all n × k matrices W with the property
W ∗W = I.

We now formulate and prove results obtained by the author in [27]. Theorem
2.2.1 is proved using the same technique.
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Lemma 2.2.1. [27, Lemma 2.1.] Let a and b be real numbers, and let
α = µ + iν, β = λ + iη be complex numbers, which satisfy the conditions
(2.18) and (2.19) below. The following hold:
(1) If ab > 0 and λµ+ νη ≥ 1, then |a+ b| ≤ |αa+ βb|;
(2) If ab < 0 and λµ+ νη ≤ 1, then |a+ b| ≤ |αa+ βb|;
(3) If ab = 0 then |a+ b| ≤ |αa+ βb|.

Theorem 2.2.2. [27, Theorem 2.1.] Let A and B be Hermitian matrices.
Let µ, ν, λ, η ∈ R,

α := µ+ iν, β := λ+ iη (2.18)

be provided in a way that

|α|, |β| ≥ 1, (2.19)

µλ+ νη ≥ 1. (2.20)

Then:
(1) If B and A + B are p. d. and all singular values of A + B are greater
than ||B||, then {sj(A+B)} ≺w {sj(αA+ βB)};
(2) If A and B are n. d., then {sj(A+B)} ≺log(w) {sj(αA+ βB)};
(3) If A and B are p. d., then sj(A+B) ≤ sj(αA+βB) for all j ∈ {1, . . . , n}.

Proof. (1) Under the assumptions, there exist orthonormal eigenvectors e1, ..., en
of A+B, arranged in such a way that the following holds:

1 ≤ j ≤ n : sj(A+B) = |⟨ej, (A+B)ej⟩| = |⟨ej, Aej⟩+ ⟨ej, Bej⟩| (2.21)

Note that A + B and B are positive definite matrices, so it is safe to say
that ⟨ej, Aej⟩ and ⟨ej, Bej⟩ are real numbers. Denote a := ⟨ej, Aej⟩ and
b := ⟨ej, Bej⟩ for given j. Then

ab = ⟨ej, Aej⟩⟨ej, Bej⟩
= (⟨ej, (A+B)ej⟩ − ⟨ej, Bej⟩)⟨ej, Bej⟩
= (sj(A+B)− ⟨ej, Bej⟩))⟨ej, Bej⟩.

Since, ⟨ej, Bej⟩ > 0, applying the Cauchy-Schwarz inequality, we have:

ab ≥ (⟨ej, Bej⟩)(sj(A+B)− ||Bej|| · ||ej||)

Since ||ej|| = 1 and ||Bej|| ≤ ||B||||ej|| = ||B||, we get:

ab ≥ (⟨ej, Bej⟩)(sj(A+B)− ||B||) > 0. (2.22)
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Since ab > 0, we can now apply Lemma 2.1 in (2.21):

|⟨ej, Aej⟩+ ⟨ej, Bej⟩| ≤ |α⟨ej, Aej⟩+ β⟨ej, Bej⟩| = |⟨ej, (αA+ βB)ej⟩|.

Combining the last inequality with (2.16), it follows that

k∑
j=1

sj(A+B) ≤
k∑

j=1

|⟨ej, (αA+ βB)ej⟩| ≤
k∑

j=1

sj(αA+ βB)

(2) Let A and B be Hermitian n.d. matrices. Let {λ1, ..., λn} denote the

spectrum of (−B)−
1
2A(−B)−

1
2 . Now we have:

| det(A+B)| = | det[(−B)
1
2 ((−B)−

1
2A(−B)−

1
2 − I)(−B)

1
2 ]|

= | det(−B) det((−B)−
1
2A(−B)−

1
2 − I)|

= | det(−B)|
n∏

j=1

|λj − 1|.

Note that λj are negative real numbers, for all j, due to A and B being n.
d. Therefore, we can apply Lemma 2.1. Let a := λj and b := −1. Since the
condition λµ+ νη ≥ 1 is satisfied, due to the assumption of the theorem, the
following inequality holds:

| det(−B)|
n∏

j=1

|λj − 1| ≤ | det(−B)|
n∏

j=1

| − β + αλj|

= | det(−B)|| det(−βI + α(−B)−
1
2A(−B)−

1
2 )|

= | det(αA+ βB)|.

From (2.17), we know that there exists W ∈ Cn×k, W ∗W = I, such that

k∏
j=1

sj(A+B) = | det(W ∗(A+B)W )| ≤ | det(W ∗(αA+ βB)W )|

≤
k∏

j=1

sj(W
∗(αA+ βB)W ),
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k∏
j=1

sj(W
∗(αA+ βB)W ) ≤

k∏
j=1

sj(αA+ βB) ⇒

k∏
j=1

sj(A+B) ≤
k∏

j=1

sj(αA+ βB).

(3) Let A and B be Hermitian p.d. It follows that the singular values of
A + B are also its eigenvalues, because A + B is also Hermitian p. d. Let
j ∈ {1, ..., n} be fixed, e1, ..., ej be the eigenvectors of A+B that correspond
to the eigenvalues (singular values) λ1, ..., λj of A+B, in that order, and let
M be the span over {e1, . . . , ej}. Now we have:

sj(A+B) = min
x∈M
||x||=1

⟨x, (A+B)x⟩.

Note that ⟨x, (A+B)x⟩ = ⟨x,Ax⟩+⟨x,Bx⟩, for an arbitrary normed x ∈ M ,
for an arbitrary j−dimensional subspace M of Cn. Since A and B are p. d.,
it follows that ⟨x,Ax⟩ > 0 and ⟨x,Bx⟩ > 0. Thus we have:

⟨x,Ax⟩+ ⟨x,Bx⟩ = |⟨x,Ax⟩+ ⟨x,Bx⟩| ≤ |α⟨x,Ax⟩+ β⟨x,Bx⟩|
= |⟨x, (αA+ βB)x⟩|.

Using the condition of the theorem: µλ+ νη ≥ 1, we can apply Lemma 2.1.
Since the majorization holds in all M < Cn, x ∈ M, ||x|| = 1, we have:

sj(A+B) ≤ |⟨x, (αA+ βB)x⟩| ≤ ||(αA+ βB)x|| · ||x||
= ||(αA+ βB)x||
⇒

sj(A+B) ≤ min
x∈M
||x||=1

||(αA+ βB)x|| ≤ max
M⟨Cn

dimM=j

min
x∈M
||x||=1

||(αA+ βB)x||

= sj(αA+ βB).

Corollary 2.2.1. [27, Corollary 2.2.] Let A and B be Hermitian matrices,
and µ, ν, λ, η ∈ R, α := µ+ iν, β := λ+ iη denoted in a way that |α|, |β| ≥ 1,
and λµ+ νη ≤ 1. Then:
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(1) If B is negative semi-definite, A + B is positive semi-definite, and none
of the singular values of A+B are smaller than ||B||, then {sj(A+B)} ≺w

{sj(αA+ βB)};
(2) If A is positive semi-definite and B is n. d., then {sj(A + B)} ≺log(w)

{sj(αA+ βB)};
(3) If A is positive semi-definite, B is negative semi-definite and A + B is
positive semi-definite, then sj{A+B} ≤ sj{αA+ βB}.

2.3 Approximation schemes

As seen from the proof of Theorem 2.1.1, every solution to (2.2) has the form

X =

[
XE 0
0 X1

]
,

where X1 solves the ,,regular problem” (2.3), while XE solves the eigen-
problem

XEu = Nku+ P
(Ek

A)
⊥(A− λkI)

−1Cu, (2.23)

for every u ∈ Ek
B, for every shared eigenvalue λk and every given Nk ∈

B(Ek
B, E

k
A). It is known that, even with given eigenvalues, numerical pro-

cedures for computing the corresponding eigenvectors are highly unstable.
Therefore, numerical methods for solving the singular equation (2.2) are nu-
merically unstable in general. However, if we restrict our attention to solving
only (2.5), that is, if we assume that λ1, . . . , λs are provided, and the corre-
sponding Nk ∈ B(Ek

B, E
k
A), are provided as well, for 1 ≤ k ≤ s, then solving

the (2.5) reduces to two numerically solvable problems: one is solving (2.3),
which has been done in [7], [14], [23], [28], [50], [52], [69], [71], [88], [94], [95]
and references therein. The other problem is solving (2.23), which is merely
the standard problem

Lx = y,

with x and y given and L the unknown, which has been solved in [6], [18],
[4], [54], [73], [74] and rich references therein.



Chapter 3

The bounded operator case

Unlike the matrix case, when it comes to bounded linear operators, the corre-
sponding spectra of A and B can contain values which are not eigenvalues (see
e. g. [17], [37], [43], [59], [86], [99] and [102]). Therefore, the standard eigen-
analysis approach fails, but an alternative way solves the problem. Main
results in this chapter were obtained by the author in his individual papers
[25] and [26].

The main goal is to solve the Sylvester equation given in its vector form

AX −XB = S(X) = C, (3.1)

where S is the Sylvester operator while X and C are treated as vectors from
the space B(V1, V2). Problems of the form

Lx = y

require access to the fact whether y ∈ R(L). Then and only then, the equa-
tion Lx = y is solvable. Recall that, if 0 /∈ σ(S), then S is invertible on the
entire space B(V1, V2), and for every C there exists a unique X such that (3.1)
holds. However, if 0 ∈ σ(S), then the operator S is singular (which is the
main premise of this dissertation), but this still does not answer the question
whether C ∈ R(S) (recall condition 2.1 from Theorem 2.1.1). Therefore,
sufficient conditions for solvability of the equation (3.1) are required.

In this chapter, D represents the open unit disc in the complex plane and D
represents its closure. H(D) denotes the set of all holomorphic functions on
D, continuous on its closure. P [C] denotes the set of all polynomials with
complex coefficients. Finally, let AbCon be the set of all f ∈ H(D) such that
the power-series for f is absolutely convergent on D.

29
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3.1 The algebra AAXB

In what follows, we assume V1 and V2 to be Banach spaces, A ∈ B(V2),
B ∈ B(V1) and X ∈ B(V1, V2) such that X ̸= 0. Define n−th power of AXB
in B(V1, V2) by

(AXB)n := AnXBn, n ∈ N0.

Put

AAXB := {p(AXB) : p ∈ P [C]}. (3.2)

These expressions raise particular interest, as they appear in numerous pa-
pers, among which are [15], [16], [22], [34], [58], [72], [76], [78], [80], [87].

3.1.1 Invertibility in AAXB

Let ε > 0 and M := max{∥A∥, ∥B∥} + ε. Then ∥A∥, ∥B∥ < M and ∥ 1
M
A∥,

∥ 1
M
B∥ < 1. Put A1 := 1

M
A and B1 = 1

M
B. It is not difficult to see that

∥A1∥, ∥B1∥ < 1 and

AAXB = AA1XB1 .

Theorem 3.1.1. [25, Theorem 2.1.] Assume ∥A∥ and ∥B∥ to be smaller
than one. Let n, m ∈ N0 such that 0 ≤ n < m and let AAXB be provided as
in (3.2). Then

1. The ordered triple (AAXB, ∥ · ∥,+) is a separable Banach subspace of
B(V1, V2). The ordered triple (AAXB,+, ·) is a commutative algebra
with the unity X. The ordered quadruple (AAXB, ∥ · ∥,+, ·) is not
necessarily a normed algebra.

2. The inequality ∥(AXB)m∥ ≤ ∥(AXB)n∥ holds, where the equality is
obtained iff (AXB)k = 0, for some k ∈ {0, . . . , n}.

3. The series
+∞∑
j=0

(AXB)m·j (3.3)

converges in AAXB. The operator X − (AXB)m is invertible in AAXB

and its inverse is given as (3.3).

Proof. Let AAXB, A, B, m and n be provided as stated in the theorem.

1. In order to prove that AAXB is indeed a separable Banach subspace
of B(V1, V2), it suffices to prove that AAXB is a closed and separable
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subspace of the Banach space B(V1, V2). The closedness follows directly
from (3.2). Since the powers

x 7→ 1, x 7→ x, x 7→ x2, . . .

form a Schauder basis for the space of polynomials P [C], it follows that

X, AXB, (AXB)2, . . .

form a Schauder basis for AAXB (or even a Hamel basis, in the case
that AXB is nilpotent). Either way, this proves that AAXB must be
separable.

The associative law Ap ·Aq = Aq ·Ap, for every p, q ∈ N0, and Bp ·Bq =
Bq ·Bp implies that

(AXB)p · (AXB)q = (AXB)q · (AXB)p,

so the multiplication in (3.2) is commutative. Trivially,

X · (AXB)n = (A0XB0) · AnXBn = A0+nXB0+n = AnXBn,

for every n ∈ N0, so X is indeed the unity in AAXB. Fact that AAXB

is not necessarily a normed algebra is illustrated in the next example.
Assume that B = 1√

2
IV1 , A = 1√

3
IV2 and ∥X∥ < 1. Then ∥AXB∥ =

1√
6
∥X∥ < 1. Now observe

∥(AXB)2∥ = ∥AAXBB∥ =
1

6
∥X∥

and

∥AXB∥2 = ∥AXB∥ · ∥AXB∥ =
1

6
∥X∥2.

Since ∥X∥ < 1, it follows that

∥(AXB)2∥ > ∥AXB∥2,

therefore AAXB in this particular case is not a normed algebra.

2. With respect to the assumption ∥A∥, ∥B∥ < 1, we have

∥(AXB)m∥ = ∥AmXBm∥ = ∥Am−nAnXBnBn−m∥
≤∥Am−n∥ · ∥(AXB)n∥ · ∥Bm−n∥ < ∥(AXB)n∥.

The equality is obtained iff (AXB)k = 0, for some k ∈ {0, . . . , n}.
Another way to prove the later is with help from Banach fixed point
theorem. Observe the operator T (X) := (AXB)m−n. From ∥T∥ ≤
∥A∥ · ∥B∥ < 1 it follows that T is a contraction. Hence there is only
one fixed point for T and that is 0.
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3. If (AXB)m = 0 then X = X − 0 is invertible in AAXB and its inverse
is X = (AXB)0. Now assume that (AXB)m ̸= 0. Note that Xk −
(AXB)m·k = X − (AXB)m·k, for arbitrary k ∈ N. Having proved that
∥(AXB)m∥ < ∥X∥, it follows that

X − (AXB)m·k = (X − (AXB)m) ·
k−1∑
j=0

(AXB)m·j. (3.4)

When k → +∞, we get

∥(AXB)m·k∥ ≤ ∥A∥m·k · ∥X∥ · ∥B∥m·k → 0, k → +∞

and consequently

X − (AXB)m·k → X, k → +∞.

On the other hand, the numerical series
+∞∑
j=0

∥(AXB)m·j∥ converges, due

to the comparison criterion

∥(AXB)m·j∥ ≤ ∥X∥ · (∥A∥ · ∥B∥)m·j,

where the sequence (∥A∥ · ∥B∥)m·j, j ∈ N0 forms a geometric pro-
gression. Therefore (3.3) converges absolutely and AAXB is a Banach
space, thus

+∞∑
j=0

(AXB)m·j

converges in AAXB. Further, AAXB is a commutative algebra, so

X = (X − (AXB)m) ·
+∞∑
j=0

(AXB)m·j

=

(
+∞∑
j=0

(AXB)m·j

)
· (X − (AXB)m),

which yieldsX−(AXB)m to be invertible inAAXB, having
+∞∑
j=0

(AXB)m·j

as its inverse.



3.1. THE ALGEBRA AAXB 33

Corollary 3.1.1. [25, Corollary 2.1.] If V1 = V2 = V , let A, B and X ∈
B(V ), such that they all commute and X = X2. Then AAXB is a Banach
algebra.

Proof. If A, B and X commute, where X = X2, a direct verification shows
that the multiplication defined in (3.2) coincides with the standard multipli-
cation defined on B(V ) (i.e. composition of the operators at hand). B(V )
is a Banach algebra and AAXB is a closed subspace of B(V ) with the same
multiplication, therefore AAXB is a Banach algebra as well.

Remark. In order to reduce the algebra AAXB to a Banach algebra of, say,
bounded linear operators over a Banach space V , existence of idempotents
is a necessary condition. However, bounded projectors always exist in every
maximal commutative unital subalgebra of B(V ). This proves that our alge-
bra AAXB generalizes the standard notion of a Banach algebra contained in
B(V ).

The previous theorem suggests further investigation of invertible elements in
AAXB. For future reference, the said set will be labeled as A−1

AXB. Note that
invertibility in AAXB is not correlated with actual (left or right) invertibility
of operators.

Suppose A ∈ B(V2), B ∈ B(V1) such that ∥A∥, ∥B∥ < 1. Let η > 0 and
let g : [−η, 1] → R be a real non-negative function, non-decreasing on [0, 1],
from the class C∞(−η, 1). Define the set z(g) as

z(g) := {f ∈ AbCon : f(z) =
+∞∑
k=0

ckz
k, g(|z|) =

+∞∑
k=0

|ck||z|k, |z| < 1}.

The value ∥g∥ will represent the sup-norm of g on [0, 1], that is

∥g∥ = sup{g(|z|) : |z| ≤ 1} = sup{
+∞∑
k=0

|ck||z|k : |z| < 1} =
+∞∑
k=0

|ck| = g(1).

Remark. From the maximum modulus principle one can see that the afore-
mentioned function g must be non-descending on [0, 1]. Therefore ∥g∥ = g(1).

Remark. The value η plays no role in the further text. Its main purpose is
to ensure differentiability of g at point zero.
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Theorem 3.1.2. [25, Theorem 2.2.] Let operators A and B, function g
and the set z(g) be provided as described in the previous paragraph. Let
X ∈ B(V1, V2), f ∈ z(g) and λ ∈ C such that AXB ̸= 0 and ∥X∥ ·∥g∥ < |λ|.
Then

1. Operators (
λ+ g(0) eiφ

)
X − f(AXB)

are invertible in AAXB, for every φ ∈ [0, 2π).

2. If λ+ g(0) eiφ ̸= 0 for every φ ∈ [0, 2π) then

((
λ+ g(0) eiφ

)
X − f(AXB)

)−1
=

+∞∑
k=0

(
λ+ g(0) eiφ

)−k+1
(f(AXB))k .

(3.5)

3. If λ+ g(0) eiφ0 = 0 for some φ0 ∈ [0, 2π) then f(AXB) is invertible in
AAXB. If

∥f(AXB)− g(0) eiφ0 ·X∥ < |λ|
then its inverse is

(f(AXB))−1 = (−λ)−1

+∞∑
k=0

(
f(AXB)− g(0) eiφ0 ·X

λ

)k

. (3.6)

Proof. Let all the assumptions from the theorem hold. Put Y := f(AXB).
We are going to prove all three statements by conducting the following cases:

Case 1. Assume that g(0) = 0 and |λ| = 1. Put

f(z) =
+∞∑
k=0

ckz
k, |z| < 1. (3.7)

Observe

∥f(AXB)n∥ =

∥∥∥∥∥
+∞∑
k=0

ck(AXB)k·n

∥∥∥∥∥ ≤
+∞∑
k=0

|ck| · ∥X∥ · (∥A∥ · ∥B∥)k·n

= ∥X∥
+∞∑
k=0

|ck| ((∥A∥ · ∥B∥)n)k = ∥X∥ · g ((∥A∥ · ∥B∥)n) .

Now (∥A∥ · ∥B∥)n → 0, so Y n = f(AXB)n → 0 when n → +∞. This yields
that

X − Y n → X, n → +∞.
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Further, ∥∥∥∥∥
+∞∑
k=0

f(AXB)k

∥∥∥∥∥ =

∥∥∥∥∥∥
+∞∑
k=0

(
+∞∑
n=0

cn(AXB)n

)k
∥∥∥∥∥∥

≤
+∞∑
k=0

∥∥∥∥∥∥
(

+∞∑
n=0

cn(AXB)n

)k
∥∥∥∥∥∥

≤
+∞∑
k=0

∥X∥k ·

(
+∞∑
n=0

|cn| · (∥A∥ · ∥B∥)n
)k


≤
+∞∑
k=0

∥X∥k · g(∥A∥ · ∥B∥)k,

(3.8)

which is a convergent sum, as a geometric progression

(∥X∥ · ∥g∥)k < 1, k ∈ N0.

Therefore, the decomposition

X − Y n = (X − Y )
n−1∑
k=0

Y k

holds when n → +∞ and

(X − Y )−1 =
+∞∑
k=0

Y k.

Case 2. Assume that g(0) = 0 and |λ| ≠ 1. Put g1(x) := g(x)
|λ| . Then

g1(0) = 0 and for every f1 ∈ z(g1) it follows that

∥f1(AXB)∥ ≤ ∥g(AXB)∥
|λ|

≤ ∥g∥ · ∥X∥
|λ|

< 1.

Now apply Case 1. of this theorem on f1(AXB) = 1
λ
f(AXB). It follows

that
λX − f(AXB)

is invertible in AAXB and its inverse is given as

(λX − f(AXB))−1 =
+∞∑
k=0

λ−k+1 (f(AXB))k .
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Case 3. Assume that g(0) = ω ̸= 0 and let λ be arbitrary. Define

g1(x) := g(x)− ω, x ∈ [0, 1].

Then g1(0) = 0 and since w = |c0| > 0 we have ∥g1∥ = ∥g∥ − ω < ∥g∥, so

∥g1∥ · ∥X∥ < |λ|,

thus Case 2. of this theorem applies. In other words, X − 1
λ
(f1(AXB)) is

invertible in AAXB, for every f1 ∈ z(g1), that is

X − f(AXB)− ω eiφ ·X
λ

=
λ+ ω eiφ

λ
X − f(AXB)

λ

is invertible in AAXB, for every φ ∈ [0, 2π), and so are the operators(
λ+ g(0) eiφ

)
X − f(AXB), φ ∈ [0, 2π).

This proves the first statement of the theorem. To prove the other two, we
conduct an auxiliary discussion as presented below.

If λ + g(0) eiφ ̸= 0, for every φ ∈ [0, 2π), then the sought inverse is (for a
given φ)

((
λ+ g(0) eiφ

)
X − f(AXB)

)−1
=

+∞∑
k=0

(
λ+ g(0) eiφ

)−k+1
(f(AXB))k .

If λ+ g(0) eiφ0 = 0, for some φ0 ∈ [0, 2π), then

f(AXB) =
−λ

−λ
f(AXB) = −λ

−f(AXB)

λ
=

(−λ)

(
λ+ g(0) eiφ0

λ
X − f(AXB)

λ

)
=

(−λ)

(
X − f(AXB)− g(0) eiφ0 ·X

λ

) (3.9)

is invertible in AAXB. If ∥f(AXB)− g(0) eiφ0 ·X∥ < |λ|, then its inverse is

(f(AXB))−1 = (−λ)−1

+∞∑
k=0

(
f(AXB)− g(0) eiφ0 ·X

λ

)k

.
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Corollary 3.1.2. [25, Corollary 2.2.] Let A, B, X, λ, g and z(g) be given
as in the previous theorem.
Then for every g1 such that 0 < ∥g1∥ ≤ ∥g∥ the operator

∥g1∥
λ+ g(0) eiφ

∥g∥
X − f1(AXB)

is invertible in AAXB, for every f1 ∈ z(g1), for every φ ∈ [0, 2π).

Theorem 3.1.3. [25, Theorem 2.3.] Let Y ∈ AAXB be given as Y =
f(AXB), for some function f ∈ AbCon. There exists ω ∈ C such that
ωX − Y is in A−1

AXB. Furthermore, there exists ω0 ∈ C such that for every
λ ∈ C with |λ| > |ω0| the operator λX − Y is in A−1

AXB.

Proof. Assume that

f(z) =
+∞∑
k=0

αkz
k, |z| < 1

and that the series
+∞∑
k=0

|αk|

converges. Put

gα(|z|) :=
+∞∑
k=0

|αk|(|z|)k, |z| < 1.

Then ∥gα∥ = Γ < +∞. There exists a numerical series

+∞∑
k=0

|βk|, |β0| = 0

such that its sum is Γ + ε, for some ε > 0. Then there exists a function gβ
such that

gβ(|z|) =
+∞∑
k=0

|βk||z|k, |z| < 1, ∥gβ∥ = Γ + ε, gβ(0) = 0.

Now there exists a ζ ∈ C \ {0} such that

∥gβ∥ · ∥X∥ < |ζ|.

Applying Corollary 3.1.2 we see that

∥gα∥
ζ

∥gβ∥
X − f(AXB)
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is in A−1
AXB. Now take ω := ζ ∥gα∥

∥gβ∥
. Since there is not upper bond for |ζ| it

follows that |ω| can be arbitrary large. Therefore the statement is true for
every λ ∈ C such that |λ| ≥ |ω|.
To complete the proof, note that |ζ| does have a lower bound. Let ε → 0+0
and take a family of holomorphic functions gεβ, such that

gεβ(0) = 0

and
|∥gεβ∥ − Γ| = o(ε), ε → 0 + 0.

Then
∥gεβ∥
∥gα∥ − 1 = o(ε), ε → 0 + 0. Now take ζ0 such that

|ζ0| = inf{|ζ| : ∥gεβ∥ · ∥X∥ < |ζ|, ε → 0 + 0} = ∥X∥ · Γ.

The sought number is |ω0| = |ζ0| · ∥gα∥
∥gα∥ = ∥X∥ · Γ.

Definition 3.1.1. Let Y ∈ AAXB, Y = f(AXB), f ∈ AbCon. The set of all
complex numbers λ such that λX − Y ∈ A−1

AXB is called the resolvent set of
Y and is denoted as ρ(Y ). Its complement (in the complex plane), denoted
as σ(Y ) is called the spectrum of Y .
The number

r(Y ) = inf{r ≥ 0 : λ ∈ C, |λ| > r ⇒ λ ∈ ρ(Y )}

is called the spectral radius of Y in AAXB, denoted as r(Y ).
The resolvent function RY : ρ(Y ) → AAXB is defined as RY (λ) := (λX −
Y )−1, for every λ ∈ ρ(Y ).

Even though (AAXB, ∥·∥) is not a Banach algebra, a simple verification shows
that the following lemma holds.

Lemma 3.1.1. Let Y, Z ∈ AAXB and let λ, θ ∈ ρ(Y ), λ ∈ ρ(Z).

1. The resolvent equations hold

RY (λ)−RY (θ) = RY (θ)(θ − λ)XRY (λ),

RY (λ)−RZ(λ) = RY (λ)(Y − Z)RZ(λ).

2. The resolvent function is differentiable on ρ(Y ), in the sense that

lim
λ→θ

RY (λ)−RY (θ)

λ− θ
= (−1)(θX − Y )−2.
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3. The resolvent function vanishes at infinity, that is

lim
|λ|→+∞

RY (λ) = 0.

Corollary 3.1.3. [25, Corollary 2.3.] Let assumptions from Theorem 3.1.3
hold. Then f(AXB) has a non-empty bounded spectrum.

Proof. Put Y = f(AXB) ∈ AAXB. There exists r(Y ), such that, for every
complex number λ with its modulus greater than r(Y ), it follows that λ ∈
ρ(Y ). Lemma 3.1.1 yields that the resolvent function RY is differentiable on
ρ(Y ).
Assume ρ(Y ) = C. Then RY is analytic on the entire complex plane. Further,
RY (λ) → 0, |λ| → +∞, so RY is bounded. But then Liouville theorem
yields that RY must be constant on C. Hence contradiction. Therefore there
exists a µ ∈ C such that |µ| ≤ r(Y ) and µX−Y is not invertible inAAXB.

In what follows, we prove that under the same conditions, the spectrum is
not necessarily compact.

Theorem 3.1.4. [25, Theorem 2.4.] Let f ∈ AbCon and let r be an arbitrary
positive number. There exists a function g holomorphic on the open unit disc
and continuous on its closure, represented by the power series which is not
absolutely convergent on the boundary of the unit disc, with the property

∥f − g∥ < r.

Proof. Let f be represented as

f(z) =
+∞∑
k=0

αkz
k, |z| < 1,

+∞∑
k=0

|αk| < +∞.

There exists a power series

+∞∑
k=0

εk e
iφk zk, |z| < 1,

with εk ≥ 0, φk ∈ [0, 2π), k ∈ N0, such that

+∞∑
k=0

εk e
iφk converges and

+∞∑
k=0

εk = +∞.
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Put βk := αk + εk e
iφk and define g1(z) :=

+∞∑
k=0

βkz
k. Since

|βk| = | − βk| = | − αk − εk e
iφk | ≥ ||αk| − |εk eiφk || = |εk − |αk||,

for every k ∈ N0, it follows from the comparison criterion that
+∞∑
k=0

|βk| = +∞.

For every z ∈ D let ε : z 7→ ε(z) ∈ (0, r) be a continuous real function.
Riemann conditional convergence theorem implies existence of a bijection
j : N0 → N0 such that∣∣∣∣∣

+∞∑
k=0

εj(k) e
iφj(k) zj(k)

∣∣∣∣∣ = r − ε(z).

Put βj(k) := αj(k) + εj(k) e
iφj(k) and define gj(z) :=

+∞∑
k=0

βj(k)z
j(k). Note that

+∞∑
k=0

|βj(k)| = +∞. By the assumption, the numerical series
+∞∑
k=0

|αk| is (abso-

lutely) convergent, therefore, for any bijection p : N0 → N0 the following two
equalities hold

f(z) =
+∞∑
k=0

αkz
k =

+∞∑
k=0

αp(k)z
p(k), |z| < 1

and
+∞∑
k=0

|αk| =
+∞∑
k=0

|αp(k)|.

But then

|gj(z)− f(z)| = |
+∞∑
k=0

εj(k) e
iφj(k) zj(k)| = r − ε(z), |z| < 1,

and consequently
∥gj − f∥ < r.

The sought function g is gj.

Theorem 3.1.5. [25, Theorem 2.5.] Assume that Y ∈ A−1
AXB if and only if

X − Y ∈ {f(AXB) : f ∈ AbCon}.

Then σ(Y ) is not compact.
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Proof. Corollary 3.1.3 yields σ(Y ) to be bounded. Thus it suffices to prove
that ρ(Y ) is not an open set. Observe φ : C → AAXB, defined as

φ(λ) := λX − Y.

Then
A−1

AXB ∩R(φ) = {λX − Y : λX − Y ∈ A−1
AXB}

and consequently
ρ(Y ) = φ−1(A−1

AXB ∩R(φ)).

Assume ρ(Y ) to be an open set. Then A−1
AXB ∩R(φ) is an open set as well.

Consequently, R(φ) is an open set because the mapping φ−1 is continuous
and R(φ) is the inverse image of the open set C. Therefore, A−1

AXB is an
open set. Now take χ(Z) := X − Z, for any Z ∈ AAXB. Obviously, χ is
a continuous mapping and χ(χ(Z)) = Z. Consequently, {f(AXB) : f ∈
AbCon} is the inverse image of A−1

AXB via the continuous mapping χ, hence
it is an open set. However, the mapping f 7→ f(AXB) is continuous on
AbCon, and therefore AbCon is an open set, which contradicts Theorem
3.1.4, concluding that ρ(Y ) cannot be an open set and that σ(Y ) cannot be
a closed set.

3.1.2 Algebraic Representations and Extensions

Let A, B ∈ B(B(V1, V2)) be defined as

A(X) := AX, B(X) = XB, X ∈ B(V1, V2).

Trivially, A and B commute and AXB = (A ◦ B)(X) = (B ◦ A)(X). The
following lemma obviously holds:

Lemma 3.1.2. [25, Lemma 2.2.] With respect to the previous notation,
algebra AAXB is isometrically isomorphic to

{p(A ◦ B)(X), p ∈ P [C]}.

For the given set S of operators, let S−1 be the set of all invertible operators
in S. Recall that

A−1
AXB := {Y ∈ AAXB : Y is invertible in AAXB}

and for a given L ∈ B(V ), the set [L] represents the set of all operators from
B(V ) which commute with L. Consequently, Ln ∈ [L], for every n ∈ N0.
Define

[AAXB] := [A] · AAXB · [B] = {CDE : C ∈ [A], D ∈ AAXB, E ∈ [B]}
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and

BAXB := B(V2)·AAXB ·B(V1) = {FGH : F ∈ B(V2), G ∈ AAXB, H ∈ B(V1)}.

Now one takes natural extension of the multiplication from AAXB to [AAXB]
and BAXB. More precisely, let C1D1E1, C2D2E2 ∈ [AAXB] and let F1G1H1,
F2G2H2 ∈ BAXB. Then

(C1D1E1) · (C2D2E2) := (C1 · C2) · (D1 ·D2) · (E1 · E2)

and
(F1G1H1) · (F2G2H2) := (F1 · F2) · (G1 ·G2) · (H1 ·H2).

It is now possible to observe

[AAXB]
−1 := [A]−1 · A−1

AXB · [B]−1,

One should note that IV2 ∈ [A]−1 and IV1 ∈ [B]−1, so [A]−1 and [B]−1 are
non-empty and so is [AAXB]

−1. However if A and B are invertible, then An

and Bn are invertible, and so are A−n and B−n, for every n ∈ N. In other
words, operators of the form AkXBk ∈ [AAXB]

−1, for every k ∈ Z. The set
[AAXB]

−1 has some important properties, as illustrated below:

Theorem 3.1.6. [25, Theorem 2.7.] With respect to the previous notation,
the following statements hold

1. The ordered pair (A−1
AXB, ·) is an abelian group.

2. The ordered pair (B−1
AXB, ·) is a group.

3. (A−1
AXB, ·) is a subgroup of (B−1

AXB, ·).

4. The centralizer and the normalizer for (A−1
AXB, ·) in (B−1

AXB, ·) are the
same set [AAXB]

−1.

Proof.

1. Since (AAXB,+, ·) is an algebra (Theorem 3.1.1), it follows that
(AAXB \{0}, ·) is a semi-group. Taking the set of all invertible elements
from AAXB, that is, taking the set A−1

AXB, we see that (A−1
AXB, ·) is

indeed a group. Commutation follows from Theorem 3.1.1.

2. Let FGH be an element from B−1
AXB, where F ∈ B(V2)

−1, G ∈ A−1
AXB

and H ∈ B(V1)
−1. Its inverse is F−1G−1H−1, where each inverse be-

longs to the corresponding operator space. It follows that (B−1
AXB, ·) is

also a group. It is not abelian, since invertible operators in general do
not need to commute.
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3. Specially, IVk
∈ B(Vk)

−1, k = 1, 2, it follows that
A−1

AXB = IV2 · A−1
AXB · IV1 ⊂ B−1

AXB. Therefore, A−1
AXB is a commutative

subgroup of B−1
AXB.

4. Let CDE ∈ [AAXB]
−1. Then

CDE · A−1
AXB

={CDE · f(AXB) : f(AXB) ∈ A−1
AXB}

={CDE · lim
n→∞

pn(AXB) : lim
n→+∞

pn = f, f(AXB) ∈ A−1
AXB}

={ lim
n→+∞

(CDE) · pn(AXB) : lim
n→+∞

pn = f, f(AXB) ∈ A−1
AXB}.

(3.10)

Let qm(AXB) be given as

qm(AXB) =

αmA
mXBm + αm−1A

m−1XBm−1 + . . .+ α1AXB + α0X.

Then CDE · qm(AXB) is given as

αm(C · Am) · (D ·X) · (E ·Bm) + . . .+ α0C(D ·X)E.

Since A, A2, . . ., Am, C ∈ [A], and the same goes (respectively) for B
and E, it follows that (applying X ·D = D ·X)

CDE · qm(AXB) = qm(AXB) · CDE,

for any polynomial qm. This is also true for the polynomials pn that
occur in (3.10). Therefore,

{CDE · f(AXB) : f(AXB) ∈ A−1
AXB} =

{f(AXB) · CDE : f(AXB) ∈ A−1
AXB},

so CDE·A−1
AXB = A−1

AXB ·CDE. This proves that [AAXB]
−1 is contained

in the normalizer of A−1
AXB in B−1

AXB.

Now let PQR ∈ B−1
AXB such that PQR · A−1

AXB = A−1
AXB · PQR. Then

P ∈ B(V2)
−1, Q ∈ A−1

AXB and R ∈ B(V1)
−1. Let f(AXB) ∈ A−1

AXB be
arbitrary. It follows that there exists g(AXB) ∈ A−1

AXB such that

PQR · f(AXB) = g(AXB) · PQR. (3.11)

Assume that
f(AXB) = lim

n→+∞
pn(AXB)
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and
g(AXB) = lim

m→+∞
qm(AXB).

For given n and m, we have

PQR · pn(AXB) =

cn(P · An) · (Q ·X) · (R ·Bn) + . . .+ c0P (Q ·X)R

and

qm(AXB) · PQR =

dm(A
n · P ) · (Q ·X) · (Bm ·R) + . . .+ d0P (X ·Q)R.

Now taking m and n → +∞, from (3.11) we have that

∥PQR · pn(AXB)− qm(AXB) · PQR∥ → 0.

But then for large enough n andm we have ∥AkP−PAk∥ → 0, for every
k ∈ {1, . . . ,min{n,m}}. This yields that P ∈ [A]−1 and R ∈ [B]−1,
so PQR ∈ [AAXB]

−1, that is, [AAXB]
−1 is the normalizer for A−1

AXB in
B−1
AXB. The centralizer part goes completely analogously.

We summarize our algebraic representations with a brief discussion when A
and B are nilpotent and finite-dimensional operators.

Lemma 3.1.3. [25, Lemma 2.3.] Let n ∈ N such that AnXBn = 0 and
An−1XBn−1 ̸= 0. Then AAXB is isomorphic to

({restxn(pm(x)) : pm ∈ P [C], m ∈ N0},+, ·),

where addition and multiplication are standard operations in the space of
polynomials.

Proof. For every k ∈ {0, . . . , n − 1} put φ((AXB)k) := xk, where xk is the
polynomial x 7→ xk, for some independent variable x.

For shorter notation, the set {restxn(pm(x)) : pm ∈ P [C], m ∈ N0} will
simply be denoted as restxn . Note that

{0, 1, x, x2, . . . , xn−1} = {restxn(xk), k ∈ N0}.

The corresponding multiplication forms a structure

({0, 1, x, x2, . . . , xn−1}, ·) = (⟨x⟩restxn , ·),
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where the multiplication is standard and is given as

xp · xq =

{
xp+q, p+ q < n

0, p+ q ≥ 0.

Theorem 3.1.7. [25, Theorem 2.8.] Let A and B be matrices. Then there
exist n,m ∈ N0 such that the semi-group ({(AXB)k}k∈N0 , ·) is isomorphic to

(Z+
0 ,+)⊕ (⟨x⟩restxn , ·)⊕ (⟨x⟩restxm , ·)⊕ (⟨x⟩rest

xmin{m,n} , ·). (3.12)

Proof. Since A and B are matrices, then so are the operators (AXB)k, for
every k ∈ N. From Jordan-Chevalley decompositions of A and B (see [9]),
we see that

A = A1 +
. A2,

where A1 is invertible on R(Aind(A)), and A2 is nilpotent on N (Aind(A)). The
same decomposition holds for the matrix B

B = B1 +
. B2,

where B1 is invertible on R(Bind(B)) and B2 is nilpotent on N (Bind(B)). Then
for every k ∈ N,

Ak = Ak
1 +

. Ak
2, Bk = Bk

1 +
. Bk

2 ,

and consequently,

(AXB)k = (Ak
1+

.Ak
2)X(Bk

1+
.Bk

2 ) = Ak
1XBk

1+
.Ak

1XBk
2+.Ak

2XBk
1+

.Ak
2XBk

2 .

Let the nilpotency index of A2 be m and let the nilpotency index of B2

be n, for some m, n ∈ N0. Lemma 3.1.3 yields that (AA1XB2 ,+, ·) is iso-
morphic to restxn . Analogously, (AA2XB1 ,+, ·) is isomorphic to restxm and
(AA2XB2 ,+, ·) is isomorphic to restxmin{m,n} . But then the bases of the prior
spaces are isomorphic to the bases of later, respectively. So Ak

2XBk
2 maps

to xk, for k < min{m,n}, and Ak
2XBk

2 maps to zero otherwise. Analo-
gous procedure goes for Ak

2XBk
1 and Ak

1XBk
2 . Finally, observe the invertible

part (Ak
1XBk

1 ), k ∈ N. Put φ((A1XB1)
k) := k, φ(X) := 0, and its in-

verse, φ((A1XB1)
−k) := −k. It is now obvious that (Z,+) is isomorphic to

{(A1XB1)
k, · : k ∈ Z}. From all of the above, we see that the representation

(3.12) holds.
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3.1.3 Applications of AAXB to some
operator equations

In this section we will illustrate how to apply the previous results to some
basic operator equations. Let V1 and V2 be Banach spaces, B ∈ B(V1),
A ∈ B(V2) and C ∈ B(V1, V2). The sets AACB, [AACB] and BACB are defined
completely analogously as AAXB, [AAXB] and BAXB, respectively, where in-
stead of X we write C. The problem at hand is the same: for given A, B
and C, find X ∈ B(V1, V2) such that the desired equality holds.

1. Operator equation X − AXB = C

Operator equations of the form

X − AXB = C (3.13)

are called Stein operator equations. From Lemma 3.1.2 we see that AXB =
(A ◦ B)(X). If we assume ∥A∥ and ∥B∥ < 1, then ∥A ◦ B∥ < 1 and conse-
quently I − (A ◦ B) is invertible in B(B(V1, V2)). Since X = IB(V1,V2)(X), we
have that (3.13) is equivalent to

(I − (A ◦ B))(X) = C, (3.14)

which implies

X = (I − (A ◦ B))−1(C) =
+∞∑
k=0

(A ◦ B)k(C) =
+∞∑
k=0

AkCBk. (3.15)

Remark. From (3.15) we see that X ∈ AACB. In addition, operator I−A◦B
is invertible, so the equation is solvable for every C.

When C = 0, eq. (3.13) is called homogeneous Stein equation. From dis-
cussion set in Theorem 3.1.1, statement 2, we see that the only solution is
X = 0, which agrees with the calculation in (3.14) and (3.15):

X = (I − (A ◦ B))−1(0) = 0.

One can say that for given holomorphic function f , generalized Stein equation
is every operator equation of the form

X − f(AXB) = C. (3.16)

Applying Lemma 3.1.2, equation (3.16) transforms into

(I − f(A ◦ B))(X) = C, (3.17)
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that is

X = (I − f(A ◦ B))−1(C) =
+∞∑
k=0

(f(A ◦ B))k(C), (3.18)

provided that ∥f(A ◦ B)∥ < 1, which supports Theorem 4.42. The same
methodology goes for λX − f(AXB), when λ ∈ C and the holomorphic
function f are provided in a way that they satisfy conditions of Theorem
4.42.

Corollary 3.1.4. [25, Corollary 3.1] Let f be a holomorphic function, λ ∈
C \ {0}, A, B and X be provided as in Theorem 4.42.
If C ∈ B(V1, V2) is given such that

λX − f(AXB) = C

holds, then AAXB = AACB.

Proof. Obviously, C ∈ AAXB so AACB ⊂ AAXB. Conversely, from the pre-
vious discussion X ∈ AACB and consequently AAXB ⊂ AACB.

For more results on this particular operator equation, an interested reader is
referred to [32], [34], [53], [84], [85].

2. Operator equations AX = C and AXB = C

In this section we recall how to solve the simplest operator equation,

AX = C, (3.19)

for given C ∈ B(V1, V2) and A ∈ B(V2). Solvability conditions require that
R(A) ⊃ R(C). If A = 0, then the eq. (3.19) is solvable if and only if C = 0.
Otherwise, if A ̸= 0, then A is outer regular. Consequently, there exists
A(2) ∈ B(V2) such that

A(2) =

[
A−1

1 0
0 0

]
:

(
R

N (A(2))

)
→
(

R(A(2))
T

)
,

where V2 = R +. N (A(2)) = R(A(2)) +. T , and in that case, A can be repre-
sented via the matrix

A =

[
A1 0
0 NA

]
:

(
R(A(2))

T

)
→
(

R
N (A(2))

)
.

It follows that A(2)A = PR(A(2)).
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Proposition 3.1.1. Assume that A is outer regular. If there exists an outer
inverse for A, A(2), such that R(C) ⊂ R(A(2)), then the equation (3.19) is
solvable, and one of its solutions is X = A(2)C.

For a more general problem, define operators A(L) := AL and B(L) := LB,
for every L ∈ B(V1, V2), where B ∈ B(V1) and A ∈ B(V2). Then solving
operator equation

AXB = C (3.20)

reduces to two consecutive applications of Proposition 3.1.1. Consult [18],
[32], [34], [38], [45], [61], [62] and references therein.

Proposition 3.1.2. If equation (3.20) is solvable, then C ∈ AAXB.

3.2 Singular Sylvester equation:

Algebra AAXB meets Fredholm theory

In order to solve the initial Sylvester equation, it suffices to find one particular
solution Xp, and all solutions Xh to the homogeneous equation

AX −XB = 0. (3.21)

Then every solution X to (3.1) can be obtained as X = Xp + Xh. The
following Theorem and Corollary concern the homogenized problem (3.21).

Theorem 3.2.1. [25, Theorem 3.4] Let A, X and B be provided such that
AX = XB. Then for every Y ∈ AAXB it follows that AY = Y B. In other
words, every element from AAXB is a solution to the homogeneous Sylvester
equation (3.21).

Proof. First observe the basis of AAXB:

X, AXB, A2XB2, . . . .

Given the way A, B and X are provided, it follows that

A(AnXBn) = A(An−1XBn+1) = (AnXBn)B, n ∈ N,

so (AXB)n is a solution to (3.21), for every n ∈ N. Further, every finite
linear combination of the basis elements is a solution to (3.21). This proves
that pn(AXB) is a solution to the homogeneous Sylvester equation, for every
pn ∈ P [C]. One should note that, in the bounded-operator case, the set of
solutions to the equation AX −XB = 0 is closed. This is directly verifiable.
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Nevertheless, let f be a holomorphic function on some Cauchy domain Ω,
σ(A), σ(B) ⊂ Ω, given as the limit of some complex polynomials

f(z) = lim
n→+∞

pn(z), z ∈ Ω.

Then Lemma 3.1.2 applies and

f(AXB) = lim
n→+∞

pn(AXB)

and

Af(AXB) = A( lim
n→∞

pn(AXB)) =

lim
n→∞

Apn(AXB) = lim
n→∞

(pn(AXB)B) = f(AXB)B,

so AAXB is contained in the set of solutions to the homogeneous Sylvester
equation.

Corollary 3.2.1. [25, Corollary 3.3.] Let A, B and X be provided such that
AX = XB, and let A and B be provided as in Lemma 3.1.2.
Then AAXB is isomorphic to

{p(A2)(X) : p ∈ P [C]} (3.22)

and to
{p(B2)(X) : p ∈ P [C]}. (3.23)

In order for AX = XB to be solvable, it is required for (3.22) and (3.23) to
be isomorphic to each other.

For a moment, assume that at least one solution to (3.1) is found. Then it
can be further exploited, via the algebra AAXB introduced in this chapter.
Recall Lemma 1.2.3 from Chapter 1:

Lemma 3.2.1. [50, Lemma 2.1.] Assume X is a solution to (3.1). Then for
any k ≥ 1

AkX −XBk =
k−1∑
i=0

Ak−1−iCBi. (3.24)

In the following, we briefly describe algebraic properties (w. r. t. AAXB), of
one solution to the Sylvester equation (3.1).

Corollary 3.2.2. [25, Corollary 3.2.] Let A, B, C and X be provided such
that (3.1) holds. Then C ∈ [AAXB] and for every k ∈ N0,

AkX −XBk ∈ [AACB].
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Proof. The first claim follows directly C = AX −XB ∈ [AAXB].

When k = 0 then X − X = 0 ∈ [AACB]. When k ≥ 1, then (3.24) applies,
and

AkX −XBk = Ak−1C + . . .+ CBk−1.

Since Aℓ ∈ [A] and Bs ∈ [B], for every s, ℓ ∈ {0, . . . , k − 1}, it follows that
every addend on the right-hand-side is in [AACB], and so is AkX−XBk.

Now all what is left to do, is to find one particular solution to (3.1), and
analogously, one particular non-trivial solution to (3.21). This is obtained in
the following section, with help from Fredholm theory.

3.2.1 Finding particular solutions:
Fredholm theory approach

Notation and results from [19], [20], [33] and [103]–[106] come in handy at
this point, and we briefly mention those which are relevant for this section.
For convenience, we denote the ideal of compact operators by C(V1, V2).

Recall that, for a bounded linear operator L ∈ B(V ), the hyper range is
given by R∞(L) = ∩nR(Ln) and the hyper null space is given by N∞(L) =
∪nN (Ln). With asc(L) and dsc(L) we denote, respectively, the ascend and
the descend of the operator L. If asc(L) and dsc(L) are both finite, then
they are equal (to, say, p) and

V = R(Lp) +. N (Lp).

Conversely, if
V = R(Lm) +. N (Lm),

for some m, then asc(L), dsc(L) ≤ m. It is now clear that, if asc(L) < ∞
and dsc(L) < ∞, then

R∞(L) ∩N∞(L) = {0}, V = R∞(L) +. N∞(L).

We introduce some standard definitions from Fredholm theory.

Definition 3.2.1. A (bounded) linear operator L ∈ B(V1, V2) is upper semi-
Fredholm if α(L) = dimN (L) < ∞ and R(L) is closed in V2. The set of
upper semi-Fredholm operators is denoted as Φ+(V1, V2).

Definition 3.2.2. An upper semi-Fredholm operator L is a left upper semi-
Fredholm operator if there exists a bounded projection from V2 onto R(L).
The set of all left upper semi-Fredholm operators is denoted by Φℓ(V1, V2).
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Equivalently (see [106]), an upper semi-Fredholm operator L is a left upper
semi-Fredholm operator iff there exist L1 ∈ B(V2, V1) and a finite rank oper-
ator F ∈ B(V1) (or equivalently, a compact operator K ∈ B(V1)), such that
L1L = I + F (respectively, L1L = I + K). The term left refers to the left
invertibility in the Calkin algebra, and therefore left upper semi-Fredholm
operators are sometimes called essentially left invertible operators, see [12]
and [44].

Definition 3.2.3. [106] Let L ∈ B(V ). The point λ ∈ σ(L) is a Riesz point
of L if V is a direct sum of a closed subspace EL(λ) and a finite dimensional
subspace FL(λ), which are invariant for L and the reduction of L − λ to
EL(λ) is invertible while the reduction of L− λ to FL(λ) is nilpotent.

We now return to the general case, where V1 and V2 are Banach spaces and
A, B and C are accordingly provided bounded linear operators, such that
σ(A) ∩ σ(B) ̸= ∅.

Theorem 3.2.2. [26, Theorem 3.1.] Assume that there exists a bounded
embedding J : V1 → V2 with a closed range, such that R(J) is complemented
in V2. Define operators

Ĉ ∈ B (B(V1, V2)) , Ĉ(L) := CJ−1PR(J)L

and
S ∈ B (B(V1, V2)) , S(L) := AL− LB.

There exists a solution to (3.1) if and only if

S · X̂ = Ĉ (3.25)

is solvable in B (B(V1, V2)).

Proof. Denote by Q the bounded projection from V2 onto R(J). In addition

to S and Ĉ, define the following operators as previously,

A ∈ B (B(V1, V2)) , A(L) = AL, L ∈ B(V1, V2),

B ∈ B (B(V1, V2)) , B(L) = LB, L ∈ B(V1, V2).

If (3.25) is solved for X̂ ∈ B(B(V1, V2)), then (1.1) is solved by the operator

X̂(J). On the other hand, for every solution X to (1.1), it follows that

AX −XB = C ⇔ S(X) = C ⇔ S · X̂(J) = Ĉ(J),
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giving one bounded solution to (3.25) at point J , where X̂ ∈ B (B(V1, V2)) is

given by X̂(L) = XJ−1QL, for every L ∈ B(V1, V2).

We now proceed to solve (3.25). Since S = A− B and [A,B] = 0, it follows
that

σ(S) ⊂ σ(A)− σ(B) = {µ− λ : µ ∈ σ(A), λ ∈ σ(B)}.
Trivially, if 0 /∈ σ(S), then S is invertible and X̂ = S−1 · Ĉ. Otherwise, the
eq. (3.25) can be solved by Proposition 3.1.1.

Corollary 3.2.3. [26, Corollary 3.1.] If V1 is a closed, complemented sub-
space of V2, then there exists a solution to (1.1) if and only if (3.25) is
solvable, where J = PV1 .

In what follows, we extend the statement from Theorem 3.2.2 to a more
general case. For convenience, we define the following property for Riesz
points of a given operator.

Definition 3.2.4. [26, Definition 3.1.] Let B ∈ B(V1) and let λ ∈ σ(B) be
a Riesz point of B. Let operator L ∈ B(V1, V ), for some Banach space V ,
be given such that α(L) = dimN (L) < +∞. Then operator L decomposes
operator B at point λ in the Riesz sense if BN := B �N (L) has the property
that

FB(λ) = N∞(BN) +R∞(BN). (3.26)

Remark. Note that such L always exists: fact that FB(λ) is a finite dimen-
sional B−invariant subspace of V1 implies that B �FB(λ): FB(λ) → FB(λ) is a
square matrix. Every square matrix can be further decomposed into a sum of
an invertible and a nilpotent matrix, which naturally define the hyper range
and the hyper null space of B �FB(λ).

Proposition 3.2.1. [26, Proposition 3.1.] Let B ∈ B(V1), C ∈ B(V1, V2) and
A ∈ B(V2) be given bounded linear operators on Banach spaces V1 and V2

and let FB be a finite dimensional B−invariant subspace of V1. Then there
exists a finite dimensional A−invariant subspace of V2, denoted by FA, such
that C(FB) ⊂ FA.

Proof. Since FB is finite dimensional, it follows that C(FB) is finite dimen-
sional as well. Then A �C(FB) is a finite rank operator, which has finite ascend
and descend, therefore, there exists

FA = N∞(A �C(FB)) +R∞(A �C(FB)),

which is A−invariant finite dimensional subspace of V2.
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Theorem 3.2.3. [26, Theorem 3.2.] Let B ∈ B(V1) such that λ ∈ σ(B) is a
Riesz point of B. Assume there exists J ∈ Φℓ(V1, V2) such that it decomposes
B at point λ in the Riesz sense. Let W and U be finite dimensional subspaces
of V1 and V2, respectively, defined as

W = R∞(B �N (J)) +N∞(B �N (J)) = FB(λ) ( by (3.26)) , (3.27)

U = R∞(A �R(C�W )) +N∞(A �R(C�W )). (3.28)

If matrices B �W , C �W and A �U satisfy conditions (2.1), then there exist
infinitely many solutions to (3.1) if and only if

AX1 −X1B1 = C1 (3.29)

is solvable on V12, where V1 = W +. V12 and B1 = B �V12 , C1 = C �V12 .

Proof. Let J ∈ Φℓ(V1, V2) be a left upper semi-Fredholm operator. Then
α(J) < ∞ and B �N (J) is a finite dimensional operator. Let W be the finite
dimensional space introduced in (3.27), which is the finite dimensional space
FB(λ) on which B − λ is nilpotent. Define BW := B �W and CW := C �W .
Then R(CW ) is a finite dimensional space as well. In that sense, let U be
provided as in (3.28) and similarly AU := A �U . It follows that AU : U → U .
Observe the finite dimensional spaces W and U , and operators defined on
them, that is,

BW ∈ B(W ), CW ∈ B(W,U), AU ∈ B(U).

They are all scalar matrices, so if conditions (2.1) hold, there exist infinitely
many solutions XW to

AUXW −XWBW = CW .

To complete the proof, note that V1 = N (J)+V11 = N (J)+(W ∩ V11)+V12 =
W +V12, and each subspace is closed. Let J1 = J �V11 and J2 = J1 �V12 . Since
R(J) is closed and J1 is injective, with R(J) = R(J1), it follows that

R(J1) = J1(W ∩ V11) +R(J2),

thus R(J2) is closed as well and because J2 is injective, J2 has a bounded
inverse from R(J2) to V12. By assumption, J is a left upper semi-Fredholm
operator, so there exists a bounded projection Q1 from V2 onto R(J) =
R(J1). However, since R(J1 �W∩V11) is finite dimensional, it follows that
there exists a bounded projection Q2 from V2 onto R(J2), so J2 is a bounded
embedding of V12 into V2, with a closed range, which is complemented in
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V2. Further, since V1 = W +. V12 and λ is a Riesz point for the operator
B, it follows that V12 is a closed, B−invariant subspace of V1. Since J2 is a
bounded embedding from V12 to V2, with a closed and complemented range
in V2, the equation (3.29) is solved via Theorem 3.2.2, if and only if the initial
equation (3.1) is solved in B(V1, V2). Finally, every solution X to (3.1) can
be expressed in the form X = XW +X1, with respect to the decomposition
V1 = W +. V12.

If B does not have a Riesz point in its spectrum, then Theorem 3.2.3 fails,
but Theorem 3.2.2 can still be applied. In that case, we proceed with the
construction firstly introduced by Berberian, which was applied to Fredholm
theory by Buoni, Harte and Wickstead (see [8], [12] and [44]). By ℓ∞(V1)
we denote the Banach space of bounded sequences in V1, equipped with the
supremum norm. By m(V1) we denote the subspace of ℓ∞(V1) which consists
of those bounded sequences in V1 such that each sequence has a subsequence
which has a convergent subsequence, or, equivalently, every element of the
space m(V1) is totally bounded. Now introduce P (V1) = ℓ∞(V1)/m(V1),
equipped with the supremum norm. It follows that ∥(x)∥ = q((x)), for every
(x) ∈ P(V1), where q is the measure of noncompactness

q((x)) = inf{δ ≥ 0 : (x) has a finite δ-net}.

This defines a Banach space, and every bounded operator L ∈ B(V1) induces
P(L) ∈ B (P (V1)), defined entry-wise for each sequence (x) ∈ P (V1). We
state some fundamental results obtained in [12] and [44].

Theorem 3.2.4. [12, Theorem 2] If T : V1 → V2 is a bounded linear operator
between Banach spaces V1 and V2, then the following are equivalent:
(a) P(T ) : P(V1) → P(V2) is one-one;
(b) T : V1 → V2 is upper semi-Fredholm;
(c) P(T ) : P(V1) → P(V2) is bounded below.

Recall that every upper semi-Fredholm operator maps bounded but not to-
tally bounded sequences into bounded but not totally bounded sequences.
Further, if T sends every (x) ∈ ℓ∞(V1) to m(V1), then T must be a compact
operator, so B(P(V1),P(V2)) = B(V1, V2)/C(V1, V2). In analogy to

Lx = 0 ⇒ x = 0,

whenever L is injective, the implication

TU is compact ⇒ U is compact
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defines T as an essentially one-one operator. In analogy to the reverse-order-
law in dual spaces, the implication

UT is compact ⇒ U is compact

defines T as an essentially dense operator.

Theorem 3.2.5. [12, Theorem 4] Let T be a bounded operator between two
Banach spaces. Then the following implications hold:
(a) T is left upper semi-Fredholm⇒ T is upper semi-Fredholm ⇒ T is essen-
tially one-one;
(b) T is right lower semi-Fredholm ⇒ T is lower semi-Fredholm ⇒ T is
essentially dense.

At this point we can generalize the statement from Theorem 3.2.3.

Theorem 3.2.6. [26, Theorem 3.5.] Define P(V1), P(V2), P(B), P(C) and
P(A) as described above.
(a) If there exists J ∈ Φℓ(V1, V2), then there exists a solution to the quotient
equation

P(A)P(X)− P(X)P(B) = P(C) (3.30)

if and only if

P(S) · P̂(X) = P̂(C) (3.31)

is solvable, where

P(S)(P(L)) := P(A)P(L)− P(L)P(B)

P̂(C)(P(L)) := P(C)P(J)−1PR(P(J))P(L).

(b) Let λ ∈ σapp(B) such that the eigenspace FP(B)(λ) for P(B) which
corresponds to λ is a finite dimensional subspace of P(V1). Assume there
exists an upper semi-Fredholm operator P(φ) ∈ Φℓ(P(V1),P(V2)), which
decomposes P(B) at point λ in the Riesz sense and let P(W ) and P(U)
be defined as in (3.27) and (3.28), with respect to operators P(A), P(B),
P(C) and P(φ). If operators P(B) �P(W ), P(C) �P(W ) and P(A) �P(U) sat-
isfy conditions (2.1), then there exist infinitely many solutions to (3.30) iff
P(A)P(X1) − P(X1)P(B1) = P(C1), where P(X1), P(B1) and P(C1) are
defined as in (3.29) on V12, V1 = W +. V12.
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Proof. (a) From the discussion above, operator J defines an injective P(J),
with closed and complemented range in P(V2), so Theorem 3.2.2 applies to
(3.30).
(b) Similarly, all conditions of Theorem 3.2.3 hold, so (3.30) has infinitely
many solutions.

Corollary 3.2.4. [26, Corollary 3.2.] Let λ ∈ σapp(B) such that λ is a Riesz
point of P(B) and assume that P(φ) ∈ Φ+(P(V1),P(V2)) is an upper semi-
Fredholm operator which decomposes P(B) at point λ in the Riesz sense.
Then φ /∈ Φ+(V1, V2).

Proof. Assume that P(φ) is an upper semi-Fredholm operator, which de-
composes P(B) at point λ in the Riesz sense. If φ ∈ Φ+(V1, V2), then (by
[12]) P(φ) is one-one, that is, N (P(φ)) = {0}. But by assumption, P(φ)
decomposes P(B) at point λ in the Riesz sense, so the finite dimensional
part (as in (3.26)) is equal to zero:

FP(B)(λ) = {0}.

Then P(B) − λ is invertible in P(V1), which contradicts the fact that λ ∈
σp(P(B)).

Corollary 3.2.5. [26, Corollary 3.3.] If there exists J ∈ Φℓ(V1, V2), then
there exists X ∈ B(V1, V2) such that

AX −XB ∈ C(V1, V2). (3.32)

Proof. Immediately from Theorem 3.2.6 (a), we have that the equation (3.30)
is solvable. Taking C = 0 completes the proof.

3.3 Some applications

As previously mentioned, Sylvester equations have numerous applications in
both theoretical and applied mathematics, physics, engineering and computer
science. Simply knowing when a Sylvester equation is solvable, gives suffi-
cient conditions for some quite important results, such as operator matrix
diagonalization, perturbation analysis, commutator problems, etc. consult
[10] and numerous references therein. In this section we illustrate how our
results contribute to such applications.
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3.3.1 Fréchet derivatives and commutators

Expressions AX − XB are known as generalized derivations or weighted
commutators, and are in close relations to the Fréchet derivatives (see [31],
[97] and [98]). When V1 = V2 = V , let f(A) = A2. Then the Fréchet
derivative of f(A) at point B is the expression (which is a bounded linear
operator on V ),

DfA(B) = AB +BA.

Observe the abstract ODE

DfA(B) = C.

Question 1. At which points B does the Fréchet derivative of f at point A
take the value C?
Assuming that σ(A) ∩ σ(−A) ̸= ∅ it follows from Corollary 3.2.3 that there
exists a B, which is the solution to the abstract ODE if and only if (3.25) is
solvable.
Question 2. When can an operator be expressed as a commutator of two
idempotents?
The problem of commuting idempotents has been characterized in the fol-
lowing

Theorem 3.3.1. [36, Theorem 1.] An element t in a ring R is a commutator
of a pair of idempotents if and only if there exist u ∈ R and s ∈ R such that
u2 = 1, ut+ tu = 0 su− us = 0, st− ts = 0 and s2 = t2 + 1

4
.

Although we cannot simplify the statement of the Theorem 3.3.1, our results
can enable solvability of the commutator equations that appear in the paper
[36]. Let R = B(V ) and let C ∈ B(V ) be given such that σ(C)∩σ(−C) ̸= ∅.
Define g(C) = C2 + 1

4
and let f(L) = L2, as before. Then finding U such

that U2 = I and CU + UC = 0 reduces to

DgC(U) = DfU(C) = UC + CU = 0, U2 = I.

Notice that, in order for U to be non trivial, we require σ(U) = {−1, 1}. In
order to apply Theorem 3.2.2 and Corollary 3.2.3, assume that we can solve
the abstract Cauchy problem (if the equation were regular-which it isn’t, one
could simply apply results from [83])

DfU(C) = UC + CU = 0, U2 = I. (3.33)

It follows that there exists L ∈ B(V ) which solves the following system of
homogeneous Sylvester equations

CL− LC = 0, UL− LU = 0, f(L) = g(C)
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if and only if C is a commutator of two idempotents.

3.3.2 Connections to compact operators

Question 3. For a bounded linear operator A ∈ B(V ) given on a Banach
space V , is there a bounded linear operator B ∈ B(V ), such that AB+BA is
a compact operator? More generally, what conditions must hold for A and B,
such that there exists an X ∈ B(V ), making AX −XB a compact operator,
as in formula (3.32)?

If σ(A)∩σ(−A) = ∅, then for every compact operator C ∈ C(V ), there exists
a unique B ∈ B(V ) such that AB+BA = C. However, if σ(A)∩σ(−A) ̸= ∅,
then Corollary 3.2.5 gives an affirmative answer.

In general, for given operators A, B and X in B(V ), when can we claim that
they form a compact derivation, i.e. when is AX − XB a compact opera-
tor? Formula (3.32) from Corollary 3.2.5 gives an answer to this question.
Furthermore, let φ : Ω → C be an analytical function, defined in a region
Ω ⊂ C such that σ(A) and σ(B) are both contained in that region. Then
the Spectral mapping theorem yields that

σ(A) ∩ σ(B) ̸= ∅ ⇒ σ(φ(A)) ∩ σ(φ(B)) ̸= ∅.

Thus Corollary 3.2.5 gives sufficient conditions for A, B and φ, in order for
φ(A)X − Xφ(B) to be a compact operator, for some X ∈ B(V ). This is
very important for majorization theory and its applications, because there
are numerous problems which concern comparing expressions AX−XB and
φ(A)X −Xφ(B) in various norms, see [9], [27], [55], [56] and [80]. Similarly
to perturbation analysis conducted on matrices A and B in Chapter 2, it
is very convenient to know when the said expressions are trace-class oper-
ators, Ky-Fan-k-class operators, Schatten-p-class operators etc. consult [9],
[55], [56], [66], [67], [72], [80], [105] and rich references therein. Recall that
each of the afore-mentioned classes of operators consists of operators which
are necessarily compact operators, and every class has its own unitarily in-
variant norm (trace-norm, Ky-Fan-k-norm, Schatten-p−norm and so on).
Ergo it is suitable to know under which conditions expressions AX − XB
and φ(A)X − Xφ(B) are compact, trace-class, Ky-Fan-k−class, Schatten
p−class and so on.
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Recall that two bounded operators T and L, defined on two different Banach
spaces V1 and V2 respectively, are said to be equivalent after extension, if
they can both be extended to V1 +

. V2, T̃ := T + IV2 , L̃ = IV1 + L, and in

addition satisfy T̃ = UL̃V , for some bounded and invertible linear operators
U and V on V1+

.V2. Specially, if V1 = {0} or V2 = {0}, then T and L, which
are equivalent after extension, are said to be equivalent after one-sided ex-
tension. Note that if T and L are compact operators which are equivalent
after extension, then T̃ and L̃ are Fredholm operators, which means that
they have a Riesz point in their spectra.

Question 4. When are compact operators L and T equivalent after exten-
sion?

It suffices to find an invertible U such that L̃U = UT̃ . This is now solvable by
Theorem 3.2.1, Theorem 3.2.3 or Theorem 3.2.6, Corollary 3.2.4 or Corollary
3.2.1. A necessary condition was obtained in [48], where operator ideals are
constructed, which are similar to the operator algebra AAXB introduced by
the author in [25].

Definition 3.3.1. [48, Defitinion 2.1.] Let T ∈ B(V1, V2) be a Banach space
operator. For any Banach spaces Z1 and Z2, we define

IT (Z1, Z2) :=
∪
n∈N

{
n∑

j=1

RjTR
′
j : Rj ∈ B(V2, Z2), R′

j ∈ B(Z1, V1)

}
.

Denote by IT the (proper) class
∪

Z1,Z2
IT (Z1, Z2), and refer to IT as the

operator ideal generated by T.

Theorem 3.3.2. [48, Theorem 2.5.] Let T ∈ B(V1) and L ∈ B(V2) be two
compact operators defined on Banach spaces V1 and V2, resp. If T and L are
equivalent after extension, then IT = IL.

Remark. Necessary condition from Theorem 3.3.2, IL = IT , agrees with
Corollary 3.2.1.

3.3.3 LTI systems and Schur coupling for
operators in Banach spaces

One of the main applications of Sylvester equations is in systems engineering
and modeling of linear time-invariant (LTI) systems (see [5], [7], [40] and
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[88]). For now, we restrict our attention to finite scalar matrices, as that
is the most exploited case in the systems engineering. Every linear time-
invariant system, continuous in time, can be represented by a generalized
state-space model of the form

x′(t) = Ax(t) +Bu(t), t ≥ 0,

y(t) = Cx(t) +Du(t), t ≥ 0,

x(0) = 0,

(3.34)

where t represents the time parameter, while variables u, x, y, x′ and matrices
A, B, C and D have a direct physical interpretation:

• x(·) is the state vector with n dimensions, x(·) ∈ Rn;

• y(·) is the output vector with q dimensions, y(·) ∈ Rq;

• u(·) is the input vector with p dimensions, u(·) ∈ Rp;

• A is the state (or system) matrix, A ∈ Rn×n;

• B is the input matrix, B ∈ Rn×p;

• C is the output matrix, C ∈ Rq×n;

• D is the feedthrough (or feedforward) matrix D ∈ Rq×p. If the system
does not have a direct feedthrough, then D = 0;

• x′(t) = d
d t
x(t).

Matrices A, B, C and D are constant if the system is time-invariant. Oth-
erwise, they are time dependent. The matrix G1(λ) := D + C(λ − A)−1B,
where λ ∈ ρ(A), resembles a state space realization of the transfer function
G1(·) of the given system.

Often, matrices A, B, C and D are sparse and in those cases the initial
system (3.34) is replaced by a so-called minimal system (see e. g. [7]), which
is:

• Controllable1, that is,

rank
[
B AB A2B . . . , An−1B

]
= n;

1The state controllability condition implies that it is possible by admissible inputs to
steer the states from any initial value to any final value within some finite time window.
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• Observable2, that is,

rank
[
C CA CA2 . . . CAn−1

]T
= n;

• Has exactly the same transfer function G1(·) as the starting system
(3.34).

Case 1. If D = 0, then the system can be solved via Luenenberg’s scheme
(see [5], [7], [40] and [88]): namely, if we introduce another dynamical system

z′(t) = Hz(t) + Fy(t) +Gu(t), z(0) = z0, (3.35)

such that (A,C) is observable, and (H,F ) is controllable, then there exists
a unique full-rank solution to

HX −XA = −FC,

as this reduces to a regular matrix Sylvester equation. In addition, if G from
(3.35) allows the decomposition G = XB, then z : [0,+∞) → Rn, which is
a solution to (3.35), is the state observer for (3.34), meaning that, for some
nonsingular Z ∈ Rn×n and the state vector x(t) for (3.34), we have

∥z(t)− Zx(t)∥ −→ 0, t → +∞.

Case 2. On the other hand, ifD ̸= 0, then LTI system (3.34) can be analyzed
via Schur coupling. At this point, we can generalize the system (3.34) in a way
that A, B, C and D are bounded linear operators on appropriate Banach
spaces, as this scenario is also covered by Schur coupling and the arising
singular Sylvester equations with bounded linear operators as their entries.
In general, Schur complements for Banach space operators, Schur coupling,
and their applications to LTI systems have been studied, among others, in
[2], [5], [13], [21], [48], [49] and [63]. Introduce an operator matrix M ,

M =

[
A B
C D

]
,

and assume that A is invertible. Then G1 := D − CA−1B is in fact the
first Schur complement of operator A in matrix M , often denoted as A/M or
W1(M). Similarly, if D is invertible, then G2 := A − BD−1C is the second
Schur complement for operator D in matrix M , often denoted by W2(M).

2Observability is a measure for how well internal states of a system can be inferred by
knowledge of its external outputs.
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Schur complements are important, because they are involved in the Schur
decomposition of a given operator matrix:

M =

[
I 0

CA−1 I

]
·
[
A 0
0 D − CA−1B

]
·
[
I A−1B
0 I

]
.

Conversely, given bounded linear operators L and T are Schur coupled if
there exists an operator matrix M , with bounded and invertible A and D,
such that L = W1(M) and T = W2(M). Hence it is very important to answer
the following question:

Question 5. When are two given operators L and T Schur coupled?

In the following, we formulate a result from [49], which answers Question 5.
Notice that the answer is surprisingly similar to the one for Question 4, and
is once again solved by the results obtained in this chapter, particularly, by
Theorem 3.2.1, Theorem 3.2.3, Theorem 3.2.6, Corollary 3.2.4 or Corollary
3.2.1. Recall that an operator L ∈ B(V ) is said to be inessential, if LT is a
Riesz operator (quasi-nilpotent in the Calkin algebra), for every T ∈ B(V ),
see [106].

Theorem 3.3.3. [49, Theorem 1.1.] Let L ∈ B(V1) and T ∈ B(V2) be
inessential operators. The following statements are equivalent:

(a) L and T are Schur coupled;

(b) L and T are equivalent after extension;

(c) L and T are equivalent after one-sided extension.



Chapter 4

The closed operator case

4.1 The ,,regular” unbounded equation

When the operators A, B and C are not bounded, a different analysis is
required. To start, their domains are compromised because the operators are
not automatically defined on the entire spaces. Consistency conditions always
yield the operators A and B to be densely defined on the corresponding
Banach spaces, and that DB ⊂ DC . In that sense, the Sylvester equation in
the unbounded setting has the form

AXu−XBu = Cu, u ∈ DB. (4.1)

The problem when A and−B are given as generators of analytical semigroups
and C0−semigroups, has been studied in [60] and [83]. These results provide
a nice way to extend solvability of the equation (4.1) to quantum mechanics
(see [70], [99] and [101]) and abstract differential equations, see [79]. For
example, it is very convenient to note that the abstract Cauchy problem{

d
d t
X(t) = AX(t)−X(t)B

X(0) = C
(4.2)

is uniquely solved by

X = etAC e−tB, (4.3)

and that solution is uniformly exponentially stable when the semigroup gen-
erated by −B and the semigroup generated by A have negative growth limits
(see below). Furthermore, the abstract inhomogeneous problems

u′(t) = Au(t) + f(t), u(0) = x0 (4.4)

63
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can be rewritten as

U ′(t) =

[
A δ0
0 d

dt

]
U(t), U(0) = (x0, f), (4.5)

observed on the space V2 ×z, where z is the space of V2−valued functions,
defined on R, with δ0(f) = f(0) being an unbounded operator in z. Recall
from Chapter 1, that if the operator matrix in (4.5) is diagonalizable, then
Cauchy problem (4.4) can be drastically simplified. Because of these, and
several other reasons, it is important to study the Sylvester equation (4.1)
when A, B and C are unbounded operators. Throughout this chapter, a
strong background in closed operators and spectral theory is required. An
interested reader is referred to books [37], [43], [59], [86], [99], [100] and [102].

Theorem 4.1.1. [60] Let A and −B be generators of C0−semigroups (T (t))
and (S(t)), t ≥ 0, on Banach spaces V2 and V1, respectively and let C be an
operator from V1 to V2. Let

Q(t) : DB ⊂ V1 → V2 : Q(t)(f) := T (t)CS(t)(f), t ≥ 0,

R(t) : DB ⊂ V1 → V2 : R(t)(f) := −
∫ t

0

Q(s)fds, t ≥ 0.

Assume that:

1. The weak topology closure of {Q(t)f}t≥0 contains zero, for every f ∈
DB;

2. R(t) has a continuous extension to a bounded linear operator, for every
t ≥ 0 and the family {R(t)}t≥0 is relatively compact with respect to
the weak topology.

Then the equation (4.1) has a bounded solution. Contrary, if (4.1) has a
bounded solution then R(t) is bounded, for every t ≥ 0. Furthermore, if
for every bounded linear operator Y from V1 to V2 the operator T (t)Y S(t)
converges towards zero when t → +∞ in the weak (resp. strong, uniform)
operator topology, then the solution X to the equation (4.1) is unique and
R(t) converges to X in the weak (resp. strong, uniform) topology.

Definition 4.1.1. [60] For the semigroup (T (t))t≥0 generated by an operator
A, the value w(A) represents the semigroups growth limit, and is provided
as

w(A) = inf{λ ∈ R : ∃M > 0 such that ∥T (t)∥ ≤ M eλt, ∀t ≥ 0}.

If w(A) < 0, then the semigroup (T (t))t≥0 is called uniformly exponentially
stable.
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Theorem 4.1.2. [60] Let w(A)+w(−B) < 0 and assume the family (R(t))t≥0

from the Theorem 4.1.1 to be uniformly exponentially stable. Then the
equation (4.1) has a unique bounded solution.

4.2 The singular equation

Contrary to the regular equation, singular eigenproblems that stem from
Sturm-Liouville theory, partial differential equations, quantum mechanics
and mathematical physics often yield the corresponding operator equations
to be singular. In what follows, we solve the unbounded singular Sylvester
equation (4.1) in detail. Afterwards, we illustrate our results on explicit ex-
amples where such equations emerge. The author obtained these results in
his individual paper [24] and in joint work with his PhD mentor [29].

In this section we assume the spaces V1 and V2 to be Banach spaces and
A ∈ L(V2) and B ∈ L(V1) to be closed linear operators with non-empty
point spectra. We introduce a weak solution to the given inhomogeneous
and homogeneous equation.

Definition 4.2.1. [29] Linear operator X is a weak solution to the equation
(4.1) if

1. DC ∩ DB ̸= ∅.

2. DX ⊂ DB ∩ DC , R(X) ⊂ DA and DX is B−invariant subspace of V1.

3. For every u ∈ DX (AX −XB)u = Cu.

Definition 4.2.2. [29] Linear operator X is a weak solution to the homoge-
neous equation (4.1) if

1. DX ⊂ DB, R(X) ⊂ DA and DX is B−invariant subspace of V1.

2. for every u ∈ DX AX(u) = XB(u).

Remark. If A, B, C and X are bounded linear operators then DB = DC =
DX = V1 and R(X) ⊂ DA = V2 and V1 is a B−invariant subspace of V1. In
other words, the previous definitions of a weak solution extend the definitions
of a solution in the bounded operator case.

For convenience and simpler calculations, the results regarding solvability
of the unbounded Sylvester equation are broken down into two cases, one
regarding the homogeneous equation, and the other regarding the inhomo-
geneous equation.
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4.2.1 The homogeneous equation

Let V be an arbitrary vector space over the field F and let I be an arbitrary
index set. The set of different vectors {ai}i∈I from V is said to be a Hamel
or an algebraic basis for V , if every vector a ∈ V can be represented as a
unique finite linear combination of vectors from the family {ai}i∈I :

(∀a ∈ V ) (∃!n ∈ N) (∃!a1, . . . , an ∈ {ai}i∈I) (∃!α1, . . . , αn ∈ F ) a =
n∑

k=1

αkak.

It is known that every vector space has a Hamel basis. Unique representation
of every vector from V , in terms of the Hamel basis {ai}i∈I of V , implies that
{ai}i∈I are linearly independent vectors.
All Hamel bases of the same vector space have the same cardinality. Hence
the term ”dimension” of the given space can be extended to infinitely di-
mensional vector spaces. Lin(S) or span(S) stands for a lineal (finite linear
span) over the set of vectors S.

At this point we assume V1 and V2 to be linear (vector) spaces and A ∈ L(V2),
B ∈ L(V1) to be both one-to-one (injective). We will return to the case of
closed operators in Banach spaces later. We also assume that there exists
W < DB < V1 which is a B−invariant subspace of V1. Let U = {ui}i∈I
be an algebraic basis of W . Further, since {ui}i∈I is a basis for W , it
follows that {B(ui)}i∈I is a basis for B(W ). Operator B is injective, so
card({ui}i∈I) = card({B(ui)}i∈I). Therefore, there exists a linear bijection
TW : {B(ui)}i∈I → {ui}i∈I , such that for each i ∈ I there exists unique j ∈ I
so that TWB(uj) = ui.

For every u ∈ U , we define the class of u as

[u] = {(TWB)n(u) : n ∈ Z}.

Now {[ui] : i ∈ I} forms a partition of U . We define a binary operation ·B
on every [u], u ∈ U . Put [U ] := {[ui] : i ∈ I}. For every [u] ∈ [U ], fix one
û ∈ [u]. It follows that

[û] = {(TWB)n(û) : n ∈ Z} = [u],

so û can be treated as the generating element of its equivalence class [u].
Define ·B : [u]× [u] → [u] :

(∀n,m ∈ Z) (TWB)n(û) ·B (TWB)m(û) := (TWB)n+m(û).
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Lemma 4.2.1. [29, Lemma 2.1.] Let u ∈ U .

1. If [u] has a finite number of different elements, say k of them, then
([u], ·B) is isomorphic to (Zk,+k);

2. If [u] has infinitely many different elements, then ([u], ·B) is isomorphic
to (Z,+).

Proof.

1. Let TWB(x) ∈ [u] be the generating element for [u]. Define h(x) := 0.
For every n ∈ N, define h((TWB)n(x)) := n mod k. If [u] has k ∈ N
different elements, then h([u]) = {0, 1, . . . , k−1}, and the isomorphism
([u], ·B) 7→ (Zk,+k) is now obvious.

2. Assume that [u] has infinitely many different elements and let x be
its generating element. Define h(x) := 0, and for every m ∈ Z,
h((TWB)m(x) := m.Now h([u]) = {. . . ,−|m|, . . . ,−1, 0, 1, . . . , |m|, . . .},
for everym ∈ Z, and the isomorphism ([u], ·B) 7→ (Z,+) is now obvious.

Let Z < DA < V2 be an A−invariant subspace of V2 and let V = {vj}j∈J be
an algebraic basis for Z. Let SZ ∈ L(A(Z), Z) be a bijective linear operator,
such that SZ(V) ⊂ (V). For every v ∈ V , define [v] using SZA, in the
analogous way we defined [u], using TWB, when u ∈ U . For every [v] define
·A using SZA in the analogous way we defined ·B using TWB for every [u].

Corollary 4.2.1. [29, Corollary 2.1.] For every v ∈ V , ([v], ·A) is isomorphic
to exactly one of the elements in {(Zk,+k) : k ∈ N} ∪ {(Z,+)}.

Remark. The aforementioned isomorphisms between elements of {([u], ·B),
([v], ·A)} and elements of {(Z,+), (Zk,+k) : k ∈ N} will be denoted as ”∼=”.

Theorem 4.2.1. [29, Theorem 2.1.] (The shifted injective homogeneous
equation) Let V1 and V2 be vector spaces and let B ∈ L(DB, V1), A ∈
L(DA, V2) be one-to-one linear operators, where DB ⊂ V1 and DA ⊂ V2,
and let W ⊂ DB be a B−invariant subspace of V1 and let Z ⊂ DA be an
A− invariant subspace of V2. Let TW and SZ be provided as in the previous
discussion. Then there exists a linear operator X ∈ L(W,Z) which is a weak
solution to the equation

XTWB = SZAX, (4.6)

defined on W .
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Proof. Let U and V be the algebraic bases for W and Z, respectively, on
which TW and SZ are respectively defined.

Step 1. For u ∈ U , we define X(u) as described below.
Assume that ([u], ·B) ∼= (Z,+). If there is some v ∈ V such that ([v], ·A) ∼=
(Z,+), then

X(u) := v.

Further, for every m ∈ Z, we define

X((TWB)m(u)) := (SZA)
m(v).

Notice that X is a correctly defined map on u because TWB and SZA are
injective. Therefore, if u1 = u then

X(u) = X(u1) = v

and
XTWB(u1) = XTWB(u) = SZA(v).

But then for every m ∈ Z we have

X((TWB)m(u)) = (SZA)
m(v) = (SZA)

m(X(u1))

= (SZA)
m−1(SZA)X(u1)

= (SZA)
m−1X(TWB(u1)) = . . . = X((TWB)m(u1)),

so X is correctly defined on the entire class [u].

If there is no v ∈ V such that ([v], ·A) ∼= (Z,+), then X([u]) := 0V2 .

Either way, we verify that SZA(X(p)) = X(TWB(p)), ∀p ∈ [u].
Now assume ([u], ·B) ∼= (Zk,+k), for some k ∈ N. If there exists v ∈ V such
that ([v], ·A) ∼= (Zk,+k), then

X(u′) := v′,

where u′ is the generating element of [u], and v′ is the generating element of
[v]. Further, for every m ∈ {1, . . . , k − 1}, define

X((TWB)m(u′)) := (SZA)
m(v′).

X is a correctly defined map on u′ because TWB and SZA are injective.
Therefore, if u′

1 = u′ then

X(u′) = X(u′
1) = v′
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and
X(TWB(u′

1)) = X(TWB(u′)) = SZA(v
′).

But then for every m = 1, k − 1 we have

X((TWB)m(u′)) = (SZA)
m(v′) =

= (SZA)
m(X(u′

1)) = (SZA)
m−1(SZA)X(u′

1) =

= (SZA)
m−1X(TWB(u′

1)) = . . . = X((TWB)m(u′
1)),

so X is correctly defined on the entire class [u].
If there is no v ∈ V such that ([v], ·A) ∼= (Zk,+k), then X([u]) := 0V2 .

Either way, we verify that SZA(X(p)) = X(TWB(p)), ∀p ∈ [u].

Step 2. For any given u ∈ W, with the unique algebraic representation in U

u =
n∑

k=1

αkuk, uk ∈ U , αk ∈ C, k = 1, n, n ∈ N,

define

X(u) :=
n∑

k=1

αkX(uk).

X is correctly defined for each uk, k = 1, n, and u is uniquely represented via
{u1, . . . , un}, hence X is well-defined in u. Now part 1. of the proof implies
that

SZAX(u) = SZAX(
n∑

k=1

αkuk) =
n∑

k=1

αk(SZAX(uk))

=
n∑

k=1

αk(XTWB(uk)) = XTWB(
n∑

k=1

αkuk) = XTWB(u).

Combining observations from Steps 1. and 2. we conclude that X is a well
defined linear operator from W to Z and is a solution to (4.6). Also we have
that DX = W ⊂ DTWB, R(X) = Z ⊂ DSZA and W is TWB−invariant, so X
is indeed a weak solution.

Remark. The previous theorem provides a solution to the shifted injective
equation (4.6). Notice that the proof only required existence of invariant
subspaces and the operators to be one-to-one. So Theorem 4.2.1 holds in
general linear spaces, for given one-to-one operators and the corresponding
invariant subspaces.
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Remark. The solution X is not uniquely determined in the sense that it
depends on the choice of algebraic bases and it maps one equivalence class
onto another equivalence class, where the former is isomorphic to the lat-
ter. Theoretically, there could be an infinite number of different equivalence
classes, which are all isomorphic to the fixed one. Therefore, there could be
infinitely many different solutions to the equation (4.6).

We now return to our observation in Banach spaces and closed operators.

Theorem 4.2.2. [29, Theorem 2.3.] (The homogeneous equation) Let V1

and V2 be given Banach spaces, B ∈ L(V1) and A ∈ L(V2) closed opera-
tors, such that N (B) and N (A) have topological complements in V1 and V2,
respectively. If (σp(B) ∩ σp(A)) \ {0} ̸= ∅ then the homogeneous equation

AX −XB = 0 (4.7)

has a non-trivial weak solution.

Proof. Since B is a closed operator on V1, then N (B) is a closed subspace
of V1. Since N (B) has a topological complement in V1, V1 can be split into
a direct sum:

V1 = N (B) +. V ′
1 .

In other words, (∀u ∈ DB) (∃!u1 ∈ N (B), u2 ∈ V ′
1 ∩ DB) such that u =

u1 + u2. Put V1(B) := V ′
1 ∩ DB. In that sense, define B1 : V1(B) → V1

as: B1(u2) := B(u). This way, B1 is one-to-one, so 0 /∈ σp(B1). Note that
σp(B) \ {0} ≡ σp(B1).
Assume the same thing is done with A and the Banach space V2: V2 =
N (A)+. V ′

2 , put V2(A) := DA∩V ′
2 and A1 : V2(A) → V2 defined as A1(v2) :=

A(v), whenever v ∈ DA and v = v1 + v2, v1 ∈ N (A) and v2 ∈ V2(A). Now
A1 is one-to-one and 0 /∈ σp(A1). Also note that σp(A) \ {0} = σp(A1). Now
conditions of the theorem yield that σp(A1) ∩ σp(B1) = σ ̸= ∅.
Let {λi}i∈I = σ, for some index set I, where λi = λj ⇒ i = j. Let ui ∈ DB1

and vi ∈ DA1 such that B1ui = λiui and A1vi = λivi, whenever i ∈ I. It
follows that {ui}i∈I and {vi}i∈I are families of linearly independent vectors.
Now put U := {ui}i∈I and V = {vi}i∈I . It is now obvious that W := Lin(U)
is a B1−invariant subspace of V1 and Z := Lin(V) is an A1− invariant
subspace of V2.
For each i ∈ I define bounded linear operators Ti and Si on Lin(ui) and
Lin(vi) respectively as

(∀u ∈ Lin(ui)) Ti(u) := λ−1
i u, and (∀v ∈ Lin(vi)) Si(v) := λ−1

i v.



4.2. THE SINGULAR EQUATION 71

Finally put
TW (ui) := Ti(ui), SZ(vi) := Si(vi).

Since Lin(ui)∩Lin(uj) = {0} whenever i ̸= j, it follows that TW is a correctly
defined operator on

∑
i∈I

Lin(ui) (which is an eigenspace for B1 and therefore

for B). Analogously, SZ is a correctly defined operator on
∑
i∈I

Lin(vi). Now

all conditions of Theorem 4.2.1 are satisfied, so there exists a linear operator
X1 from W to Z such that

X1TWB1 = SZA1X1

holds.

Further, we see that ([ui], ·B1)
∼= ([vi], ·A1)

∼= (Z2,+2) for every i ∈ I. For
u ∈ W , we have:

SZA1X1(u) = SZA1X1(
n∑

k=1

αkuk) =
n∑

k=1

αkSZA1X1(uk)

=
n∑

k=1

αkSZA1(vk) =
n∑

k=1

αkSZ(λkvk) =
n∑

k=1

αkvk =
n∑

k=1

αkX1(uk) =

=
n∑

k=1

αkλkX1(
1

λk

uk) =
n∑

k=1

αkλkX1(TW (uk)) =
n∑

k=1

αkX1TW (λkuk) =

=
n∑

k=1

αkX1TWB1(uk) = X1TWB1(
n∑

k=1

αkuk) = X1TWB1(u).

(4.8)

Since SZ and TW act in the same way on the corresponding spaces, it directly
follows that:

A1X1(u) = A1X1(
n∑

k=1

αkuk) =
n∑

k=1

αkA1X1(uk) =
n∑

k=1

αkA1(vk)

=
n∑

k=1

αkλkvk =
n∑

k=1

αkλkX1(uk) =
n∑

k=1

αkX1(λkuk)

=
n∑

k=1

αkX1(B1(uk)) = X1B1(
n∑

k=1

αkuk) = X1B1(u).

(4.9)

Therefore, X1 ∈ L(W,Z) where DX = W < DB and R(X) = Z < R(A), so
X is a weak solution to the equation:

A1X1 = X1B1.
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Let N ∈ L(N (B),N (A)) be arbitrary. Put

X = N +. X1 =

[
N 0
0 X1

]
, X ∈ L (DX , (N (A) +. Z)) ,DX = N (B) +. W.

We see that X is a weak solution to (4.7) (domains of X and B intersect, as
the images of X and A do. Further, N (B) +. W is a B−invariant subspace
of V1).

Remark. When constructing the injective operators A1 and B1, one en-
counters the problem of losing information about the null-spaces of A and
B. However, this property is not as restrictive as it may seem at the first
sight. In particular, suppose that

{0} = σp(A) ∩ σp(B).

Then N (B) and N (A) are the corresponding eigenspaces of B an A, re-
spectively, which correspond to the shared eigenvalue λ = 0. But then an
arbitrary operator N ∈ L(N (B),N (A)) (provided in the proof of Theorem
4.2.2) is the desired map that maps the 0-eigenspace of B into the corre-
sponding 0-eigenspace of A. In other words, one could simply put

X :=

[
N 0
0 0

]
.

However, this case is somewhat irrelevant because both XB and AX vanish
on N (B). Nevertheless, Theorem 4.2.2 holds even if

σp(A) ∩ σp(B) = {0}.

This assertion agrees with the classification of solutions conducted in the
matrix case, in particular, the eigenproblem (2.5) in Chapter 2.

Remark. Theorem 4.2.2 provides results which concern Banach spaces and
closed operators defined on them (defined on their subsets, to be precise),
whose point spectra intersect. However, the only reason why we required A
and B to be closed operators was to ensure closedness of the null spacesN (A)
and N (B). Note that this could be weakened in the following sense: let V1

and V2 be Banach spaces and let B ∈ L(V1) and A ∈ L(V2) be (arbitrary)
linear operators such that N (B) and N (A) are closed subsets of V1 and V2,
respectively, and have topological complements in the corresponding vector
spaces. If σp(A) ∩ σp(B) ̸= ∅, then the same statements from Theorem 4.2.2
hold.
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Recall that every closed subspace M of a given Hilbert space H has a topo-
logical complement N . Furthermore, N can be provided such that M and N
form an orthogonal sum, i. e. H = M ⊕N .

Corollary 4.2.2. [29, Corollary 2.2] Let H1 and H2 be Hilbert spaces, A ∈
L(H2) and B ∈ L(H1) closed operators. If σp(A) ∩ σp(B) ̸= ∅ then the
homogeneous equation (4.7) has a non-trivial weak solution.

If we restrict the previous analysis to finite dimensional spaces, we obtain
the same results as in Chapter 2:

Corollary 4.2.3. [29, Corollary 2.3.] Let K ∈ {R,C} and let H1 and H2

be vector spaces over the field K, dim(H1) = m, dim(H2) = n and let
A ∈ Mn(K) and B ∈ Mm(K) be square matrices with entries and spectra in
K. If A and B share some eigenvalues, then the matrix equation AX = XB
has a non-trivial solution. Further, that solution (as proved in the Chapter 2)
must be in such a form that it maps the appropriate eigenspaces of B into the
appropriate eigenspaces of A, where the generating eigenvectors correspond
to the shared eigenvalues.

The next example concerns the case where A, B and C are matrices, but it
is solved with Theorem 4.2.2.

Example 4.2.1. [29, Example 2.1.] Let A,B be some linear operators such
that, according to the standard basis {e1, e2, e3} for V1 and {E1, E2} for V2,
appropriate matrices are A = λI2 and B = λI3 for some λ ̸= 0 (the case
where λ = 0 is trivial). We have σ(A) ∩ σ(B) = {λ} and the eigenvectors
corresponding to the eigenvalue λ are precisely {e1, e2, e3} with respect to B
and {E1, E2} with respect to A.

Therefore, U = {e1, e2, e3}, W = Lin(U) = V1 and V = {E1, E2}, Z =
Lin(V) = V2. Now, TW := 1/λ ·π3 and SZ := 1/λ ·π2, where πn denotes some
n× n permutation matrix (recall that there are n! of them), for n ∈ {2, 3}.
Indeed, V = {E1, E2}, A(E1) = λE1, A(E2) = λE2, and SZ is a matrix
which maps either λE1 7→ E1, λE1 7→ E2, or λE1 7→ E2, λE2 7→ E1, so there
are two different choices for the matrix SZ :

S
(1)
Z =

[
1
λ

0
0 1

λ

]
=

1

λ

[
1 0
0 1

]
, S

(2)
Z =

[
0 1

λ
1
λ

0

]
=

1

λ

[
0 1
1 0

]
.
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Similar can be done for U and B, but there are now 6 possibilities for TW :

1

λ

I3,

 1 0 0
0 0 1
0 1 0

 ,

 0 1 0
1 0 0
0 0 1

 ,

 0 1 0
0 0 1
1 0 0

 ,

 0 0 1
1 0 0
0 1 0

 ,

 0 0 1
0 1 0
1 0 0

 .

Therefore, TWB = π3, SZA = π2.

In order to find the appropriate equivalence classes and construct some so-
lutions, we note the following:

π2
132 = π2

213 = π2
321 = π123, π

2
231 = π312, π

3
231 = π123 = π3

312, π
2
312 = π213,

where πijk denotes the permutation
(
1 2 3
i j k

)
, i.e. π(1) = i, π(2) = j, π(3) = k.

The equivalence classes [e1]ijk of the vector e1 when the permutation πijk is
chosen are:

• [e1]123 = {πn
123(e1) : n ∈ Z} = {π123(e1)} = {e1},

• [e1]132 = {π132(e1), π
2
132(e1)} = {π132(e1), π123(e1)} = {e1},

• [e1]213 = {π213(e1), π
2
213(e1)} = {π213(e1), π123(e1)} = {e2, e1},

• [e1]231 = {π231(e1), π
2
231(e1), π

3
231(e1)} = {π231(e1), π312(e1), π123} = {e2, e3, e1},

• [e1]312 = {π312(e1), π
2
312(e1), π

3
312(e1)} = {π312(e1), π231(e1), π123} = {e3, e2, e1},

• [e1]321 = {π321(e1), π
2
321(e1)} = {π321(e1), π123(e1)} = {e3, e1}.

The same should be done for both e2, e3 and E1, E2. All possible combinations
(actually, the partitions of U and V) are:

• {e1}, {e2}, {e3},

• {e1}, {e2, e3}; {e1, e2}, {e3}; {e1, e3}, {e2},

• {e1, e2, e3},

• {E1}, {E2},

• {E1, E2}.

Now we can construct the solution X in each of the cases:
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• [ei] = {ei}, i = 1, 3, [Ej] = {Ej}, j = 1, 2 : Each class is isomorphic to
(Z1,+1) so X(ei) can be any Ej, and there are precisely 8 possibilities:

[E1 E1 E1] =

[
1 1 1
0 0 0

]
,

[E1 E1 E2] =

[
1 1 0
0 0 1

]
,

...

[E2 E2 E2] =

[
0 0 0
1 1 1

]
.

• [ei] = {ei}, i = 1, 3, [E1] = [E2] = {E1, E2} : since ([ei], ·B) ≡ (Z1,+1),
but ([E1], ·A) ≡ (Z2,+2), it follows that X = 0. The same is true when
[e1] = {e1, e2, e3} and [E1] = {E1, E2}.

• [e1] = {e1}, [e2] = [e3] = {e2, e3}, [E1] = {E1}, E2 = {E2} : In this
case X(e1) is either E1 or E2, while X(e2) = X(e3) = 0. Therefore,
solutions in this case are:

[E1 0 0] =

[
1 0 0
0 0 0

]
, [E2 0 0] =

[
0 0 0
1 0 0

]
.

The analogous is true for {e1, e2}, {e3}; and {e1, e3}, {e2}, respectively.

• [e1] = {e1}, [e2] = [e3] = {e2, e3}, [E1] = [E2] = {E1, E2} : In this case
X(e1) = 0 and X(e2) = X(e3) is either E1 or E2, so the solutions are

[0 E1 E1] =

[
0 1 1
0 0 0

]
, [0 E2 E2] =

[
0 0 0
0 1 1

]
.

♣

4.2.2 The inhomogeneous equation

We now return to the inhomogeneous equation (4.1), where A and B are
closed operators on the corresponding Banach spaces V2 and V1, respectively,
and C ∈ L(V1, V2) is an arbitrary linear operator. Our main result on this
topic, Theorem 4.2.3 below, concerns the case where the point spectra of A
and B intersect. This theorem is proved by reducing the equation (4.1) to
the homogeneous equation.
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Lemma 4.2.2. [29, Lemma 2.2.] Let V1 and V2 be Banach spaces, B, Ψ1 ∈
L(V1), A, Ψ2 ∈ L(V2) closed operators and C ∈ L(V1, V2), such that for every
u ∈ DΨ1 ∩R(Ψ1) ∩ DC we have C(u) ∈ DΨ2 and

Ψ2C(u)− CΨ1(u) = C(u). (4.10)

Suppose DΨ2∩DA ̸= ∅ and DΨ1∩DB ̸= ∅. Finally, we require that N (A−Ψ2)
and N (B −Ψ1) have topological complements and

(σp(A−Ψ2) ∩ σp(B −Ψ1)) \ {0} ̸= ∅. (4.11)

Then for every Y ∈ L(DY ,R(Y )), DY = DΨ1 ∩R(Ψ1) ∩DC , R(Y ) ⊂ DΨ2 ∩
DA, which is a weak solution to

Ψ2Y − YΨ1 = 0, (4.12)

the operator X := Y +C is a weak solution to the inhomogeneous Sylvester
equation (4.1) iff it is a weak solution to the homogeneous equation

(A−Ψ2)X −X(B −Ψ1) = 0. (4.13)

Proof. Assume there exists Y such that the equation (4.12) is satisfied. Put
X := Y +C. By applying Theorem 4.2.2, we see that (4.11) yields that there
exists a non-trivial weak solution X to the equation (4.13). Finally, we verify
that

(A−Ψ2)X −X(B −Ψ1) = 0 ⇔
AX −XB = Ψ2X −XΨ1 ⇔

AX −XB = Ψ2Y +Ψ2C − YΨ1 − CΨ1 = C.

Remark. Such Ψ1 and Ψ2 always exist, e.g. Ψ2 = (α + 1)I, Ψ1 = αI for
any α ∈ C.

Before we formulate Theorem 4.2.3, we give some preliminaries.

Let V1 and V2 be Banach spaces, B ∈ L(V1), A ∈ L(V2) closed operators such
that N (B) and N (A) have topological complements (denoted respectively
by V ′

1 and V ′
2) in V1 and V2, respectively. The projector from V2 to V ′

2 will
be denoted as PV ′

2
. Let C ∈ L(V1, V2) be such that DC ∩ DB ̸= ∅ and

C(DC ∩ DB) ⊂ R(A).
We assume that (σp(B) ∩ σp(A)) \ {0} ≠ ∅ and label such intersection as

σ ≡ (σp(B) ∩ σp(A)) \ {0}.
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Theorem 4.2.3. [29, Theorem 2.4.] (The inhomogeneous equation) With
respect to the previous notation, if σ contains two disjoint families of different
non-zero elements

{µj}j∈J ∪ {λi}i∈I ⊂ σ, (4.14)

where {µj}j∈J and {λi}i∈I have the following properties:

1. For every j ∈ J let u′
j ∈ DB ∩ DC ∩ V ′

1 such that Bu′
j = µju

′
j and

C(u′
j) = 0.

2. For every i ∈ I, let ui ∈ DB ∩ DC ∩ V ′
1 such that Bui = λiui and

C(ui) ̸= 0, C(ui) ∈ R(A − λiI) and C(ui) is linearly independent
with vectors from {(A − λkI)

−1PV ′
2
C(uk)}k∈I . We also require that

{C(ui)}i∈I are linearly independent different vectors.

Then there exists a weak solution to the inhomogeneous equation (4.1), de-
fined on

(N (B) ∩ DC) +
.
(
Lin({u′

j}j∈J)
)
+. (Lin({ui}i∈I)) .

Remark. Notice that Lin({u′
j}j∈J) ∩ Lin({ui}i∈I) = {0}, where u′

j and ui

are eigenvectors for B which correspond to different eigenvalues µj and λi of
B. Therefore, the direct sum Lin({u′

j}j∈J) +. Lin({ui}i∈I) exists. We now
proceed to prove the stated theorem.

Proof. Since B and A are closed operators, the corresponding null spaces
are closed subspaces in V1, V2, respectively. The subspaces N (B) and N (A)
have topological complements, so V1 and V2 can be split into direct sums.
Let V1 = N (B) +. V ′

1 and V2 = N (A) +. V ′
2 as stated in the theorem. Put

V1(B) := V ′
1 ∩ DB and V2(A) := V ′

2 ∩ DA. Define one-to-one operators
B1 ∈ L(V1(B), V1) and A1 ∈ L(V2(A), V2) like in the proof of Theorem 4.2.2.
We now have σp(A1) = σp(A) \ {0} and σp(B1) = σp(B) \ {0}.

Let u ∈ N (B) ∩ DC . Since C(u) ∈ R(A) = R(A1) there exists a unique
v ∈ V2(A) such that C(u) = A1v = Av. Put N(u) := v. It follows that

AN(u)−NB(u) = AN(u) = A(v) = C(u), (4.15)

for every u ∈ N (B) ∩ DC .

Now observe V ′
1 , V ′

2 and B1 and A1. We define closed one-to-one opera-

tors Ψ
(0)
1 ∈ L(Lin({u′

j}j∈J), V1) and Ψ
(0)
2 ∈ L(Lin({v′j}j∈J), V2) such that

Ψ
(0)
1 u′

j :=
µj

2
u′
j, Ψ

(0)
2 v′j :=

µj

2
v′j, for every j ∈ J . Then{µj

2

}
j∈J

⊂ σp(Ψ
(0)
1 ) ∩ σp(Ψ

(0)
2 ) ̸= ∅,
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and µi = µj ⇒ i = j. Since N (Ψ
(0)
1 ) = 0V1 and N (Ψ

(0)
2 ) = 0V2 , then N (Ψ

(0)
1 )

and N (Ψ
(0)
2 ) have topological complements in V ′

1 and V ′
2 , respectively. Now

Theorem 4.2.2 implies that there exists a non-trivial weak solution

Y (0) ∈ L(Lin({u′
j}j∈J), Lin({v′j}j∈J)),

such that
Ψ

(0)
2 Y (0) − Y (0)Ψ

(0)
1 = 0 (4.16)

holds. Further, for every j ∈ J we have Y (0)(u′
j) = v′j (see proof of Theorem

4.2.2). Note that

0 /∈
{µj

2

}
j∈J

⊂ σp(B1 −Ψ
(0)
1 ) ∩ σp(A1 −Ψ

(0)
2 ) ̸= ∅,

and {u′
j}j∈J and {v′j}j∈J are the corresponding eigenvectors, respectively.

Due to the assumption 1. of the theorem, C(u′
j) = 0, so (Y (0) +C)(u′

j) = v′j,

for every j ∈ J . Since B1−Ψ
(0)
1 is one-to-one on Lin({u′

j}j∈J) and A1−Ψ
(0)
2

is one-to-one on Lin({v′j}j∈J), we can apply Theorem 4.2.2 and conclude that

Y (0) + C is a weak solution to the injective equation

(A1 −Ψ
(0)
2 )X −X(B1 −Ψ

(0)
1 ) = 0, (4.17)

defined on Lin({u′
j}j∈J). But then for every u′ ∈ Lin({u′

j}j∈J),

0 =(A1 −Ψ
(0)
2 )(Y (0) + C)(u′)− (Y (0) + C)(B1 −Ψ

(0)
1 )(u′)

=A1(Y
(0) + C)(u′)−Ψ

(0)
2 Y (0)(u′)−Ψ

(0)
2 C(u′)

−(Y (0) + C)B1(u
′) + Y (0)Ψ

(0)
1 (u′) + CΨ

(0)
1 (u′)

=A1(Y
(0) + C)(u′)− (Y (0) + C)B1(u

′)

−(Ψ
(0)
2 Y (0) − Y (0)Ψ

(0)
1 )(u′)− (Ψ

(0)
2 C − CΨ

(0)
1 )(u′)

=A1(Y
(0) + C)(u′)− (Y (0) + C)B1(u

′)− C(u′),

(4.18)

where we used (4.16) and

Ψ
(0)
2 C(u′)− CΨ

(0)
1 (u′) = 0 = C(u′), u′ ∈ Lin({u′

j}j∈J).

Put X(0) := C + Y (0).

Condition 2. of the theorem implies the following. For every i ∈ I, define

Ψ1(ui) :=
1

2
B1(ui).
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Then σp(Ψ1) ⊃
{

λi

2

}
i∈I and {ui}i∈I are the corresponding eigenvectors. Also

note that {
λi

2

}
i∈I

⊂ σp(B1 −Ψ1)

and ui are the corresponding eigenvectors. Now define

Ψ2(C(ui)) :=

(
1 +

λi

2

)
C(ui).

Further, since C(ui) ∈ R(A − λiI), there exists unique vi ∈ V ′
2 ∩ DA such

that

vi = (A1 − λiI)
−1(C(ui)), (4.19)

that is,

(A1 − λiI)vi = C(ui). (4.20)

Since {C(ui)}i∈I are linearly independent vectors, it follows that {vi}i∈I are
linearly independent vectors. Define

Ψ2(vi) :=
λi

2
vi + C(ui).

Since {C(ui)}i∈I are linearly independent vectors with respect to {vi}i∈I , we
conclude that Ψ2 is well defined on Lin({C(ui)}i∈I) +. Lin({vi}i∈I). Now

Ψ2(vi − C(ui)) =
λi

2
(vi − C(ui)).

In other words, {λi

2
}i∈I ⊂ σp(Ψ2) and vi−C(ui) are the corresponding eigen-

vectors. Also

(A1 −Ψ2)vi = A1(vi)−
λi

2
vi − C(ui) = A1(vi)−

λi

2
vi − (A1 − λiI)vi =

λi

2
vi,

so {
λi

2

}
i∈I

⊂ σp(A1 −Ψ2)

and vi are the corresponding eigenvectors. Now{
λi

2

}
i∈I

⊂ σp(A1 −Ψ2) ∩ σp(B1 −Ψ1).

Since N (A1 −Ψ2) = 0V2 and N (B1 −Ψ1) = 0V1 , it follows that N (A1 −Ψ2)
and N (B1−Ψ1) have topological complements in V ′

2 and V ′
1 , respectively, so
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(applying Theorem 4.2.2) there exists X(1), which is a weak solution to the
equation (4.13), and it is defined as

X(1)(ui) := vi (4.21)

(see proof of Theorem 4.2.2). Put

Y (ui) := X(1)(ui)− C(ui) = vi − C(ui).

We verify that (4.12) holds:

Ψ2Y (ui)− YΨ1(ui) = Ψ2(vi − C(ui))− Y

(
λi

2
ui

)
=

λi

2
vi + C(ui)−Ψ2(C(ui))−

λi

2
ui +

λi

2
C(ui) =

(1 +
λi

2
)C(ui)−Ψ2(C(ui)) = 0.

(4.22)

Finally, we verify that (4.10) holds:

Ψ2C(ui)−CΨ1(ui)−C(ui) =

(
1 +

λi

2

)
C(ui)−

λi

2
C(ui)−C(ui) = 0. (4.23)

Put X = N+.X(0)+.X(1). Combining the observations from (4.15) to (4.23),
we see that X is a weak solution to (4.1), defined on

(N (B) ∩ DC) +
.
(
Lin({u′

j}j∈J)
)
+. (Lin({ui}i∈I)) .

Remark. Once again, if σp(A) ∩ σp(B) = {0} then then every solution to
the inhomogeneous Sylvester equation is obtained with operator N from the
equation (4.15).

4.2.3 Extensions to Schauder bases

The previous results provide weak solutions to the equation (4.1), defined on
finite linear combinations of the corresponding eigenvectors. One naturally
wonders under which circumstances the can aforementioned solutions be ex-
tended i.e. do the solutions have to be defined on finite linear combinations
of the eigenvectors.
When dealing with the (partial) differential operators, the solutions to the
provided (P)DEs are always represented as the Fourier series of the given
eigenfunctions. Hence we wonder whether the solutions to the Sylvester
operator equation (4.1) can be defined on infinite sums generated by the cor-
responding eigenvectors (see [65]).
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Definition 4.2.3. Let V be a Banach space over the field F . A Schauder
basis is an ordered sequence {bn}n∈N of elements from V such that for every
element v ∈ V there exists a unique sequence {αn}n∈N of scalars in F such
that

v =
∑
n∈N

αnbn,

where the convergence is understood in the norm topology

lim
n→+∞

∥v −
n∑

k=1

αnbn∥ = 0.

From unique representation of v via {bn}n∈N it follows that {bn}n∈N is a family
of linearly independent vectors. There is no exact criterion which yields when
a given Banach space has a Schauder basis. However, the necessary condition
is obtained in the following two well-known theorems (see [37], [43], [59], [86],
[99] and [102]).

Theorem 4.2.4. Let V be Banach space. Then its algebraic basis is either
finite or has the cardinality of at least c (continuum).

Theorem 4.2.5. Let V be Banach space and suppose it has a Schauder
basis. Then V must be separable.

Contrary, if the provided Banach space V is separable, that does not imply
that it has a Schauder basis. A counterexample was provided by P. Enflo
[51] in 1973.
The most important examples of Schauder bases are probably the power se-
quence basis {1, t, t2, . . .} in c0 and ℓp spaces, when 1 ≤ p < ∞ and the
sequence of trigonometric polynomials {1, sin tπ

d
, cos tπ

d
, sin 2tπ

d
, cos 2tπ

d
. . .} in

the L2[0, 2d] space, for some d > 0. In that case, the corresponding scalars αn

are the Fourier coefficients of the given function with respect to the provided
basis. It is a well-known fact that ℓ∞ space does not have a Schauder basis.

Recall arbitrary linear spaces V1 and V2 and one-to-one operatorsB ∈ L(DB, V1),
DB ⊂ V1 and A ∈ L(DA, V2), DA ⊂ V2 defined on them.

Suppose there exists W < DB a B−invariant subspace of V1, which allows a
Schauder basis W = {wn : n ∈ N} (consequently, W must be separable). It
is not difficult to see that there exists a bijective operator T ∈ L(B(W ),W )
such that T (wn) ∈ W , for every n ∈ N, because B is assumed to be one-to-
one. Now for every w ∈ W define

[w] = {(TB)n(w) : n ∈ Z}
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and define a binary operation ·B on [w] as

(∀n,m ∈ Z)(TB)n(w) ·B (TB)m(w) := (TB)n+m(w).

Lemma 4.2.1 yields that ([w], ·B) is isomorphic to exactly one element from
the set {(Z,+)} ∪ {(Zk,+k) : k ∈ N}.

Analogously, assume there exists Z < DA which is an A−invariant subspace
of V2, which allows a Schauder basis Z = {zn : n ∈ N} and define a bijective
operator S ∈ L(A(Z), Z) such that for every n ∈ N it follows that S(zn) ∈ Z.
For every z ∈ Z, define

[z] = {(ZA)n(z) : n ∈ Z}

and define ·A on every class [z] as

(∀n,m ∈ Z)(SA)n(w) ·A (SA)m(w) := (SA)n+m(w).

Lemma 4.2.1 yields that ([z], ·A) is isomorphic to exactly one element from
the set {(Z,+)} ∪ {(Zk,+k) : k ∈ N}.

The following Corollaries are immediate consequences of Theorem 4.2.1, The-
orem 4.2.2 and Theorem 4.2.3, respectively.

Corollary 4.2.4. [29, Corollary 2.5.] (The shifted injective homogeneous
equation) With respect to the previous notation, there exists X ∈ L(W0, Z)
which is a weak solution to the equation

XTB = SAX, (4.24)

defined on

W0 :=

{∑
n∈N

αnwn : wn ∈ W , αn ∈ C, n ∈ N and
∑
n∈N

αnX(wn) converges in Z

}
.

Proof. 1) For w ∈ W , define X(w) as described below.
1.1) If ([w], ·B) ∼= (Z,+), and if there is some z ∈ Z such that ([z], ·A) ∼=
(Z,+), then X(w) := z. Further, for every m ∈ Z, put X((TB)m(w)) :=
(SA)m(z). If there is no z ∈ Z such that ([z], ·A) ∼= (Z,+), then X([w]) :=
{0V2}.

1.2) If ([w], ·B) ∼= (Zk,+k), for some k ∈ N0, then there exists w′ such that
it is the generating element of [w]. If there exists z ∈ Z such that ([z], ·A) ∼=
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(Zk,+k), then there exists z′ ∈ [z] which is the generating element of [z]. Put
X(w′) := z′ and for m = 1, k − 1, put X((TB)m(w′)) := (SA)m(z′). If no
such z ∈ Z exists, then X([w]) := {0V2}.

2) For any given w ∈ W0, with unique Schauder representation in W

w =
∑
n∈N

αnwn, wn ∈ W , αn ∈ C, n ∈ N,

define X(w) :=
∑
n∈N

αnX(wn) (which converges by the choice of W0). Defined

this way, X is a weak solution to the equation (4.24), defined on W0.

Corollary 4.2.5. [29, Corollary 2.6.] (The homogeneous equation) Let V1

and V2 be given Banach spaces, B ∈ L(V1) and A ∈ L(V2) closed operators,
such that N (B) and N (A) have topological complements in V1, V2, respec-
tively, i.e. V1 = N (B) +. V ′

1 and V2 = N (A) +. V ′
2 . If σp(B)∩ σp(A) ̸= ∅ and

the corresponding eigenvectors form Schauder bases for some S1 < DB ∩ V ′
1

and S2 < DA ∩ V ′
2 , respectively, then the homogeneous equation

AX −XB = 0 (4.25)

has a non-trivial weak solution, defined on some subset of S1.

Corollary 4.2.6. [29, Corollary 2.7.] (The inhomogeneous equation) Let V1

and V2 be Banach spaces, B ∈ L(V1), A ∈ L(V2) closed operators such that
N (B) and N (A) have topological complements in V1, V2, respectively. In
that sense, put V1 = N (B) +. V ′

1 and V2 = N (A) +. V ′
2 . Let C ∈ L(V1, V2)

such that DC ∩ DB ̸= {0} and C(DC ∩ DB) ⊂ R(A).
If

{µj}j∈N ∪ {λi}i∈N ⊂ (σp(B) ∩ σp(A)) \ {0} (4.26)

where {µj}j∈N and {λi}i∈N are disjoint families of different elements with
following properties:

1. For every j ∈ N let u′
j ∈ DB ∩ DC ∩ V ′

1 such that Bu′
j = µju

′
j and

C(u′
j) = 0. Assume {u′

j}j∈N to form a Schauder basis for some SJ <
DB ∩ DC ∩ V ′

1 .

2. For every i ∈ N let ui ∈ DB∩DC∩V ′
1 such that Bui = λiui and {ui}i∈N

forms a Schauder basis for some SI < DB ∩ DC ∩ V ′
1 . Assume that

{C(ui)}i∈N are linearly independent different non-zero vectors, which
form a Schauder basis for some SC < R(A) ∩R(A− λiI), and vectors
{PV ′

2
(A − λiI)

−1C(ui)}i∈N to form a Schauder basis for some SV <
DA ∩ V ′

2 , such that SC ∩ SV = {0}.
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3. We require SJ ∩ SI = {0}.

Then there exists a weak solution to the inhomogeneous equation (4.1), de-
fined on

(N (B) ∩ DC) +
. (SJ) +

. (SI) .

4.3 Applications to Sturm-Liouville operators

In this section we will illustrate our results on Sturm-Liouville operators.
Entire theoretical background regarding Sturm-Liouville operators is taken
from [65]. For more on differential and pseudo-differential operators, consult
[81], [82] and rich references therein.

Definition 4.3.1. [65] Let d > 0 and let p ∈ C1[0, d], p(x) ̸= 0, q ∈ C[0, d]
be real-valued functions. Operator L : C2[0, d] → C[0, d], given as

L(φ) = d

d x

(
p(x)

dφ(x)

d x

)
− q(x)φ(x)

is called a Sturm-Liouville operator.

For the given Sturm-Liouville operator L, we formulate the boundary prob-
lem: find the non-trivial solution to the ordinary differential equation

L(φ) + λw(x)φ(x) = 0, 0 < x < d, (4.27)

where λ ∈ C and w ∈ C[0, d], which satisfies boundary conditions
αφ′(0)− βφ(0) = 0,

γφ′(d) + δφ(d) = 0,

α2 + β2 > 0, γ2 + δ2 > 0.

(4.28)

Definition 4.3.2. [65] Complex values λ for which problem (4.27)-(4.28) has
a non-trivial solution are called eigenvalues and the corresponding solutions
are called eigenfunctions (eigenvectors) of Sturm-Liouville operator L.

Theorem 4.3.1. [65] For a provided weight function w ∈ C[0, d], the space

L2,w[0, d] =

{
φ :

∫ d

0

φ2(x)w(x) d x < ∞
}

is the w−weighted Hilbert space, with the scalar product

⟨f, g⟩w =

∫ d

0

f(x)g(x)w(x) d x.
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The following theorem provides sufficient conditions for the existence of so-
lutions to the problem (4.27)-(4.28).

Theorem 4.3.2. [65] (Regular Sturm-Liouville boundary problem) Assume
that in (4.27) functions satisfy the following conditions

p ∈ C1[0, d], p(x) > 0, 0 ≤ x ≤ d;

q ∈ C[0, d], q(x) ≥ 0, 0 ≤ x ≤ d;

w ∈ C[0, d], w(x) > 0, 0 < x < d,

and in (4.28) constants satisfy

α, β, γ, δ ≥ 0, α + β > 0, γ + δ > 0.

Then:

1. Eigenvalues of Sturm-Liouville operator are non-negative (if q(x) ̸= 0
or βδ > 0, then they are all positive), non-repeating and form a strictly
increasing unbounded sequence 0 ≤ λ1 < λ2 < . . ..

2. The corresponding eigenvectors are w−orthogonal and form a complete
system in the Hilbert space L2,w[0, d].

3. For every function f ∈ C2[0, d] which satisfies boundary conditions
(4.27)-(4.28) and

p(x)f ′(x)− q(x)f(x) ≤ C
√
w(x), x ∈ (0, d),

(which is always satisfied whenever w(0) > 0 and w(d) > 0), the series

√
w(x)f(x) =

∞∑
k=1

ak
√
w(x)φk(x),

converges absolutely and uniformly on [0, d], where ak =
⟨f,φk⟩w
∥φk∥2w

are the
Fourier coefficients.

In what follows, we illustrate how the singular Sylvester equation applies to
Sturm-Liouville eigenvalue problems.

Example 4.3.1. [29, Example 3.1.] Assume that w(x) = 1, for every x ∈
[0, d], d > 0, and let L1, L2 be two different Sturm-Liouville operators whose
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point spectra intersect. In this example we will illustrate how to find X such
that the homogeneous equation holds

L2X = XL1. (4.29)

Let L1 be a Sturm-Liouville operator such that its eigenvalues are λk =
6kπ
d
,

and the corresponding eigenfunctions are

uk(x) = d sin(
√

λkx),

for x ∈ [0, d].
Let L2 be a Sturm-Liouville operator such that its eigenvalues are µk =

9kπ
d
,

and the corresponding eigenfunctions are

vk(x) =
1

2
sin(

√
µkx),

when x ∈ [0, d]. For every (k ∈ N) λ3k = µ2k, so we put

X(u3k(x)) := v2k(x). (4.30)

Now let f(x) ∈ C2(0, d) ∩ C1[0, d] be represented as

f(x) =
+∞∑
k=1

α3ku3k(x), (4.31)

where

α3k =

∫ d

0
df(x) sin(

√
λ3kx) d x

∥d sin(
√
λ3kx)∥2

=
⟨f, u3k⟩
∥u3k∥2

(4.32)

are the Fourier coefficients for the function f on [0, d] with respect to func-
tions u3k. It is known that Fourier series converges uniformly and is uniformly
bounded, when dealing with functions from the class C2(0, d)∩C1[0, d], hence
we can resume to prove our identity. We also require that series

+∞∑
k=0

α3kv2k(x) =
+∞∑
k=0

⟨f, u3k⟩
∥u3k∥2

v2k(x) (4.33)

converges uniformly and is unifromly bounded on C2(0, d)∩C1[0, d]. Observe

XL1(f(x)) = XL1

(
+∞∑
k=1

α3ku3k(x)

)
= X

(
+∞∑
k=1

α3kL1(u3k(x))

)

= X

(
+∞∑
k=1

α3kλ3ku3k(x)

)
=

+∞∑
k=1

α3kλ3kX (u3k(x))

=
+∞∑
k=1

α3kµ2kv2k(x).

(4.34)
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On the other hand, we have

L2X(f(x)) = L2X

(
+∞∑
k=1

α3ku3k(x)

)
= L2

(
+∞∑
k=1

α3kX(u3k(x))

)

= L2

(
+∞∑
k=1

α3kv2k(x)

)
=

+∞∑
k=1

α3kL2 (v2k(x))

=
+∞∑
k=1

α3kµ2kv2k(x) = XL1 (f(x)) ,

(4.35)

so the solution (4.30) is a weak solution to the homogeneous equation (4.29),
defined where ever the series (4.33) converges. ♣

In linear algebra, a vector v is said to be the generalized eigenvector for the
given operator A with respect to the eigenvalue λ(A) if (A − λ(A)I)v is an
eigenvector for A with respect to the eigenvalue λ(A). In other words,

(A− λ(A)I)2v = 0.

Let w be positive non-constant weight function, continuous on [0, d], for some
d > 0. We define w−generalized eigenfunction of first and second order for
the given Sturm-Liouville operator.

Definition 4.3.3. [29] Function f is said to be w−generalized eigenfunction
of the first order for Sturm-Liouville operator L with respect to the eigenvalue
λ if

(L+ λw)2f = 0.

Function g is said to be w−generalized eigenfunction of the second order for
Sturm-Liouville operator L with respect to the eigenvalue λ if

(L+ λI)(L+ λw)g = 0.

In the following example we will illustrate how to transform w−weighted
Sturm-Liouville problem (4.27)–(4.28) with the weight function w to the
Sturm-Liouville problem (4.27)–(4.28) where w(x) = 1, x ∈ [0, d].

Example 4.3.2. [29, Example 3.2.] Let L be a Sturm-Liouville operator
such that eigenvalues of the problem

L(φ) + λφ = 0 (4.36)
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are {λk}k∈N and the corresponding eigenfunctions are βk(x), k ∈ N. Let w(x)
be such that w(x) > 0, for every x ∈ [0, d], and the problem

L(φ(x)) + λw(x)φ(x) = 0 (4.37)

has the same eigenvalues {λk}k∈N.

Define an operator
B(φ) := −L(φ).

Then
(B − λI)(φ) = 0 ⇔ L(φ) + λφ = 0,

so σp(B) = {λk}k∈N. Further, put

A(φ) := − 1

w(x)
L(φ).

It follows that

(A− λI)(φ) = 0 ⇔ L(φ) + λw(x)φ(x) = 0,

so σp(A) = {λk}k∈N. Finally, put

C(βk(x)) :=
1

w(x)
βk(x).

It follows that (
1

w(x)
βk(x)

)
k∈N

is a family of linearly independent functions. By solving the inhomogeneous
equation

AX −XB = C (4.38)

over the space of corresponding eigenfunctions,
(
βk(x)

)
k∈N, we will obtain a

transformation that transforms eigenfunctions of (4.36) into w−generalized
eigenfunctions of second order for (4.37).

In order to solve (4.38), we must find gk(x) such that (see proof of Theorem
4.2.3, expressions (4.19), (4.20) and (4.21))

(A− λkI)gk(x) = C(βk(x)) =
1

w(x)
βk(x).

Multiplying by w(x), we obtain the following

−L(gk(x))− λkw(x)gk(x) = βk(x). (4.39)
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In other words,

(L+ λkI)(βk(x)) = (L+ λkI)(L+ λkw(x))(gk(x)) = 0 (4.40)

so the weak solution X to the inhomogeneous Sylvester equation (4.38) maps
eigenfunctions βk(x) to w−generalized eigenfunctions of second order gk(x):

X(βk(x)) := gk(x). (4.41)

Since X is obviously a one-to-one map, defined on the space whose Schauder
basis is

(
βk(x)

)
k∈N, the operatorX

−1 maps the w−generalized eigenfunctions
of second order gk(x) onto the eigenfunctions βk(x):

X−1(gk(x)) := βk(x) k ∈ N. (4.42)

♣

4.4 A special case: self-adjoint operators on

Hilbert spaces

Weak solutions introduced in this chapter are defined on particular eigen-
spaces of B, which correspond to the shared eigenvalues with operator A.
The previous section illustrates how those solutions apply in the associated
eigenproblems from Sturm-Liouville theory. A natural question rises, and
that is when can the weak solutions be extended to the largest domains pos-
sible? Furthermore, when can the inhomogeneous equation (4.1) be solved, if
the spectral intersection of operators A and B occurs in parts of the spectra
which are not the eigenvalues? Luckily, problems where closed operators ap-
pear (and the corresponding operator equations), usually require the spaces
V1 and V2 to be separable Hilbert spaces, and the operators to be self-adjoint
or symmetric operators on those spaces (consult [37], [43], [59], [77], [99] and
[102]).

Example 4.4.1. Let L2(R) be the standard Hilbert space, equipped with
the usual ∥ · ∥2 norm. It is known that the Schwarz space S(R) equipped
with the sup−norm is dense in L2(R) (see [37], [102]). The position operator
P and the momentum operator Q are defined on S(R), and their domains
are therefore dense in L2(R). They are unitarily equivalent, by virtue of the
Fourier transform (see [99]), and are essentially self-adjoint (meaning that
they have extensions in the graph topology, which are self-adjoint operators).
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Furthermore, they both have purely absolutely continuous spectra, which
consist of the entire real line,

σ(P ) = σac(P ) = σ(Q) = σac(Q) = R.

Operators P and Q satisfy the basic equation of quantum mechanics (consult
[70], [99] and [101]):

PQ−QP =
h

2πi
I, (4.43)

where h is the Planck constant1. This example is essential in the sense that
it does not have an analogue in the bounded operator setting, because the
identity can never be represented as a commutator of two bounded operators
(more generally, the unity in a unital Banach algebra can never be represented
as a commutator of two elements from that algebra). ♣

The equation (4.43) can be viewed as a Sylvester equation, where A = B = P
and Q = X (or vice verca) and C = h

2πi
I. However, this implies that

σ(A) ∩ σ(B) = R and the spectral intersection occurs in the absolute con-
tinuous parts of the spectra, and not in the point spectra. Therefore, it
is convenient to analyze the problem of singular Sylvester equations under
these circumstances. For more on operator equations that stem from quan-
tum mechanics, consult [70], [99] and [101].

From this point on, we assume that V1 and V2 are separable Hilbert spaces and
A and B are self-adjoint unbounded operators whose spectra intersect. Recall
that, if S is a self-adjoint operator, it is then a closed and densely defined
operator, and its spectrum σ(S) is purely approximate point spectrum, that
is,

σ(S) = σapp(S) = σp(S) ∪ σc(S), σc(S) = σapp(S) \ σp(S).

We formulate the Spectral mapping theorem for self-adjoint operators (con-
sult books [37], [59] and [102]):

Theorem 4.4.1. (Spectral mapping theorem for self-adjoint operators) For
a self-adjoint operator L, densely defined on a separable Hilbert space V ,
there exists a unique decomposition of identity, (Eλ : λ ∈ R), consisting of
orthogonal projectiors Eλ, such that

1. The representation

L =

∫ +∞

−∞
λ dEλ (4.44)

1h ≈ 6.62607004× 10−34m2kg/s.
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holds, where DL consists of those x ∈ V such that the integral∫ +∞

−∞
λ2 d |Eλx|2 (4.45)

converges.

2. The function λ 7→ Eλ is strongly continuous from above. Furthermore,
points of discontinuity of the function are precisely the eigenvalues for
the operator L. In that case, if λ0 is an eigenvalue of L, then Eλ0−Eλ0−0

is the orthogonal projector from V onto the eigenspace Wλ0 of L, which
corresponds to λ0.

3. The operator L commutes with every Eλ. Furthermore, an operator S
commutes with L if and only if it commutes with every projector Eλ.

An elegant proof involving a geometric way of thinking was provided by
Leinfelder in [64]. Separability of the space V , as well as density of the
domain DL play essential roles in the proof: important consequences follow
immediately, which are applied in this section as well.

Proposition 4.4.1. With respect to the previous Theorem, the space V
allows an orthogonal decomposition

V = ⊕nVn, (4.46)

where Vn is an L−invariant subspace of V , such that Ln := L(DL ∩ Vn) is
a bounded linear self-adjoint operator on Vn with DLn = DL ∩ Vn. In that
case,

L = ⊕nLn. (4.47)

Proposition 4.4.2. Let V be a separable Hilbert space and let

V = ⊕nVn (4.48)

be an orthogonal sum of mutually orthogonal closed spaces Vn. If (Ln)n
is a sequence of self-adjoint bounded linear operators, Ln ∈ B(Vn), then
there exists a unique self-adjoint operator L ∈ L(V ), such that every Vn is
L−invariant, and that L restricted to Vn coincides with Ln. The domain DL

consists of those vectors x ∈ V such that the series

+∞∑
n=1

|Lnxn|2

converges, where xn = PVnx. If sup{∥Ln∥ : n ∈ N} is finite, then L is a
bounded operator.
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We proceed with the problem at hand, and that is to solve the singular
Sylvester equation (4.1), if A and B are self-adjoint operators, defined on
separable Hilbert spaces, whose spectra intersect. Once again, we denote

∅ ̸= σ(A) ∩ σ(B) =: σ.

4.4.1 The case when σ = σp(A) ∩ σp(B)

In this particular subsection, it is assumed that

σ = σp(A) ∩ σp(B),

that is, the only shared points of the spectra are some eigenvalues. For more
elegant notation, denote by Eλ

B = N (B−λI) and Eλ
A = N (A−λI) whenever

λ ∈ σ. Different eigenvalues generate mutually orthogonal eigenvectors, so
the spaces Eλ

B form an orthogonal sum. Put EB :=
∑
λ

Eλ
B. It is a closed sub-

space of V1 and there exists E⊥
B such that V1 = EB ⊕E⊥

B . Take B = BE ⊕B1

with respect to that decomposition and denote C0 = CPE⊥
B
.

Theorem 4.4.2. [24, Theorem 2.1.] (The point spectrum case) For given
separable Hilbert spaces V1 and V2, let A ∈ C(V2) and B ∈ C(V1) be densely
defined self-adjoint operators such that σ(A) ∩ σ(B) = σp(A) ∩ σp(B) = σ.
Further, let C ∈ L(V1, V2) be an arbitrary densely defined linear operator,
such that DB ⊂ DC .

1. If the condition

C (N (B − λI)) ⊂ R(A− λI), (4.49)

holds for every λ ∈ σ, then there exist infinitely many solutions XE to
the equation (4.1), defined on DE{

u ∈ N (B − λI) : λ ∈ σ,
∑
λ∈σ

PN (A−λI)⊥(A− λI)−1Cu converges

}
.

(4.50)
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2. In addition, B1 is a densely defined closed self-adjoint operator as well,
B1 : DB1 → E⊥

B . Assume that DB1 ⊂ DC0 , and that the following
implication holds

0 ∈ σ(A) ∩ σ(B1) ⇒ 0 ∈ σp(A) ∩ σp(B1), and (4.51)

C(N (B1)) ⊂ R(A). (4.52)

Then there exist infinitely many solutions X1 to the eq. (4.1), defined
on ( with respect to inclusion) the largest subspace DX1 ⊂ E⊥

B .

3. The solutions X := XE+X1, obtained in parts 1 and 2 of this theorem,
defined on their largest domains ( with respect to inclusion) DE +DX1 ,
are unique in the quotient class of operators from

L(V1/(EB +N (B1)), V2/(EA +N (A))), (4.53)

defined on the same domain.

Remark. This theorem is proved in a very similar manner Theorem 2.1.1 was
proved. In addition, Statement 3. and expression (4.53) naturally generalize
the characterization of matrix solutions obtained in the eigen-problem (2.5).

Proof. For every λ ∈ σ, let Eλ
B, EB, E

⊥
B , BE, B1 and C0 be provided as in

the previous paragraph.

1. Define EA =
∑
λ

Eλ
A and split DA into orthogonal sum

DA = (DA ∩ EA)⊕
(
E⊥

A ∩ DA

)
.

Decompose A = AE⊕A1 with respect to that sum. Then A1 is injective
on E⊥

A ∩ DA and A1v = Av, for every v ∈ E⊥
A ∩ DA. For every λ ∈ σ

let Nλ ∈ L(Eλ
B, E

λ
A) be arbitrary. For every u ∈ Eλ

B, by assumption

(4.49), there exists a unique d(u) ∈
(
Eλ

A

)⊥ ∩ DA such that

(A− λI)d(u) = Cu. (4.54)

Define
Xλ

E : u 7→ Nλu+ d(u), u ∈ Eλ
B ∩DE. (4.55)

Then Xλ
E : DE ∩Eλ

B → Eλ
A ⊕

(
P
Eλ

A
⊥(A1 − λI)−1CEλ

B

)
defines a linear

map. What is left is to check whether XE :=
∑
λ∈σ

Xλ
E is a solution to

the equation
AXE −XEBE = CPEB

(4.56)
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restricted to EB ∩ DE. However, this is directly verifiable. For any
u ∈ EB ∩DE there exist unique scalars αλ and unique uλ ∈ Eλ

B ∩DE,
λ ∈ σ, such that u =

∑
αλuλ. Then

(AXE −XEB)u = A
∑
λ∈σ

αλX
λ
Euλ −

∑
λ∈σ

λαλX
λ
Euλ =∑

λ∈σ

(αλ(A− λI)) (Nλuλ + d(uλ)) =
∑
λ∈σ

αλCuλ = Cu.

2. We now conduct analysis on E⊥
B . The space EB is B−invariant sub-

space of V1, then for every a ∈ EB ∩DB and every b ∈ E⊥
B ∩DB = DB1

we have (recall that DB is dense in the enitre V1)

0 = ⟨Ba, b⟩ = ⟨a,Bb⟩ = ⟨a,B1b⟩,

so B1 : DB1 → E⊥
B defines a closed, densely defined, self-adjoint opera-

tor in E⊥
B . Since σ ⊆ σ(BE) ⊆ {0} ∪ σ, it follows that

σ(B1) ⊆ {0} ∪ σ(B) \ σ.

Case 1. Assume that σ(B1) ∩ σ(A) = ∅. Closed operators A and B1

allow spectral decompositions with respect to the Spectral Mapping
Theorem: let (Pλ : λ ∈ R) and (Qµ : µ ∈ R) be spectral resolutions
of the corresponding identities such that

A =

∫ +∞

−∞
λ dPλ, B1 =

∫ +∞

−∞
µ dQµ,

where the spaces E⊥
B and V2 are decomposed as

E⊥
B = ⊕iV1i, V2 = ⊕jV2j, (4.57)

and every V1i (V2j) corresponds to (Qµi
−Qµi−0)E

⊥
B (respectively,(

Pλj
− Pλj−0

)
V2). For fixed i ∈ N, let Ci = C (Qµi

−Qµi−0) and let
J(i) be the set of indices j such that

J(i) = {j : R(Ci) ∩ V2j ̸= ∅}2.

Define
V2J(i) = ⊕j∈J(i)V2j.

2J(i) must be non-empty, because (4.57) exausts the entire space V2.
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There exists unique Xi which is a bounded operator in B
(
V1i, V2J(i)

)
,

which is a solution to

A
(
PλJ(i)

− PλJ(i)−0

)
Xi −XiB (Qµi

−Qµi−0) = Ci. (4.58)

Note that Ci is defined wherever Bi is defined, as is bounded on that
set. Then X1 = ⊕iXi is a unique solution to (4.1), defined on its
natural domain DX1 , that is, wherever the sum ⊕iXi converges.

Case 2. Assume that σ(A)∩σ(B1) ̸= ∅. It follows that σ(A)∩σ(B1) =

{0}. Define Â : DA/N (A) → V2 in a natural way, that is, for every v ∈
DA, decompose v = v1+v2, where v1 ∈ N (A) and v2 ∈ D(A)∩N (A)⊥.

Then Â (v2 +N (A)) := Av2 = Av. Similarly, define

Ĉ0 : DC0 → D(A)/N (A), Ĉ0(u) = PN (A)⊥C0u, u ∈ DC0 ,

and

B̂1 : D(B1)/N (B1) → R(B1), B̂1(u+N (B1)) := B1u, u ∈ D(B1).

Then σ(Â) ∩ σ(B̂1) = ∅, and Case 1. of this proof applies, i.e. there

exists a unique X̂ defined on its natural domain DX̂ such that

ÂX̂ − X̂B̂1 = Ĉ0 (4.59)

holds. Similarly to part 1. the condition (4.52) implies the following
analysis. Let N0 ∈ L(N (B1),N (A)) be an arbitrary linear operator,
and take

X0 : N (B1) → N (A) + PN (A)⊥

(
Â
)−1

Ĉ (N (B1))

as in (4.55), where λ = 0, that is, define

X0u := N0u+ PN (A)⊥

(
Â
)−1

Ĉu, u ∈ N (B1). (4.60)

Finally, adding X1 := X̂ + X0 gives (one of the) desired solution(s),
defined on DX1 = DX̂ +DX0 .

3. Adding the operators XE and X1, obtained in parts 1. and 2. gives the
solutions of the form X = XE + X1. Zorn’s lemma proves that there
exist domains DE and DX1 such that DX is the largest set possible,
with respect to inclusion. Now assume there exits another Y that is



96 CHAPTER 4. THE CLOSED OPERATOR CASE

a solution to the said Sylvester equation, defined on the same domain
as X. Decompose Y = YE ⊕ Y1 with respect to EB and E⊥

B . Since
the equation AX1 − X1B = C1 has a unique solution in the class
L(E⊥

B/N (B1), V2/N (A)), it follows that Y1 ∈ X1 + L(N (B1),N (A)).

Further, for every shared eigenvalue λ, the element dλ ∈
(
Eλ

A

)⊥
defined

in (4.54) is uniquely determined. Thus Y λ : Eλ
B → dλ+Eλ

A. This proves
that X − Y = 0 + L(EB +N (B1), EA +N (A)).

Corollary 4.4.1. [24, Corollary 2.1.] (Number of solutions) With respect to
the previous notation, let all assumptions from Theorem 4.4.2 hold. Denote
by Σ and Ω the sets of linear operators such that

Σ =
{
Nσ : Nσ = ⊕λ∈σNλ, Nλ ∈ L(Eλ

B, E
λ
A), λ ∈ σ

}
and

Ω = {N0 ∈ L(N (B1),N (A))}.

Let S be the set of all solutions to (4.1), which are defined on the largest
domains possible. Then |Ω| · |Σ| = |S| .

Proof. Proof follows directly from Theorem 4.4.2, because choices for solu-
tions depend solely on Nλ and N0, whenever λ ∈ σ, as illustrated in (4.55)
and (4.60).

Remark. Due to Corollary 4.4.1, the solution X(Nσ+N0) ∈ S, with Nσ ∈ Σ
and N0 ∈ Ω, can be referred to as a particular solution. However, this im-
plies that the particular solutions depend on the choice of the corresponding
eigenvectors of A and B. Consequently, the solutions are unstable to small
perturbations, because even the slightest changes in operators A and B can
generate drastically different corresponding eigenvectors.

4.4.2 The case when σ = σapp(A) ∩ σapp(B)

We now investigate the general case, where the spectral intersection occurs in
the approximate point spectra of A and B. Let L ∈ {A,B}, and assume that
λ ∈ σapp(L), that is, there exists a sequence (xn) ⊂ DL such that ∥xn∥ = 1
while ∥(L − λI)xn∥ → 0 as n → ∞. The main idea is to construct a set
which resembles an approximate eigenspace with respect to λ, in order to
apply the same method from the previous case.
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The problem of transferring the approximate point spectrum to the set of
eigenvalues was firstly solved by Berberian in [8], which was further applied
to bounded Fredholm operators by Wickstead, Buoni and Harte in [12] and
[44]. To start, assume that L is a bounded normal operator on a Hilbert space
V . Then for fixed µ and λ ∈ σapp(L), there exist two normed sequences (xn)
and (yn), such that ∥(L− λI)xn∥ and ∥(L− µI)yn∥ simultaneously tend to
zero as n approaches infinity. Then for every n:

|(µ− λ)⟨xn, yn⟩| = |⟨λxn − Lxn, yn⟩+ ⟨xn, L
∗yn − µ̄yn⟩|

≤ ∥λxn − Lxn∥+ ∥Lyn − νyn∥,

which tends to zero as n → +∞. This implies that approximate eigenvec-
tors corresponding to different approximate eigenvalues tend to behave in an
orthogonal manner, similarly to the exact eigenvectors corresponding to the
actual different eigenvalues. This motivates the characterization of the ap-
proximate point spectrum of all bounded linear operators L ∈ B(V ), which
goes as the following (see [8]). Denote by ℓ∞(V ) the space of all bounded
sequences with values in V , equipped with the sup−norm. The set of all se-
quences which converge to zero is denoted by c0(V ). It follows that c0 is, with
respect to the relative topology inherited from ℓ∞(V ), a proper closed sub-
space, and defines a quotient space ℓ∞(V )/c0(V ) in a natural way. What is
left is to enclose this space, in a manner that ℓ∞(V )/c0(V ) forms a complete
inner product space, with inner product defined via the generalized limits
(called Banach limits) in ℓ∞(V ) (see [8] for a more detailed construction).
For a sequence (xn)n ∈ ℓ∞(V ), a bounded linear operator L ∈ B(V ) defines
a bounded linear map on ℓ∞(V ) as

L′((xn)n) := (Lxn)n ∈ ℓ∞(V ).

Furthermore, it follows that L′(xn) ∈ c0(V ), whenever (xn) ∈ c0(V ). Hence,
L′

0 : ℓ∞(V )/c0(V ) → ℓ∞(V )/c0(V ) defines a bounded linear operator, such
that L′

0 ((x)n/c0(V )) := (L′(xn)) /c0(V ), for every (xn) ∈ ℓ∞(V ). This im-
plies that ∥L∥ = ∥L′

0∥, and that L′
0 extends continuously to the entire space

ℓ∞(V )/c0(V ), and that extension is denoted again by L′
0.

Theorem 4.4.3. [8, Theorem 1] For every L ∈ B(V ), σapp(L) = σapp(L
′
0) =

σp(L
′
0).

Combining the previous discussion with the spectral mapping theorem for
self-adjoint operators (Theorem 4.4.1), we modify Theorem 4.4.3 and apply
it to our own problem.
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Lemma 4.4.1. [24, Lemma 2.1.] Let V be a Hilbert space and let L be a
densely defined bounded self-adjoint operator on V . Then there exists L′

0

defined in the previous manner. For that L′
0 we have σapp(L) = σp(L

′
0) =

σapp(L
′
0).

Proof. Again, observe the spaces ℓ(V ) and c0(V ). For every (xn)n ∈ ℓ(V )
such that xn ∈ DL, for every n, boundedness of L implies that (Lxn)n ∈
ℓ(V ). This defines a bounded operator L′(xn)n 7→ (Lxn)n, from DL′ to ℓ(V ).
The operator L is densely defined in V then so is L′ in ℓ(V ). Similarly,
boundedness of L implies that L′ : DL′ ∩ c0(V ) → c0(V ), and DL′ is dense
in c0(V ). For simpler notation, denote by D∞

L = DL′ and D0
L = DL′ ∩ c0(V ).

Now define an operator L′
0 : DL′

0
→ ℓ(V )/c0(V ), where DL′

0
= D∞

L /D0
L is

densely defined in ℓ(V )/c0(V ). Now trivially, if λ ∈ σapp(L) \ σp(L), then
there exists a normed sequence (xn)n ⊂ DL, such that ((L− λI)xn)n ∈ D0

L′ ,
but this means that

(L− λI)′0 ((L− λI) xn)n = 0 ∈ ℓ(V )/c0(V ),

thus proving that
λ ∈ σp(L

′
0).

On the other hand, if λ ∈ σapp(L
′
0), then direct computation shows that

λ ∈ σapp(L), thus

σapp(L
′
0) ⊂ σapp(L) ⊂ σp(L

′
0) ⊂ σapp(L

′
0).

Theorem 4.4.4. [24, Theorem 2.3] (The general case) Let A ∈ L(V1) and
B ∈ L(V2) be closed densely defined self-adjoint operators on separable
Hilbert spaces V1 and V2, with spectral resolutions of identities

B =

∫ +∞

−∞
µ dFµ, V1 = ⊕nV1n, Bn : V1n → V1n is a bounded operator

(4.61)
and

A =

∫ +∞

−∞
λ dEλ, V2 = ⊕nV2n, An : V2n → V2n is a bounded operator.

(4.62)
Assume that σapp(B) ∩ σapp(A) =: σ ̸= ∅ and let C ∈ L(V1, V2) be arbitrary
densely defined linear operator, such that DB ⊂ DC . For every n, let opera-
tors (Bn)

′
0 and (An)

′
0 be defined as in the previous paragraph and let (Cn)

′
0

be defined accordingly. If operators (An)
′
0, (Bn)

′
0 and (Cn)

′
0 satisfy conditions

(4.49)–(4.52) from Theorem 4.4.2, then there exist infinitely many solutions
to (4.1), defined on the largest subsets of V1 possible.
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Proof. The first step is to apply spectral decomposition as in (4.61) and
(4.62). Now if σ = σp(A) ∩ σp(B), then Theorem 4.4.2 applies. Otherwise,
apply Lemma 4.4.1 to each Bn and An, respectively. Then the problem is
transferred to the first case, that is, the spectral intersection occurs in the
point spectra. If the conditions (4.49)–(4.52) are satisfied, then Theorem
4.4.2 applies and the proof is complete.
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[35] M. P. Drazin, On a result of J. J. Sylvester, Linear Algebra Appl. 505
(2016) 361–366.
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[55] D. R. Jocić, Dj. Krtinić and M. Lazarević, Cauchy-Schwarz inequali-
ties for inner product type transformers in Q∗ norm ideals of compact
operators, Positivity https://doi.org/10.1007/s11117-019-00710-3
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[79] E. Pap and S. Pilipović, Semigroups of operators on the spaces ExpA′,
J. Math. Anal. Appl., 126 (1987), 501–515.

[80] A. Pietsch, Operator Ideals, North-Holland Publishing Company,
Amsterdam–New York–Oxford 1980.
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[83] V. Q. Phóng, The operator equation AX − XB = C with unbounded
operators A and B and related abstract Cauchy problems, Math. Z. 208
(1991), 567–588.
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Извод, ИЗ: У овој дисертацији се изучава сингуларна 
Силвестерова операторска једначина, односно, 
операторска једначина облика AX-XB=C, под 
претпоставком да је она или нерешива или да има 
бесконачно много решења. Једначина се посматра у 
више разчличитих случаја, најпре у матричном 
случају, затим у случају када су у питању ограничени 
линеарни оператори на Банаховим просторима и 
коначно у случају када су у питању затворени 
линеарни оператори на Банаховим или Хилбертовим 
просторима. У сваком од поменутих сценарија се прво 
изводе довољни услови решивости полазне 
једначине, а онда се под тим претпоставкама прелази 
на њено решавање. Долази се до егзактних решења у 
затвореној форми, те се прелази на њихову 
класификацију и карактеризацију, односно, показује се 
да су изведеним посупцима обухваћена сва могућа 
решења сингуларне Силвестерове једначине. 
Посебна пажња је посвећена апроксимацијама 
решења. Добијени резултати су илустровани на неким 
савременим проблемима из теорије оператора, као 
што су спектрални проблеми ограничених и 
неограничених линеарних оператора, инверзни 
проблеми Штурм-Лиувилове теорије и операторске 
једначине које се јављају у квантној механици. 
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Abstract, AB: 

 

 

This thesis concerns singular Sylvester operator equations, 
that is, equations of the form AX-XB=C, under the premise that 
they are either unsolvable or have infinitely many solutions. 
The equation is studied in different cases, first in the matrix 
case, then in the case when A, B and C are bounded linear 
operators on Banach spaces, and finally in the case when A 
and B are closed linear operators defined on Banach or Hilbert 
spaces.  In each of these cases, solvability conditions are 
derived and then, under those conditions, the initial equation is 
solved. Exact solutions are obtained in their closed forms, and 
their classification is conducted. It is shown that all solutions 
are obtained in the manner illustrated in this thesis. Special 
attention is dedicated to approximation schemes of the 
solutions. Obtained results are illustrated on some 
contemporary problems from operator theory, among which are 
spectral problems of bounded and unbounded linear operators, 
Sturm-Liouville inverse problems and some operator equations 
from quantum mechanics. 
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