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ABSTRACT

This doctoral dissertation mainly explores the intricate domain of subnormal op-
erators, shedding light on their diverse aspects and uncovering some insights within
the domain of multivariable operator theory.

Firstly, the dissertation explores the relationship between subnormality and qua-
sinormality of bounded operators. It investigates conditions under which an oper-
ator’s subnormality and the quasinormality of its square implies quasinormality of
an operator itself. Additionally, it demonstrates that the subnormal n-th roots of
a quasinormal operator must also be quasinormal. The study provides sufficient
conditions under which matricial and spherical quasinormality of operator pairs
are equivalent to the matricial and spherical quasinormality of their n-th powers.
It also addresses the converse of Fuglede Theorem, establishing when subnormal
operators must be normal provided their product is normal.

The dissertation also introduces the concept of the spherical mean transform for
operator pairs, extending the notion of the mean transform from one-dimensional
cases to a multivariable operator setting. It explores various spectral properties of
this transform, including the preservation of the Taylor spectrum, as well as some
analytical properties. The study also establishes conditions under which the trans-
form preserves p-hyponormality of two-variable weighted shifts.

Furthermore, in the context of subnormal operators and subnormal duals, the
dissertation addresses the completion of upper-triangular operator matrices to nor-
mality. It introduces the concept of normal complements and provides characteri-
zations and representation theorems for these pairs. The study delves into the joint
spectral properties of normal complements, highlighting shared properties among
coordinate operators in a pair of normal complements. It also establishes a connec-
tion between the theory of subnormal duals and Aluthge and Duggal transforms.

In addition, the dissertation delves into various classes of operators related to
normal and subnormal operators, introducing novel concepts and addressing the
solvability of specific operator equations along the way. It also examines several
inequalities concerning the g-numerical radius of bounded operators and operator
matrices, extending well-established equalities pertaining to the numerical radius.
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INTRODUCTION

The study of linear operators in functional analysis and operator theory has a
rich history spanning over a century. These operators, often serving as mathematical
models for a myriad of physical phenomena, find applications in diverse fields such
as quantum mechanics, signal processing, and control theory. Among the various
classes of linear operators, the class of normal operators stands out as one of the
most fundamental due to its intrinsic connection with the Spectral Theorem. In
this context, subnormal operators, which naturally generalize the class of normal
operators, hold a significant place. They offer complex challenges and promising
insights into the underlying mathematical structures.

This doctoral dissertation, titled “Subnormal Operators: A Multivariable Opera-
tor Theory Perspective”, delves into the theory of subnormal operators from a mul-
tivariable operator theory standpoint. Subnormal operators, an extension of normal
operators, have fascinated mathematicians for many years. However, their behav-
ior, particularly when studied within the context of multivariable operator theory,
remains an area of ongoing research with significant potential.

This dissertation takes a fresh approach, introducing new methods and view-
points to unravel the complexities of subnormal operators. We aim to shed light
on their intricacies, uncovering connections and insights that may have previously
eluded us. The exploration is structured into seven chapters, each dedicated to spe-
cific aspects of the subject.

We commence our exploration by laying the groundwork in Chapter 1 with a
foundational overview of operator theory of subnormal operators, as well as op-
erator theory in general. The primary objective is to equip our readers with the
essential knowledge required to comprehend the results presented in this disserta-
tion. Throughout this process, we strive to ensure that our presentation remains as
self-contained as possible, minimizing the need for external references.

Chapter 2 is dedicated to exploring the interplay between subnormality and
quasinormality of operators. Specifically, we investigate whether the subnormal-
ity of an operator and the quasinormality of its square implies the quasinormality
of the operator itself. In Section 2.2, we extend our inquiry by establishing that the
subnormal n-th roots of a quasinormal operator are also quasinormal. Additionally,
we establish sufficient conditions under which the matricial and spherical quasinor-
mality of operator pairs is equivalent to the corresponding properties observed in
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INTRODUCTION

their respective n-th powers. In Section 2.3, our focus shifts to the conditions under
which subnormal operators become quasinormal when their product is quasinor-
mal. Furthermore, we provide sufficient conditions that dictate when quasinormal
(or subnormal) operators must be normal if their product is normal. In essence, we
discern the criteria for the converse of the Fuglede Theorem, establishing a connec-
tion with the multivariable operator theory concerning subnormal operators. The
results covering this chapter are published in [163, 168].

Chapter 3 brings forth the concept of the spherical mean transform, which is
introduced for operator pairs. This takes the mean transform of an operator and
extends it to a more complex multivariable operator framework. In Section 3.2, we
delve into an extensive analysis of the spectral properties associated with this trans-
formation. One of the key aspects we explore is its ability to preserve the Taylor
spectrum, one of the key concepts in the multivariable operator theory. The results
ensure that in some particular cases, certain spectral characteristics remain consis-
tent even after undergoing the spherical mean transformation. In addition to this,
we unravel various analytical properties intrinsic to this transformation. Section 3.3
focuses on practical applications of the spherical mean transform. Here, we establish
some sufficient conditions that guarantee the preservation of the p-hyponormality,
a concept particularly relevant when dealing with 2-variable weighted shifts. Note
that the obtained results in this chapter are also in [167].

Chapter 4 is dedicated to addressing the problem of completing upper-triangular
operator matrices to normality. This issue holds fundamental significance within
the theory of subnormal operators, particularly within the framework of subnormal
duals. With the aim of answering the mentioned completion problem, we introduce
the notion of normal complements. In Section 4.1, we delve into the characteri-
zations of normal complements, unveiling their essential properties and providing
representation theorems. Section 4.2 focuses on joint spectral properties of normal
complements, and, as we shall see, many properties are shared among the coordi-
nate operators in a pair of normal complements. Finally, in Section 4.3, we draw a
bridge between the theory of subnormal duals and the Aluthge and Duggal trans-
forms. These transformations have garnered substantial attention over the past few
decades, making this connection a noteworthy contribution to the field. The results
presented here are based on a joint paper [66].

Chapter 5 explores different classes of operators related to normal and subnor-
mal operators. In a recent paper, A. Bachir, M. H. Mortad and N. A. Sayyaf [12]
introduced generalized powers of linear operators. In other words, operators are
not raised to numbers, but to other operators. They gave several properties as re-
gards this notion. Within Section 5.1, we extend their results, delving deeper into
the properties of this novel operator exponentiation. We also introduce the con-
cept of generalized logarithms in Section 5.1.3. More precisely, for two positive and
invertible operators, A and B, where 1 ¢ 0(A), we define the logarithm of B with re-
spect to base A, denoted as log 4, B. Our exploration encompasses a comprehensive
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INTRODUCTION

investigation of its properties, further enriching the understanding of these mathe-
matical constructs. In Section 5.2, we introduce a new class of operators on a com-
plex Hilbert space H referred to as polynomially accretive operators. This concept
extends the existing notions of accretive and n-real power positive operators. Our
exploration into this new operator class reveals several intrinsic properties and gen-
eralizes established results for accretive operators. An intriguing finding emerges
as we establish that every 2-normal and (2k + 1)-real power positive operator, for a
some k € IN, must exhibit n-normality for all n > 2. Additionally, we provide suf-
ficient conditions for the normality of T within the context of this implication. The
concluding section of this chapter, Section 5.3, is devoted to the study of the solv-
ability of a general system of operator equations: A;XB; = C; for i = 1,2. Within
this framework, we present necessary and sufficient conditions for the existence of
solutions, encompassing Hermitian solutions and positive solutions. Furthermore,
we derive the general forms of these solutions, paving the way for the exploration of

x-order operator inequalities. Specifically, we scrutinize the solvability of C % AXB

and present the general form of solutions for C % AX and C % XB. Most of the
results on which this chapter is based are presented in [164, 165, 166].

Finally, in Chapter 6, we consider the g-numerical radius wy(-) of operator matri-
ces defined on a direct sum of Hilbert spaces and investigate the various inequalities
involving these values. We also extend some well known equalities regarding the
numerical radius that occurs when we plug in g = 1. Subsequently, we give explicit
formulas for computing wy(-) for some special cases of operator matrices and also
establish some analytical properties of wj(-) regarded as a function in q. In Section
6.4.2, we consider one-dimensional operators on a Hilbert space H and present a
generalization of the well-known formula for the numerical radius of the rank-1 op-
erator. We also prove the generalized Buzano inequality, as a corollary. The majority
of the results in this chapter have already been disclosed in [75] and [170].

We finish the presentation with concluding remarks, summarizing our results
and giving some final comments in Chapter 7.

Overall, we present a variety of new results, theorems, and illustrative examples
to illuminate the subject. While this work may not claim to be exhaustive due to a
vast theory of normal and subnormal operators, it aspires to provide a substantial
contribution to the understanding of subnormal operators and subnormal tuples.
We hope that the insights gained from this research will inspire further exploration
in this intriguing area of mathematics and also lead to new discoveries.
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CHAPTER 1

PRELIMINARIES

We commence by establishing the fundamental framework of operator theory.
This initial step serves as a solid foundation for our forthcoming investigation into
subnormal operators. Our objective here is to equip our readers with the essential
knowledge required to grasp the findings presented in this dissertation. Throughout
this process, we strive to make this exposition as self-contained as possible, ensuring
that readers can follow along with the presented results.

1.1 OPERATORS ON HILBERT SPACES

In this section, we present classical results from operator theory, as well as the
description of symbols that will be used throughout this dissertation.

We use the standard notation C to denote the complex plane, while R will denote
the real axis. IN will represent the set of all natural numbers, Z will denote integers,
while Z will stand for IN U {0}. We shall also use D in order to signify the open
unit complex disk around zero,ie. D = {z € C: |z]| < 1}.

With H, IC, L, ... we will denote the Hilbert spaces, which are always assumed to
be complex. The inner product and norm on a Hilbert space will be denoted by (:, -)
and ||-||, respectively. By a subspace M of H we always mean a linear subspace,
which is not necessarily closed with respect to the topology generated by the inner
product on H. The closure of a subspace M we denote by M, while the subspace
M is said to be dense if M = H. The orthogonal complement of a subspace M
will be denoted by M+, while M & N will represent the orthogonal sum of two
subspaces M and N.

If H and K are Hilbert spaces, then we denote by B(#, K) the Banach space of
all bounded linear operators from H to K. If H = K, then we simply write B(H)
instead of B(H, H ). The norm of an operator T will be denoted by ||T||. For a given
operator T € B(H,K), we will denote by R(T) the range of T. N (T) will denote
the null space (or kernel) of T. We say that operator T € B(7H, K) is a closed-range
operator (or has the closed range) if R(T) is a closed subspace of K.
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The adjoint of an operator T € B(#, K) will be denoted by T* € B(K,H).
With ¢(T) and r(T) we denote the spectrum and the spectral radius of operator T,
respectively. The numerical range of T is defined as the set

W(T) = {(Tx,x): x € H, ||x|| =1},
while the numerical radius is taken to be

w(T)= sup |w|
weW(T)

We say that operator T € B(H) is normal if TT* = T*T, i.e. if T commutes with
T*. The class of normal operators is very important (if not the most important!) in
the operator theory due to the significance of the Spectral Theorem that holds for the
operators in the mentioned class. Some of the basic examples of normal operators
are unitary, Hermitian (self-adjoint), and positive operators. The mentioned terms
will have the usual meaning: T is unitary if it is normal and invertible; Hermitian if
T = T* and positive if (Tx,x) > 0 for all x € H. The class of normal operators on a
specific Hilbert space H will be denoted by N ().

The set of positive operators represents a convex cone in 8(H), and the partial
order on the set of Hermitian operators induced by this cone is called Lowner order,
and will be denoted by <. Every positive operator T has a unique positive square
root, i.e. there exists a unique positive operator S such that T = S2. We denote S
by T'/2 . Using the continuous functional calculus, we can also define an arbitrary
positive power of T, i.e. for each & > 0, the operator T* makes sense. Since T*T is
positive for every T € B(H, K), the operator (T*T)!/? is well defined and is called
the modulus (or the absolute value) of T, denoted by |T/|.

For any operator T € B(H), by Comm(T) we denote the commutant of T, i.e.

Comm(T) ={Se€B(H): TS =ST}.

It is well known that for a positive operator T € B(?# ), we have that Comm(T) =
Comm(T'/2). Moreover, we also have the following:

Theorem 1.1.1. If n € IN, then the commutants of a positive operator and its n-th root
coincide.

Proof. The proof can be easily deduced from the Spectral Theorem (see, for example,
[156, Theorem 12.23] or [178, Theorem 7.20]). |

Operator T € B(H) is said to be a projection if T?> = T, i.e. if T idempotent. T
is an orthogonal projection if T?> = T = T*, i.e. if T is a Hermitian idempotent. The
projection with the range M and the null space N will be denoted by Py s, while
P will denote the orthogonal projection with the range M.
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IfT:H — K and M C H, the restriction of operator T to M will be denoted by
T [r - The corestriction T of an operator T is defined as a map with domain #,
codomain R(A) and
Ax = Ax, x € H.

A closed subspace M of H is said to be an invariant subspace for T € B(#H) if
Tx € M forall x € M. A closed subspace M is a reducing subspace of T € B(H)
(or reduces T € B(H)) if it is invariant under both T and T*, i.e. T(M) C M
and T*(M) C M. The next simple, but useful observation, will be used in several
proofs.

Lemma 1.1.2. Let A, P € B(#H) such that A is self-adjoint and P is an orthogonal projec-
tion. Then R(P) is invariant for A if and only if A and P commute.

Proof. If R(P) is invariant for A, then, obviously, PAP = AP. By taking adjoints in
the last equality, we have PAP = PA, and so AP = PA.

Conversely, if AP = PA, then PAP = AP, which implies that R(P) is invariant
for A. |

Note that the previous lemma has a more general form in the view of the follow-
ing theorem.

Theorem 1.1.3. [90, p. 62] Let T be an operator on a Hilbert space H and M be a closed
subspace of H. Then the following conditions are mutually equivalent:

(i) M reduces T;
(ii) M reduces T;
(iii) TPy = PT.

Given a closed subspace S, for any T € B(H), the operator matrix decomposi-
tion of T induced by S is given by

T T12]
11 T - ’
(L1 {Tm T

where T11 = PsTPS fS, T12 = PST(I — PS) rsL, T21 = (I - PS)TPS fS and
Ty = (I —Ps)T(I —Ps) [gi. If Tip = 0 and Tp; = 0, we will simply write
T =T © Tno.

For T € B(H) there exists a linear operator T’ : D(T') C H — H such that
R(T) C D(T') and
TT'T =T.

Operator T’ is called the inner inverse of T. In general, note that T’ may not be
bounded, i.e. T' ¢ B(H). Moreover, for T € B(H) there exists an inner inverse

3
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of T, T', such that T' € B(H) if and only if T has closed range [140]. In that case,
operator T is called regular. Additionally, if T’ also satisfies

T'TT =T,

then T is called a reflexive inverse of T. Furthermore, there exists a unique reflexive
inverse X of operator T which satisfies the system of equations

XT = Prey  and - TX = Prigy [R(myor(m)L/

Such an operator is called the Moore-Penrose (generalized) inverse of T and will be
denoted by T*. Equivalently, operator T™ satisfies the following system of equations:

TT'T =T, T'TT ' =T", (TTH* =TT', (T'T)*=T'T,

which are called the Penrose equations. Moore-Penrose inverse represents a major
tool in solving many matrix and operator equations. The modern theory of gener-
alized inverses can be traced back to the work of Bjerhammar in [22] and [23] when
he pointed out that the Moore “reciprocal” [130] is exactly the least square solution
of the equation AXB = C. After that Penrose in [144] and [145] extended Bjerham-
mar’s result proving the following theorem:

Theorem 1.1.4. [144] Let A € C"*", B € CP*7and C € C"*1. Then the matrix equation
AXB=C
is consistent if and only if for some inner inverses A’, B/,
AA'CB'B=_,
in which case the general solution is
X =A'CB'+Y - A’AYBHF,
for arbitrary Y € C"*P,
For more details, also see [61] and [68], and the references therein.

Remark 1.1.5. The operator case when A and B are closed range operators, in its essence,
is the same as a matrix case of the equation AXB = C, and therefore, Penrose’s algebraic
proof can be applied to the operator case, as well. Moreover, with slight modifications, the
following result, due to Arias and Gonzalez [9], can be proved:

Theorem 1.1.6. [9] Let A € B(H,K), B € B(F,G)and C € B(F,K). If R(A), R(B)
or R(C) is closed, then the following conditions are equivalent:

(i) The equation AXB = C is solvable;
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(ii) AA’CB’'B = C for every inner inverses, A’, B/, of A and B, respectively;
(iii) R(C) C R(A) and R(C*) C R(B*).

We also state the celebrated Douglas’ Lemma, we can say freely, an irreplaceable
tool when dealing with operator range inclusions.

Theorem 1.1.7 (Douglas” Lemma [79]). Let A and B be bounded operators on Hilbert
space H. The following statements are equivalent:

(i) R(A) € R(B);
(ii)) AA* < AzBB*for some A > 0;
(iii) there exists a bounded operator C on ‘H such that A = BC.

Moreover, if any of the previous conditions holds, then there exists a unique operator C so
that

1. ||C||?> = inf{u : AA* < uBB*};
2. N(A) = N(C);

3. R(C) C R(BY).

An operator U on a Hilbert space H is said to be a partial isometry operator if
there exists a closed subspace M such that

U] = ]

for any x € M, and Ux = 0 for any x € M, where M is said to be the initial
space of U, and N' = R(U) is said to be the final space of U. The projections onto
the initial space and the final space are said to be the initial projection and the final
projection of U, respectively.

Theorem 1.1.8. [90, p. 53] Let U be a partial isometry operator on Hilbert space H with
the initial space M and final space N'. Then the following hold:

(i) UPp = Uand U U = Pyy;
(ii) N is a closed subspace of H,;

(iii) U* is a partial isometry with the initial space N and the final space M, that is,
U*Py = U* and UU* = Py,

For T € B(H,K), we say that T = UP is the polar decomposition of operator T
if P is positive, U is a partial isometry, and N (T) = N (U) = N(P). In that case,
P=|T|.
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Theorem 1.1.9. [90, p. 59] Let T = U|T)| be the polar decomposition of an operator T on a
Hilbert space H. Then T* = U*|T*| is also the polar decomposition of an operator T*.

Theorem 1.1.10. [90, p. 63] If T = UP is the polar decomposition of an operator T, then
U and P commute with A and A*, where A denotes any operator which commutes with T
and T*.

Also, for T € B(H), we can write
T=Re(T)+ilm(T),
where Re (T) and Im (T) are Hermitian. Such a decomposition is unique, and

* o
:T;T, fm (T) = L= 1"

Re (T) 5

Operators Re (T) and Im (T) are called the real and imaginary part of T, respec-
tively. The decomposition is called Cartesian decomposition of operator T.

Finally, we give several standard results concerning normal and positive opera-
tors.

Theorem 1.1.11. [5] Let S be a closed subspace of H and T € B(H) have the matrix
operator decomposition induced by S and given by (1.1). Then, T is positive if and only if

(i) Ti1 > 0;
(if) Tor = T}y,
(i) R(Ti2) € R(TH{?);
(iv) Top = ((Tlll/z)*le)* (TY2)*Ty, + F, where F > 0.

Theorem 1.1.12 (Fuglede Theorem [88]). Let T and N be bounded operators on a complex
Hilbert space with N being normal. If TN = NT, then TN* = N*T.

Theorem 1.1.13 (Fuglede-Putnam Theorem [149]). Let T € B(H ) and let M and N be
two normal operators. Then

TN = MT < TN* = B'T.

Corollary 1.1.14. [88] If M and N are commuting normal operators, then MN is also
normal.
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Proof. Let M, N in B(H) be normal operators such that MN = NM. By direct
computation, using Theorem 1.1.12,

(MN)(MN)* = MN(NM)* = MNM*N*
— MM*NN* = M*MN*N
— M*N*MN = (NM)*MN
= (MN)*(MN).

Hence, MN is the normal operator. H
For more information on Fuglede-Putnam theory, we refer a reader to [135]

Theorem 1.1.15. [133, Corollary 5.1.36] If A, B € B(H.) are two commuting and positive

operators, then
VAB = {/AVB,
foralln € IN.

Theorem 1.1.16 (Lowner-Heinz inequality [104, 124]). . If A, B € B(H) are positive
operators such that B < A and p € [0,1], then BP < AP.

Remark 1.1.17. In general, the previous theorem does not hold for p > 1 (see, for example,
[134, page 551). However, if A and B commute, and p € IN, then B < A implies BP < AP.
Indeed, since A and B commute, we may write

AP — BV = (A—B)(AP"1 + AP2B + ...+ BF 1),

Since A and B commute and B < A, we have that A — Band AP~1 + AP~2B+ ...+ BP~1
are two commuting positive operators, and so AP — BF is also positive. Thus, B < AP, as
desired.

1.2 GENERALIZATIONS OF NORMAL OPERATORS

In operator theory, there are many generalizations of normal operators. One
of the most important is the class of subnormal operators. Subnormal operators
are bounded linear operators on a Hilbert space defined by naturally weakening
the requirements for normal operators. The concept of subnormal operators was
introduced by Paul R. Halmos [97] at the same time that he defined hyponormal
operators, even larger class of operators. He was led to do so by a study of the prop-
erties of the unilateral shift, probably the most understood non-normal operator. In
this section, we shall examine some basic properties of subnormal operators and
see how the different generalization classes of normal operators are related to each
other.
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1.21 SUBNORMAL OPERATORS
We begin with the definition of the subnormality of an operator.

Definition 1.2.1. An operator T on a Hilbert space H is subnormal if there exists a
Hilbert space K containing ‘H and a normal operator N : K — K such that N(#H) C
H and Nx = Tx for every x € H.

In other words, an operator is subnormal if it has a normal extension, or equiv-
alently, if there exists a Hilbert space £ and a normal operator N € B(H & L) such

v [ () ()

In [97], operators satisfying Definition 1.2.1 are called completely subnormal. The term
subnormal as it is used here was first introduced in [98].

As mentioned earlier, the study of normal operators has been distinctly success-
ful. The main reason may be the Spectral Theorem that holds for such operators.
Also, it is natural to try to understand the structure of as many non-normal oper-
ators as possible. Since the concept of subnormality may be viewed as sufficiently
close to normality, it is reasonable to expect that the theory of subnormal opera-
tors has the potential to follow a similar path. Indeed, many of the questions and
conjectures regarding subnormal operators which are inspired by those concerning
normal operators have been answered. For example, in [27] it was shown that every
subnormal operator has a non-trivial invariant subspace. However, there are some
essential differences between the two mentioned classes, which led to the theory of
subnormal operators following its own path. Namely, the theory of normal oper-
ators heavily relies on measure theory and Spectral Theorem, while the theory of
subnormal operators is based on analytic function theory.

In the literature, there are many characterizations of subnormal operators. See,
for example, [97, 25, 83, 28].

Another elegant characterization of subnormality which signifies its closeness to
the concept of normality in a topological sense is due to Bishop [21].

Theorem 1.2.1. [21] If T € B(H ), then the following statements are equivalent:
(i) T is subnormal;
(ii) T is the SOT-limit of a sequence of normal operators;
(iii) T belongs to the SOT-closure of the set of normal operators.

If T € B(H) is subnormal operator and N € B(K) is normal, then obviously
S = T @ N is also subnormal. Sometimes, it is of interest to explore the “non-normal
part” of S only. More precisely, we have the following:
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Theorem 1.2.2. [45, Proposition 2.1] If T € B(H.), then there is a reducing subspace Ho

for T such that
| Tw 0] . Ho Ho
=[5 o) () ()

where T, is normal and T) is pure operator.

Definition 1.2.2. An operator T € 9B(H) is pure if it has no nontrivial reducing
subspace M such that T| 1 is normal.

Note that T is pure if the subspace #H in Theorem 1.2.2 is {0}. In the sequel,
a reducing space H and its orthogonal complement we will denote by H,(T) and
H,(T), respectively, while T, and T, we call respectively the pure and normal part of
T. Decomposition T = T, @ T, will be simply called the pure-normal decomposition
of T.

The normal extension of a subnormal operator is never unique. Indeed, if N is a
normal extension of T, and M is any normal operator, then M @ N is also a normal
extension of T. Thus, it makes sense to introduce the following definition.

Definition 1.2.3. If T is a subnormal operator acting on H, and N is a normal exten-
sion of T acting on KC O H, we say that N is a minimal normal extension of T if I has
no proper subspace that reduces N and contains H.

The next theorem shows that minimal normal extensions are unique. Conse-
quently, we can legitimately speak of the minimal normal extension of a subnormal
operator T.

Theorem 1.2.3. [45, Corollary 2.7] If T € B(H) is a subnormal operator and Ny and Ny
are minimal normal extensions of T, then Ny and N, are unitarily equivalent.

Let us emphasize that we say that operators A € B(H) and B € B(K) are
unitarily equivalent if there exist a unitary transformation U € B(H,K) (U*U =
Iy, UU* = Ix) such that A = U*BU. Another very useful result connects the con-
cept of the minimal normal extension and the purity of an operator.

Theorem 1.2.4. [45, Proposition 2.10] Let T € B(H ) be subnormal and let

(1.2) N = [g ;] : (;t{i) 7 (’ﬁ)

be a normal extension of T. The following statements are equivalent:
(i) T is pure;

(it) N* is the minimal normal extension of B;
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(iii) The smallest subspace of H that reduces T and contains R(A) is H,;
(iv) There is no nonzero projection P on H such that PT = TP and PA = 0.

Suppose that T € B(# ) is a subnormal operator and let N € B(K) be its minimal
normal extension given by (1.2). If T is a pure subnormal operator then S is unique
up to unitary equivalence and is called the dual of T (see [44]). T is said to be self-
dual if T is unitarily equivalent to its dual S. The dual of subnormal operator was
also studied in [136] and [186]. We have the following characterizations regarding
self-dual subnormal operators, which will be used in Chapter 4.

Theorem 1.2.5. [136] Let T be a pure operator on a Hilbert space H. Then T is a self-dual
subnormal operator if and only if there exists a normal operator A on H such that

[T*,T| = AA* and AT =T"A.

Theorem 1.2.6. [157] Let T € B(H) be a pure operator. Then, T is a self-dual subnormal
operator if and only if there exists an operator A € B(H) such that the operator matrix
[g ,;i} on H @ H is normal.

1.2.2 QUASINORMAL OPERATORS
The class of quasinormal operators was introduced in [26].
Definition 1.2.4. An operator T on a Hilbert space ‘H is quasinormal if it commutes
with T*T, i.e. TT*T = T*T2.
Theorem 1.2.7. [45, Proposition 1.6] If T = U|T)| is the polar decomposition of T, then T

is quasinormal if and only if U and | T| commute.

Obviously, every normal operator is quasinormal, and the class of quasinormal
operators is exactly the subset of B(#) whose elements have commuting polar de-
compositions. Thus, the class of quasinormal operators is interesting on its own.
Moreover, it also has many applications in the theory of subnormal operators as it
forms a "bridge” between normality and subnormality. In other words, we have the
following;:

Theorem 1.2.8. Every quasinormal operator is subnormal.

Proof. Let T € B(H) be a quasinormal operator. It is straightforward to see that
T*T — TT* is positive. Let A := (T*T — TT*)/2, B := T, and consider the operator

e N=[5 Al () - (1.

It is easy to see that N € B(H @ H) is a normal extension of operator T, and so T is
subnormal. |

10
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Theorem 1.2.9. [136] Every pure quasinormal operator is a self-dual subnormal operator.

The following lemma, which is due to Curto et al. [51], gives us the necessary and
sufficient conditions for quasinormality (and normality) of a subnormal operator.

Lemma 1.2.10. [51] Let T € B(H) be a subnormal operator with normal extension

N — T A| (H L H
|0 B\ L L)
Then T is quasinormal if and only if A*T = 0, and normal if and only if A = 0.

Proof. First, we calculate

NN*N — TT*T+ AA*T TT*A+ A(A*A+ BB¥)
N B*A*T B*(A*A + BB*)
and
« | T'TT T*TA + T*AB*
N'NN = {A*TT A*TA + (A*A+BB*)B*} '
Since N is normal, and therefore quasinormal, we have that NN*N = N*NN.

Hence, from the (1,1)-entry we get that
TT*T+ AA*T = T*TT.

It follows that T is quasinormal if and only if AA*T = 0 which is equivalent with
R(T) C N(AA*) = N(A*). The last statement is further equivalent with A*T =0,
so we conclude that T is quasinormal if and only if A*T = 0. u

The following lemma, as we shall see, turned out to be much more useful for
proving several results in this dissertation regarding quasinormal operators. The
lemma first appeared in [30] (cf. [47]). We present it here in a slightly different form
using a proof technique based on Lemma 1.1.2.

Lemma 1.2.11. [45, Lemma 3.1] Let T € B(H) be a subnormal operator. If N is a normal
extension for T, then T is quasinormal if and only if H is invariant for N*N.

Proof. Let N be a normal extension of T on K = H & H=* given by

- 8-~ ()

and let P € B(K) be the orthogonal projection onto . Note that # is invariant for
N*N if and only if PN*N = N*NP (Lemma 1.1.2). A direct computation shows that

N _|T*T O wny | T*T TA*
NNP—[A*T 01 and PNN—{O 0].
Thus, PN*N = N*NP if and only if A*T = 0. The conclusion now follows from
Lemma 1.2.10. [ |

11
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1.2.3 HYPONORMAL OPERATORS

As mentioned earlier, the concept of hyponormality was introduced in [97], while
the term “hyponormal” first appeared in [19].

Definition 1.2.5. An operator T on a Hilbert space H is hyponormal if TT* < T*T.

The class of hyponormal operators is larger than the class of subnormal opera-
tors, as the next theorem shows.

Theorem 1.2.12. Every subnormal operator is hyponormal.

Proof. Let T € B(H) be a subnormal operator. There exists a Hilbert space £ such

that the operator matrix
T Al (H H
velo v (2) ()

isnormal. From the (1,1)-entry of NN* = N*N, after performing matrix multiplica-
tion, we have that TT* + AA* = T*T. It now immediately follows that TT* < T*T.
Thus, T is hyponormal. n

Directly from the definition, we have that an operator A on a Hilbert space H
is hyponormal if and only if | Tx|| > ||T*x||, for all x € #H. Also, using Theorem
1.1.7, it follows that R(T) C R(T*) for any hyponormal operator T € B(H). If T*
is hyponormal, we say that T is cohyponormal. Operators that are either hyponormal
or cohyponormal are called seminormal. The theory of seminormal operators is an
extensive and highly developed area. More information about the subject can be
found in [128], [43] and [182].

Many properties which hold for normal operators hold in analogous form for
hyponormal operators, as the following results show.

Theorem 1.2.13. [45, Proposition 4.4] Let T € B(H.) be a hyponormal operator.

a) If T is invertible, then T~ is hyponormal.

(a)

(b) If A € C, then T — A is hyponormal.

(¢) IfA € 0(T) and x € H such that Tx = Ax, then T*x = Ax.
)

(d) If x and g are eigenvectors corresponding to distinct eigenvalues of T, then x L y.

Theorem 1.2.14. [160] If T is hyponormal, then ||T"|| = ||T||", and consequently, ||T|| =
r(T).

12
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It is important to note that the theory of hyponormal operators (and hence sub-
normal operators) is strictly an infinite dimensional theory. More precisely, the class
of hyponormal operators coincides with the class of normal operators, if the un-
derlying Hilbert space is finite dimensional. Indeed, if H is finite dimensional and
T € B(H) is hyponormal, then T*T — TT* > 0, while the trace of T*T — TT* is
0. Thus, T*T = TT*,i.e. T is normal. The following theorem due to Putnam [152]
shows that we actually have a much stronger result.

Theorem 1.2.15. [152] If T € B(H) is hyponormal, then

(77, )] < - Area(o(T)).

1.2.4 p-HYPONORMAL OPERATORS AND ALUTHGE TRANSFORM

In this section, we briefly mention other generalizations of normal operators and
the relations between them.

Definition 1.2.6. An operator T on a Hilbert space H is said to be p-hyponormal if
(TT*)P < (T*T)P for some p € (0,1].

A p-hyponormal operator T is said to be semi-hyponormal if p = %, and clearly,
T is hyponormal if p = 1. Using Theorem 1.1.16, we note that every hyponormal
operator must be p-hyponormal for all p € (0,1]. More generally, if 0 < g < p <1
and T € B(H) is p-hyponormal, then it is also g-hyponormal. Thus, the class of
p-hyponormal has been defined as an extension of hyponormal operators in [182],
and it has been studied by many authors since then. See, for example, [1, 2, 181].

Combining the previous observations, we have the following chain of inclusions:

normal = quasinormal = subnormal = hyponormal = p-hyponormal.

In a close relationship to p-hyponormal operators are Aluthge transform and Dug-
gal tranform. The Aluthge transform T of an operator T € %B(H) with the polar de-
composition T = U|T| is defined as T = |T|*/2U|T|'/?, while the Duggal transform
T of T is given by T = |T|U. For more details on the Aluthge and Duggal transform,
see, for instance, [1, 7, 39, 86, 110].

Aluthge transform T of an operator T € B(H) turned out to be quite an in-
teresting and useful idea in the study of linear operators. For example, we have
that o(T) = o(T). This follows from the fact that ¢(AB) \ {0} = o(BA) \ {0} for
any A, B € B(H). But maybe an even more remarkable and surprising fact is the
following:

Theorem 1.2.16. [1] Let T = U|T| be p-hyponormal for some 0 < p < 1and U be unitary.
Then

13
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(i) Tis (p+ 1)-hyponormal if0 < p < L.
(ii) T is hyponormal if 3 < p < 1.

Thus, the Aluthge transformation “sends” a p-hyponormal operator to a smaller
class than the p-hyponormal class containing the operator originally. This is one of
the main reasons for the applicability of the Aluthge transform to the various areas
of operator theory.

1.3 SUBNORMAL AND QUASINORMAL TUPLES

Letn € N. If T, € B(H),i = 1,n,then T = (Ty,...,T,) € B(H)" will de-
note an n-tuple of operators acting on H. By T* we mean an operator n-tuple
T = (Ty,...,T;) € B(H)". An operator n-tuple T = (Ty,...,T,) € B(H)" is
said to be a commuting if T;T; = T;T;, for all i,j € {1,...,n}.

Many concepts and ideas from a single variable operator theory have been trans-
ferred to a multivariable operator setting. For example, a classical operator norm
has a multivariable analogue in the forms of joint operator norm and euclidean opera-
tor norm. The joint operator norm of an n-tuple T = (Tj, ..., T,) was introduced in

[42] as
" 1/2
|T|| = sup { (ZHTkaZ) tx €M, (x| = 1},
k=1

while the euclidean operator norm first appears in [143] and it is given by

. 1/2
IT||* = (ZHTkHZ> :
k=1

The concepts of numerical range and numerical radius followed a similar path.
Namely, the joint numerical range of an n-tuple T = (T, ..., Ty) is defined as

W(T) = {((T1x,x),...,(Tyx,x)) : x € H,||x|]| =1},

and the joint numerical radius (also called euclidean operator radius) of T is given by

; 1/2
w(T) sup{(lczl(Tkx,xHZ) cx e, |x] 1}.

The notion of the joint numerical range was first investigated by Halmos [99, Prob-
lem 166], while w(T) was studied in [143]. For more information on these concepts,
we refer a reader to [42, 70, 80, 112, 138, 139, 147, 162].

14



CHAPTER 1. PRELIMINARIES

Unlike the single variable operator theory, the spectrum of an operator tuple has
many definitions. See, for instance, [8], [71] and [171]. In this dissertation, we shall
restrict ourselves to the Taylor invertibility for a pair of operators only. It is defined
in the following way: let T = (T3, T>) be a commuting pair. Consider a Koszul
complex K(T, #H) associated to T on H:

( )

KTH): 0—H-SHon V% o,
T
1

complex K(T, H) is exact. We define the Taylor spectrum or(T) of T as follows:

where T = ( . Then, T is said to be Taylor invertible if its associated Koszul

or(T) = {(Al,)xz) € C?: K((Ty — M, To — Ap), H) is not exact} .

For more information on the Taylor invertibility and Koszul complexes, we refer a
reader to [102, 103, 115, 137, 171, 172].

For S, T € B(H) let [S,T] = ST — TS. Operator [S, T| is called the commutator of
operators S and T. If S = T*, then [T*, T| is called the self-commutator of operator T.
Analogously, if T = (Ty,...,T,) € B(H)" is an n-tuple of operators, we denote by
[T*, T] the self-commutator of T which is defined by

[T%, T = T;, ;] = T; T; - TiT},

foralli,j € {1,...,n}. We say that an n-tuple T = (T3, ..., T,) of operators on H is
(jointly) hyponormal if the operator matrix

[Ty, Th] (T3, Ta] -+ [Ty, T4
[T, Tu] (T3, Ta] -+ [T}, T

is positive on the direct sum of n copies of ‘H (cf. [10, 48, 52]). The n-tuple T is said
to be normal if T is commuting and each T; is normal, and subnormal if there exists
a Hilbert space K containing H and a normal n-tuple N = (Np,...,N,) € B(K)"
such that N;(H) € H and N;x = T;x for every x € H and everyi € {1,...,n}. For
i,j,k€{1,2,...,n}, Tis called matricially quasinormal if each T; commutes with each
TiTy, T is (jointly) quasinormal if each T; commutes with each T;"Tj, and spherically

quasinormal if each T; commutes with Z]”:l T]*T] As shown in [11] and [92], we have

normal = matricially quasinormal = (jointly) quasinormal
= spherically quasinormal = subnormal = (jointly) hyponormal

15
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On the other hand, the results in [55] and [92] show that the inverse implications
do not hold.

For T1, T, € B(H), consider the pair T = (?) as an operator from #H into
2
H @ H, that is,
T H
T= (Tl) cH— D .
2 H
We define (canonical) spherical polar decomposition of T (cf. [54], [55], [114]) as

(T _ (W),  (WP\ _
T () = ()= () =

where P = (T*T)V/2 = | /T'T; + T T, is a positive operator on 4, and
1 2 p p

is a spherical partial isometry from H into H @ H. Then, V*V = V*V; + V'V is the
(orthogonal) projection onto the initial space of the partial isometry V which is

N(T)t = (N (T) NN(T2))" = N(P)F = (N (V1) NN (Va)).

With respect to the polar decomposition, spherically quasinormal pairs can be
characterized as follows:

Theorem 1.3.1. [56] Let T = (V4 P, V,P) be the polar decomposition of T. Then T is
spherically quasinormal if and only if V;P = PV;, i =1,2.

Finally, recall the class of 2-variable weighted shifts. Consider double-indexed
non-negative bounded sequences ay, i € [*(Z2), where k = (k1,k) € Z3 and
let 2(Z3 ) be the Hilbert space of square-summable complex sequences indexed by
7% . We define the 2-variable weighted shift W, g) = (T, Tz) by

The(ky ky) = R (kyka)Clkr+1k2)
and
Tae(ky kp) = Bk ka) €k ko +1)7
where {e(; 1) }7_ is the canonical orthonormal basis in 12(Z%). Forall (ky,kp) € Z2,
it is easy to see that
Ty =TT < Btk bk = Yk t1)Blrk):

For the basic properties of a 2-variable weighted shift W, g), we refer to [49] and
[53].
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CHAPTER 2

SUBNORMAL FACTORS OF
QUASINORMAL OPERATORS

In this chapter, we address the question of whether the subnormality of an op-
erator and the quasinormality of its square are sufficient for the quasinormality of
the operator itself. Moreover, in Section 2.2, it will be shown that the subnormal
n-th roots of a quasinormal operator must be quasinormal, as well. Additionally,
some sufficient conditions are provided under which the matricial and spherical
quasinormality of operator pairs are equivalent to the matricial and spherical quasi-
normality of their n-th powers. In Section 2.3, we deal with the problem of finding
conditions under which subnormal operators must be quasinormal provided their
product is quasinormal. Furthermore, sufficient conditions are given under which
quasinormal (subnormal) operators must be normal provided their product is nor-
mal. In other words, sufficient conditions for the converse of the Fuglede Theorem
have been found, making a connection with the multivariable operator theory of
subnormal operators along the way.

2.1 SQUARE ROOT PROBLEM FOR QUASINORMAL
OPERATORS

In a recent paper [51], R. E. Curto, S. H. Lee, and ]. Yoon, partially motivated by
the results of their previous articles [49] and [50], asked the following question:

Problem 2.1.1. Let T be a subnormal operator, and assume that T? is quasinormal. Does it
follow that T is quasinormal?

With the additional assumption of left invertibility, they showed that a left in-
vertible subnormal operator T whose square T? is quasinormal must be quasinor-
mal (see Theorem 2.1.5 below). It remained an open question whether this is true
in general without any assumption about the left invertibility until the paper [146]
was published. Moreover, the authors proved an even stronger result:

17
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Theorem 2.1.2. [146] Let T € B(#H) be a subnormal operator such that T" is quasinormal
for somen € IN. Then T is quasinormal.

The proof is based on the theory of operator monotone functions and Hansen's
inequality. More precisely, Theorem 1.1.1, Theorem 1.1.16, and the following theo-
rems were crucial for the proof.

Theorem 2.1.3. [83] Let T be a bounded operator on H. Then the following conditions are
equivalent:

(i) T is quasinormal;
(ii) (T*)"T" = (T*T)",n € N;

(iii) there exists a (unique) spectral Borel measure E on R4 such that

(T*)"T" = /]R Y E(dx), neZs.
+

Theorem 2.1.4 (Hansen inequality [101, 174]). Let A € B(H) be a positive operator,
T € B(H) be a contraction and f : [0,00) — R be a continuous operator monotone
function such that f(0) > 0. Then

T*f(A)T < f(T*AT).

Moreover, if f is not an affine function and T is an orthogonal projection such that T # Iy,
then the equality holds if and only if TA = AT and f(0) = 0.

In Section 2.2.1, using an elementary technique, we provide a much simpler
proof of Theorem 2.1.2.

In the literature, similar properties to Problem 2.1.1 for other classes of operators
are known. Namely, hyponormal n-th roots of normal operators are normal (see
[160, Theorem 5]). The author used a technique based on the Spectral Theorem.
Another more elementary proof can be found in [3]. Namely, the authors showed
that for any p-hyponormal operator T € B(#) and any n € IN,

((T")*T"P/* > (T*T)P > (TT*)P > (T"(T")*)P/".
If in addition, T" is normal for some n € IN, then we actually have that
((T")*T"P/" = (T*T)P = (TT*)P = (T"(T")*)"'",

and so T must be normal. Another extension of [160, Theorem 5] can be found in [6].
However, if we replace the normality of an operator with some weaker assumption,
the analogous conclusions may not hold. In turn, if T is hyponormal operator and
T" is subnormal then T doesn’t have to be subnormal (see [161]).

18
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Motivated by these type of problems, in this section we also consider problems
of when matricial (spherical) quasinormality of T(*") := (T}, T3) implies matricial
(spherical) quasinormality of T = (Ty, T).

Let us briefly return to Problem 2.1.1. In order to answer the question asked in
it, the authors in [51] first proved Lemma 1.2.10.

Although it may seem like a practical tool for determining whether some oper-
ator is quasinormal or not, this approach fails to give an answer to Problem 2.1.1
without imposing additional assumptions on T and becomes even more impractical
if we replace the square of an operator with its arbitrary power.

Nevertheless, using the mentioned lemma, the mentioned authors proved the
following result:

Theorem 2.1.5. [51] Let T € B(H) be a subnormal operator and assume that T? is quasi-
normal. If T is bounded below, then T is quasinormal.

Theorem 2.1.5 and Lemma 1.2.10 provided a foundation for proving multivari-
able analogues of these results. Namely, for a subnormal pair T = (T3, T) with the
normal extension N = (Nj, Ny ), where

N [T AL (MY (M
7o By ARt HL)”

the authors proved the following results:

Corollary 2.1.6. [51] Let T be a subnormal and assume that T; is bounded below and T? is
quasinormal, i = 1,2. Then T is spherically quasinormal.

Theorem 2.1.7. [51] Let T be subnormal, with normal extension N. Then T is spherically
quasinormal if and only if ATy + A3 T, = 0.

Theorem 2.1.8. [51] Let T be subnormal, with normal extension N. Then T is (jointly)
quasinormal if and only if A7T; = 0,i,j = 1,2.

Corollary 2.1.9. [51] Let T be a subnormal pair with normal extension N. Then T is
matricially quasinormal if and only ifAl-A]’.‘ Ty =0,i,7,k=1,2.

Here we use the opportunity to state that Theorem 2.1.8 is actually false. Namely,
if A;Tk =0, j,k = 1,2, then obviously, AiA;‘Tk =0,i,j,k = 1,2. If Theorem 2.1.8 is
true, then this implies that every (jointly) quasinormal n-tuple must be matricially
quasinormal. But as mentioned earlier, the results in [55] and [92] show that this
is not the case. The correction and other “unexpected” implications of this mistake
will be presented later in Section 2.2.2.
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2.2 SUBNORMAL n-TH ROOTS OF QUASINORMAL
OPERATORS

In this section, we give an answer to Problem 2.1.1 using an elementary tech-
nique. Among other things, we also show that we can relax a condition in the def-
inition of matricially quasinormal n-tuples and we give a correction for Theorem
2.1.8.

2.2.1 ONE-DIMENSIONAL CASE

Proof of Theorem 2.1.2. Let N € B(K) be a normal extension for T, where K = ‘H &
H+ and let P € B(K) be the orthogonal projection onto H. Then, N" is a normal
extension for T" and since H is invariant for (N")*N" = (N*N)" (Lemma 1.2.11),
it follows that P commutes with (N*N)" (Lemma 1.1.2). Hence, P also commutes
with N*N, by Theorem 1.1.1. Therefore, H is invariant for N*N and by applymg
Lemma 1.2.11 again, we conclude that T is quasinormal.

The following corollary is a generalization of [51, Corollary 2.4].

Corollary 2.2.1. Let T € B(H) be a subnormal operator such that T" is pure quasinormal
for some n € IN. Then T is pure quasinormal.

Proof. Quasinormality follows from Theorem 2.1.2. If T is not pure, then there
is a non-zero reducing subspace M of H such that P{;T [, is normal. Since
P T" [pm= (PT [m)" is also normal, T" is not pure, which is a contradiction.
Therefore, T must be pure. u

2.2.2 MULTIVARIABLE CASE

Now we can shift the focus to the multivariable case. Although we present our
results for commuting pairs of operators, the reader will easily see that the same (or
analogous) statements work well for commuting n-tuples of operators, when n > 2.

Theorem 2.1.2 allows us to remove the left invertibility assumption from Corol-
lary 2.1.6. Moreover, we can prove an even stronger result:

Corollary 2.2.2. Let T = (T, T») be a subnormal pair and assume that T and T} are
quasinormal for some k,1 € IN. Then T is spherically quasinormal.

Proof. Since T;, i = 1,2 are subnormal and T{‘ and Té are quasinormal, Theorem 2.1.2

implies that T;, i = 1,2 are quasinormal. Therefore, T is spherically quasinormal (see
[51, Remark 2.6]). |

The following lemma can be considered as a multivariable analogue of Lemma
1.2.11 (see Remark 2.2.4 below).
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Lemma 2.23. Let T = (Ty,Ty) be a subnormal pair, with a normal extension N =
(N1, Np). Then T is spherically quasinormal if and only if H is invariant for Ny Ny 4+ Ny N».

Proof. Let N;,i = 1,2, be the normal extensions of T; on K = H @ H- given by

oAl (H H
W=lo ) () = (a1

and let P € B(K) be the orthogonal projection onto #. Note that # is invariant for
N{N; + Ny N if and only if P(NfNj + NyNp) = (NyN; + NjN,)P (Lemma 1.1.2).
By direct computation,

* *
(N; Ny + NjNo)P = {Tl L+ TT 0}

AITy + A3T, 0

and

* * * *
P(NIN; + NjN,) = {Tl i+, TiA+T Az} .

0 0

Therefore, P(NfNj + N5N,) = (N;N; + NjN,)P if and only if A}T; + A3T, = 0.
Now it only remains to apply Theorem 2.1.7. u

Remark 2.2.4. If we treat N = (Ny, Ny) as a column vector, we may use the notation
N*N = N;'N;j + N Ny, which gives us the following analogue of Lemma 1.2.11:

Lemma 2.2.5. Let T be a subnormal, with a normal extension N. Then T is spherically
quasinormal if and only if H is invariant for N*N.

As shown in [51, Example 3.6], there exists a spherically quasinormal 2-variable

weighted shift W, 4y such that W((‘f;; is not spherically quasinormal. In other words,

if T = (Ty, T») is a spherically quasinormal pair, then T} = (TJ", T}') may not be
spherically quasinormal.

The following theorem gives a sufficient condition for the equivalence of spheri-
cal quasinormality of T"") = (TI, T}) and spherical quasinormality of T = (Ty, T»).

Theorem 2.2.6. Let T = (Ty, To) be a subnormal pair with the normal extension N =
(N1, Np) such that NyNa = 0. Then T""") = (T}, T}) is spherically quasinormal for some
n € N if and only if T is spherically quasinormal.

Proof. Let N = (N1, N>) € B(K)? be a normal extension for T, where K = H & H*
and let P € B(K) be the orthogonal projection onto 7. Then, N(*") = (N}, NJ)

is a normal extension for T("") = (T{, T}), and using the fact that NyN, = 0 and
Theorem 1.1.12, we have that

(NI N1+ Ny N2)" = (NyN)" 4 (N2 Na)"
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(=:) Assume that T(1) g spherically quasinormal. Then # is invariant for
(I\]?)*I\q1 + (NE)*NEZ = (Nl*Nl)n + (Nz*Nz)n = (NikNl + N;Nz)n (Lemma 2.2.3),
and so P commutes with (NyNj + NyN>)" (Lemma 1.1.2). It now follows that P
also commutes with Ny N; + N;N,, by Theorem 1.1.1. Hence, H is invariant for
Ny Ni + Ny N,. Lemma 2.2.3 now implies that T is spherically quasinormal.

(<=) : The converse can be proved in a similar manner. |

We now give another characterization of matricially quasinormal n-tuples and
correct the mistake in [51]:

Lemma 2.2.7. Let T = (Ty,T,) be a subnormal pair, with a normal extension N =
(N1, N2). Then T is matricially quasinormal if and only if AYT; = 0,i,j = 1,2.

Proof. Let T = (T1, T») be a subnormal, with a normal extension N = (Nj, N;). As
shown in the proof of Theorem 2.1.8 (see [51, Theorem 2.9]),

T T + AiA T = T T, T,

ie. [Ti, T]*Tk] = —AiA])FTk.
If T is matricially quasinormal, then Al-A;.‘ Ty =0foralli,j,k = 1,2, and thus for
i = j, we have AjA7 T = 0. Since N(A]-A}k) = ./\/(A]*) it follows that ATy = 0.
Now, assume that A;-k Ty = O for all j,k = 1,2. Then for all i = 1,2, we have
that AiA;f Tr = 0, which means that [T;, T].* Ty] = 0,1i,j,k = 1,2. By definition, T is
matricially quasinormal. u

As a consequence of the previous result, we observe that we can relax a condition
in the definition of matricial quasinormality:

Corollary 2.2.8. T = (T4, T») is matricially quasinormal if and only if T; commutes with
T*T,i,j=1,2.
1 ]/ 7 4

Here is the correction of Theorem 2.1.8:

Corollary 2.2.9. Let T = (Ty,T,) be a subnormal pair, with a normal extension N =
(N1, N2). Then T is (jointly) quasinormal if and only if A;A7T; = 0,4,j = 1,2.

Proof. It follows from the proof of Lemma 2.2.7, by taking j = k. n

Inspired by Lemma 1.2.11, we give another analogous result in the multivariable
case.

Lemma 2.2.10. Let T = (Ty,T,) be a subnormal pair, with a normal extension N =
(N1, N2). Then T is matricially quasinormal if and only if H is invariant for NYN;, i,j =
1,2.
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Proof. Let N;,i = 1,2 be the normal extensions of T; on K = H @ H* given by

[ oAl (H M
W=lo ) () = (w):

and let P € B(K) be the orthogonal projection onto #. Note that # is invariant for
N N; if and only if PN/ N;P = N; N;P. Since

TT; 0

NP = [Az*Tf 0

} and PN;/N;P = [Ti g 0} .

0 O

if follows that PNZ.*N]-P = Nl.*NjP if and only if AZ*T] =0,7,j=1,2. By Lemma 2.2.7,
this is further equivalent with matricial quasinormality of T. [ |

The following theorem gives sufficient conditions for the equivalence of matricial
quasinormality of T"") = (TI, T}) and matricial quasinormality of T = (T, T):

Theorem 2.2.11. Let T = (T3, Tp) be a subnormal pair with the normal extension N =
(N1, Np), such that Ny Ny > 0. Then T(n) = (T}, T) is matricially quasinormal for
some n € N if and only if T is matricially quasinormal.

Proof. Let N = (N1, N>) € B(K)? be a normal extension for T, where K = H & H*
and let P € B(K) be the orthogonal projection onto H. Then, N"") = (N}, N}') is a

normal extension for T = (T}, T}) and using the fact that Ny and N, commute
and Theorem 1.1.12, we have that

(N Nj)" = (N{')*NJ".

Also, Ny N, > 0 implies NyN; = (N;N2)* = NfN, > 0.

(=:) Assume that T("") is matricially quasinormal and let (i, ) € {1,2} x {1,2}
be arbitrary. Then # is invariant for (Nl.”)*N}1 = (N;N;)" (Lemma 2.2.10), and so
P commutes with (N;/N;)" (Lemma 1.1.2). By assumption, N;N; is positive, and
thus P also commutes with N;'N; (Theorem 1.1.1). Hence, H is invariant for N;'N;.
Lemma 2.2.10 now implies that T is matricially quasinormal.

(<) : The converse can be proved in a similar manner. L

Remark 2.2.12. We observe that Theorem 2.2.11 is a generalization of Theorem 2.1.2. More
precisely, we get Theorem 2.1.2 as a corollary, by taking Ty = T, = T and Ny = Ny in
Theorem 2.2.11.

23



CHAPTER 2. SUBNORMAL FACTORS OF QUASINORMAL OPERATORS

2.3 SUBNORMAL FACTORS OF NORMAL OPERATORS

We focus now on a more general approach to the Problem 2.1.1. More precisely,
we regard the square as a product and move the problem from the one-variable
instance to a multivariable setting. We treat the new (generalized) problem as a con-
verse of Fuglede Theorem, and especially Corollary 1.1.14. The obtained versions,
as we shall see, yield, in particular cases, the previously known results. The crucial
step is the following observation:

We can reformulate Problem 2.1.1 as follows: Let T = (T, T) be a subnormal pair
and assume that T - T is quasinormal. Does it follow that T is quasinormal?

This also gives us the motivation for the following problems:

Problem 2.3.1. Let T = (Ty, T») be a subnormal pair such that T, T, is quasinormal. Find
sufficient conditions for Ty and T, to be quasinormal.

Problem 2.3.2. Let T = (Ty, Tp) be a (jointly) quasinormal pair such that Ty T, is normal.
Find sufficient conditions for Ty and T, to be normal.

Problem 2.3.3. Let T = (Ty,Tp) be a subnormal pair such that Ty T, is normal. Find
sufficient conditions for Ty and T, to be normal.

As we see, the Problem 2.3.3 can be treated as a converse of Corollary 1.1.14.

2.3.1 QUASINORMAL FACTORS OF NORMAL OPERATORS

The starting point in our discussion will be the following lemma:

Lemma 2.34. Let T = (Ty,T,) be a subnormal pair with the normal extension N =
(N1, Np) such that T, is quasinormal and Ty T, is normal. If Ty is left invertible, then T, is
normal.

Proof. Let

| A T Az
oo 4w g

be the normal extensions for T; and T, respectively, defined on K = H @ H=*. Since
N1N; = NNy, by Corollary 1.1.14, N1 N; is normal. Thus,

NN, = {Tng T1A2-|—AlB;:|

0 (ByBy)*

is a normal extension for T1T,. Operator T;T; is normal, so by Lemma 1.2.10, we
have that T{A; + A1B; = 0, i.e. TiAy = —A1B;. Since Tj is left invertible, there
exists C; € B(H) such that Ay = —CyA1Bj;. From here, N'(B;) C N (A;), and so
Az|n(sg) = 0.
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From N; N, = N, Nj it follows that A5T, = B AJ. Since T is quasinormal, using
Lemma 1.2.10 again, we have that AJT, = 0,i.e. A;B; = 0. Thus, A2|R(Bz) =0, and

by continuity, A2|W = 0. Since £ = N(B}) ® R(By), it follows that A, = 0. By
Lemma 1.2.10, we obtain that T, is normal. |

Lemma 2.3.5. Let T = (Ty,T,) be a subnormal pair with the normal extension N =
(N1, Np) such that T, is quasinormal and Ty T, is normal. If R(T;) = R(T1) € R(T5)
and N'(Ty) = N (T), then T, is normal.

Proof. Since R(T1) = R(T;) € R(T;) and N (T;) = N (T,) we have that the opera-
tors T; and T, have representations

T 0 T 0
n:[ol 0}, Tzz[oz O},

respectively, with respect to H = N (T2)* & N (T») decomposition. It follows that

T 0 Al [N(To)* N(T2)*
0 0 A%] : (/\/(Tz)) — (N(Tz))
0 0 B} HL HE

Ny =

is a normal extension for T11 and

T, 0 Ayl (N(D)* N(Tp)*+
0 0 A%] : (N(B)) = (N(Tz))
0 0 B; HE H*-

Ny =

is a normal extension for T;. Since NN, = N,Nj, operator pair T! = (T}, T;) is
subnormal. From quasinormality of T, we have that T; is quasinormal, and since
T1 T, is normal, it follows that Tl1 T21 is also normal.

Obviously, R(T}) = R(Ti1), and so R(T}) is closed. Now let x € N (T}) C
N(T;)*. Then Pyr(r,)2 Tix = 0. From here and the fact that R(T1) C N(Tp)*+, we
have that Tyx = 0, i.e. x € N(T;) = N(T2). It must be x = 0, and so N (T}) = {0}.
Therefore, Tl1 is left invertible.

If we apply Lemma 2.3.4 to the operator pair T! = (T}, T1) € B(N (Tz)*)?, we
conclude that T; is normal. Now it directly follows that T; is also normal. u

Corollary 2.3.6. Let T = (T3, T») be a (jointly) quasinormal pair such that Ty T, is normal.

IFR(Ty) = R(Th) = R(Tp) and N (Ty) = N (Ty), then T is normal.
Proof. Since Ty and T, are hyponormal, we have R(T;) € R(T;), i = 1,2. Thus, if

R(T1) = R(Ty) = R(Ty), then R(T1) = R(T1) € R(T}) and R(Tz) = R(T2) C

R(T{). The conclusion now follows directly from Lemma 2.3.5. |
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Combining the previously obtained results, we arrive at the following theorem:

Theorem 2.3.7. Let T = (Ty, T») be a (jointly) quasinormal pair such that Ty T, is normal.
Then T is normal if one of the following conditions holds:

(i) Ty or Ty is right invertible;

(it) Ty and T, are left invertible;

(iii) R(T;) = R(T;) C R(T]?k)fori # j,and N'(Ty) = N(Tp);

(iZ)) R(Tl) = R(Tz) = R(Tz) and N(Tl) = N(Tz).

Proof. (i) Without loss of generality, assume that T is right invertible. Then T is left
invertible and V' (T;) C N(Ty) = {0}, as Tj is hyponormal. Thus T; is invertible.
From the quasinormality of Tj, it now follows that T; is normal. Operator T, is
normal by Lemma 2.3.4. Thus, T is normal.

The rest of the proof follows directly from Lemma 2.3.4, Lemma 2.3.5 and Corol-
lary 2.3.6. u

Remark 2.3.8. In Corollary 2.3.6 and Theorem 2.3.7 it is enough to assume that Ty and
T, are quasinormal instead of (joint) quasinormality of T = (T, T»). We will show in
the sequel that we can actually remove the quasinormality condition on one (or both) of the
coordinate operators.

Remark 2.3.9. Although condition (iv) of Theorem 2.3.7 actually implies condition (iii) of
the same theorem (as shown in the proof of Corollary 2.3.6), we listed it due to its elegant
form.

2.3.2 SUBNORMAL FACTORS OF QUASINORMAL OPERATORS AND
CONVERSE OF FUGLEDE THEOREM

The previous section concludes our consideration of Problem 2.3.2. We shift our
focus now to the “implied quasinormality problem” and the converse of Fuglede
Theorem, i.e. we deal with Problem 2.3.1 and Problem 2.3.3.

Lemma 2.3.10. Let T = (Ty,T,) be a subnormal pair with the normal extension N =
(N1, Np) such that Ty T is quasinormal. Then T is quasinormal if one of the following
conditions holds:

(i) Comm(|N1N>|) € Comm(|Ny|);
(ii) Ty is quasinormal and right invertible;

(iii) Ty is quasinormal and Ny is injective.
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Proof. (i) Let N = (N;,N;) € B(K)? be the normal extension for T = (Ty, T»)
where K = H @ H*, and let P € B(K) be the orthogonal projection onto H. Since
NiN; = N;Nj, by Corollary 1.1.14, N1N; is a normal extension for T1T,. Also,
T, T, is quasinormal, and so we have that # is invariant for (N1N,)*(N1N,). By
Lemma 1.2.11, P commutes with (N7N>)*(N1N,) = |N;N;|2. Using Theorem 1.1.1,
we have that P commutes with Ny N,, and so H is invariant for Ny N;. Therefore, T,
is quasinormal, by Lemma 1.2.11.

(ii) As in the proof of Theorem 2.3.7, we have that T is invertible normal opera-
tor. Using the fact that T; T, is quasinormal and T; and T, commute, Theorem 1.1.12
implies that

NTTTLTT = TN L.

Multiplying from the left-hand side by (T; T; T;) !, it immediately follows that T is
quasinormal.

(iii) As shown in part (i), we have that P commutes with (N1Nz)*(N1Np) =
NiN1N;N,, i.e. PN{NiN;N, = NyN;N;N,P. By assumption, T; is quasinormal,
and so P commutes with N;'N; (Lemma 1.2.11). Hence, Ny N1 PN; N, = N'NiN;y N, P.
Since N'(NfN1) = N (Ny) = {0}, it follows that PNJN, = N;N,P. The quasinor-
mality of T, is now guaranteed by Lemma 1.2.11. u

Theorem 2.1.2 now follows as a simple corollary:

Proofof 2.1.2. Let N be a normal extension for T and let T; = T""! and T, = T.
Then T = (T3, T) is a subnormal pair with the normal extension N = (N1, Np) =
(N"~1,N). Note that (N;N)*(N;N;) = (N*N)" and so the first condition of Lemma
2.3.10 is satisfied, by Theorem 1.1.1. Thus, T, = T is quasinormal. |

Using Lemma 2.3.10 and the same technique as in the proof of Lemma 2.3.5, we
can prove the next lemma:

Lemma 2.3.11. Let T = (Ty,T,) be a subnormal pair with the normal extension N =
(N1, Np) such that Ty and T, T, are quasinormal. If R(Th) = R(T5) and N(T) C
N (Ty), then T, is quasinormal.

Proof. Since R(T1) = R(Ty) and N (T») C N (T1) we have that operators Ty and T,

have representations
[t o [Ty 0
Tl_{o 0]' Tz_{o 0]’

respectively, with respect to H = N (T2)* @ N (T,) decomposition. It follows that

T} 0 A N(Tp)* N(Tp)*
Ni= |0 0 A3 : | N(T) | = | NM(T2)
0 0 B} HL HE
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is a normal extension for Tl1 and

T, 0 A N(Tp)* N(Tp)*
No= [0 0 A3|:| N(T2) | = | N(T2)
0 0 B; HL HE

is a normal extension for T;. Since NN, = N,Nj, operator pair T! = (T}, T;) is
subnormal. From quasinormality of T; we have that T} is quasinormal, and since
Ty T, is quasinormal, it follows that T{ T} is quasinormal.

Obviously, R(T}) = R(T1) = R(T;) = N(Tz)*, and so T; is onto. In other
words, T} is right invertible.

We conclude that operator pair T! = (T}, T}) € B (N (T»)*)? satisfies condition
(ii) of Lemma 2.3.10, and so T} is quasinormal. Now it directly follows that T, is
also quasinormal. u

In order to prove our next result, similar in spirit to Lemma 2.3.10, but also of
independent interest, we need the following theorem:

Theorem 2.3.12. [82] Let A and B be operators with c(A) No(B) = @. Then every
operator that commutes with A + B and with AB also commutes with A and B.

Theorem 2.3.13. Let T = (Ty, To) be a spherically quasinormal pair with a normal exten-
sion N = (N, Np) such that o(|N1|) No(|N2|) = @. If T1 T, is quasinormal, then T is
(jointly) quasinormal.

Proof. Let N;, i = 1,2, be the normal extensions of T; on K = H @ H' given by

N [T AL (HY (R
T lo Bf| T\ H* H-)'

and let P € B(K) be the orthogonal projection onto H. As in the proof of Lemma
2.3.10, we can show that quasinormality of T;T, implies that P commutes with
N{N;N;N,. Since T is spherically quasinormal, by Lemma 2.2.3, we have that H
is invariant for Ny Ny 4+ N3 N,. Therefore, P commutes with N;N; + Ny N, as well.

By assumption, o(|N1|) N o (|Nz|) = @, and so by the Spectral Mapping Theo-
rem, 0 (N{N1) No(N5N,) = @. We conclude that P commutes with N;'N; and NJ N,
(Theorem 2.3.12). Hence, H is invariant for NfN; and N;N,. By Lemma 1.2.11, Ty
and T, are quasinormal. Since T; commutes with T{'T; and T{T; + T5 T, it also
commutes with Ty T,. Similarly, T, commutes with T} T;. Therefore, T is (jointly)
quasinormal. |

Finally, we arrive at the main result of this section:

Theorem 2.3.14 (Converse of Fuglede Theorem). Let T = (Ty, T») be a subnormal pair
with the normal extension N = (N1, Np) such that Ty T, is normal. Then T is normal if one
of the following conditions holds:
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(i) Ty or Ty is a right invertible quasinormal operator;

(ii) Ty is quasinormal and Ny and T, are left invertible, or
T is quasinormal and Ty and N are left invertible;

(iii) Ty or Ty is quasinormal, R(T;) = R(T;) for i # j, and N(Th) = N(Tp).

(iv) Comm(|N1Nz|) € Comm(|Np|) N Comm(|Nz|) and any condition (i) — (iv) of
Theorem 2.3.7 holds;

(v) T is spherically quasinormal, c(|N1|) N o(|N2|) = @ and any condition (i) — (iv)
of Theorem 2.3.7 holds.

Proof. (i) Without loss of generality, assume that T is right invertible quasinormal
operator. By Lemma 2.3.10, it follows that T, is quasinormal. Thus, condition (i) of
Theorem 2.3.7 is satisfied, and so T is normal.

(ii) Without loss of generality, assume that T; is quasinormal and N; and T, are
left invertible. By Lemma 2.3.10, it follows that T, is quasinormal. Also, the left
invertibility of N; implies the left invertibility of T;. This means that condition (i7)
of Theorem 2.3.7 holds. Therefore, T must be normal.

(iii) Again, we may assume that T; is quasinormal. By Lemma 2.3.11, we have
that T; is quasinormal. The condition (iii) of Theorem 2.3.7 is obviously satisfied in
this case, and hence, T is normal.

(iv) Condition

Comm(|N;N;|) € Comm(|Ny|) N Comm(|N>|)

implies that both T; and T; are quasinormal. Any condition of Theorem 2.3.7 is now
sufficient for the normality of T.

(v) Conditions T is spherically quasinormal and o (|Ny|) N (|Nz|) = @ implies
that T is (jointly) quasinormal. As in the previous case, any condition of Theorem
2.3.7 now implies that T is normal. |
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CHAPTER 3

SPHERICAL MEAN TRANSFORM OF
OPERATOR PAIRS

This chapter introduces the concept of the spherical mean transform for com-
muting operator pairs. This extension allows us to broaden the definition of the
mean transform, which was originally defined in one-dimensional settings, to the
domain of multivariable operator theory. Our primary objective is to explore var-
ious spectral properties of this transformation, including its ability to preserve the
Taylor spectrum and some analytical characteristics, as well. Furthermore, we estab-
lish specific conditions under which the transform maintains the property of being
”p-hyponormal” for two-variable weighted shifts.

3.1 MOTIVATION AND PRELIMINARIES

Let T = U|T| be the polar decomposition of an operator T € B(H). In Section
1.2.4, we gave the definitions of the Aluthge and Duggal transforms of the operator
T. Recently, the authors in [119] introduced yet another transform of an operator.
The mean transform of operator T, denoted by M(T), is

M(T) = 2(UIT] + |TIU) = (T + 7).

In recent years, besides Aluthge and Duggal transforms, the mean transform has
also attracted considerable attention (see, for example, [14, 31, 32, 33, 109, 142, 185,
187]). In the view of the practical use, one of the major advantages of the mean
transform is the following: it may be really hard to find the Aluthge transform of
the given operator because it involves finding the square root of a positive operator,
while the mean transform involves the sums of two operators, and so it is easier to
get the mean transforms if we know the polar decompositions of the operators.
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Now let T = (V4 P, V,P) be the (canonical) spherical polar decomposition of an
operator pair T (see Section 1.3). In an analogous way to the one-dimensional case,
we obtain the spherical Aluthge tmnsform TasT = (\/_ PViV/P,\/PVo/P P) and the
spherical Duggal transform TasT = (PVy, PV,) (cf. [16, 54, 55, 84, 114]). Naturally,
we extend the notion of the mean transform to a multivariable setting, as well.

Definition 3.1.1. Let T = (T, T2) = (V4 P, V,P) be the canonical spherical polar
decomposition of T. The spherical mean transform of T is defined as

M(T) = (M (T), Ma(T)) = %(vlp + PV, VaP + PVy).

The notion can be easily generalized to any n-tuple of operators.

Remark 3.1.1. Observe that M (T) and My(T) in the previous definition are not the
mean transforms of Ty and T, respectively, as T; = V;P, i = 1,2, are not the standard polar
decompositions of bounded operators on H.

In a recent paper (see [113]), the authors introduced the notion of spherical p-
hyponormality in the following way: we say that a commuting pair T = (T4, Tz) of
operators on H is spherically p-hyponormal (0 < p < 1), if

(TTL+ T, )P > (TIy + T T5)P.
They also showed the following theorem:

Theorem 3.1.2. [113] Consider a 2-variable weighted shift W, gy = (T1, To). Then, for
0 < p <1, we have that W, g) is spherically p-hyponormal if and only if

(3.1) a%klka) - ﬁ%klsz) = a%kl—l,kz) T ’B%khkz—l)’ for all kn, k2 2 0,
where a_1 9y = B(o—1) = 0.

Throughout the chapter, for brevity, we will use the following notation: for an
operator pair T = (T, T;), and A, B € B(#H ), ATB means

ATB = (ATB, AT:B).
Also, for two operator pairs A = (A1, Ap) and B = (B, By), we write
AB = (A1By, A»B,).

Finally, 0 and I stand for operator pairs (0,0) and (I, I), respectively.

The chapter is organized as follows. In Section 3.2, we give some properties
of the spherical mean transform, which may present the basis for further study on
the topic. In Section 3.3, we describe how 2-variable weighted shifts behave under
the transform. More specifically, we focus on the p-hyponormality of 2-variable
weighted shifts and their spherical mean transforms.
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3.2 GENERAL PROPERTIES

We start with the following simple observation.

Theorem 3.2.1. Let T = (T4, Tp) be a commuting pair of operators on H. The following
conditions are equivalent:

(i) T is spherically quasinormal;
(i) M(T) =T.
Proof. Observe that

1
M(T) =T & S(ViP+PV) = VP, i =1,2.

The last equality translates to V;P = PV}, i = 1,2, which is by Theorem 1.3.1 further
equivalent with the spherical quasinormality of T. u

The next theorem states that the kernel of an operator pair T is preserved under
the spherical mean transform.

Theorem 3.2.2. Let T = (T3, T») be a pair of operators on H. Then
ker(M(T)) = ker(T).

Proof. Let T = (V4 P, V,P) be the canonical spherical polar decomposition of T and
assume that x € ker(T). Since ker(T) = ker(P) = ker(V), we have that Px = Vjx =
0,i =1,2. Thus,

M;(T)x = %(ViPx FPVx) =0, i=1,2.
Thus, x € ker(M;(T)) Nker(My(T)) = ker(M(T)), and so ker(T) C ker(M(T)).

Conversely, assume now that x € ker(M(T)). Then
(V1P + PV1)x = (Vzp + PVz)x = 0.

From here,

ViViPx + Vi PVix =0
and

VyVoPx + VyPVox = 0.
By adding the previous two equations, and using the fact that V;"V; + V;V, = I on
R(P), we obtain

Px + Vi PVix + V3 PVox = 0,

(Px,x) 4+ (PVyx, Vix) + (PVax, Vox) = 0.

Since operator P is positive, it follows that x € ker(P) = ker(T). This implies that
ker(M(T)) C ker(T). |
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Corollary 3.2.3. Let T = (Ty, T2) be a pair of operators on ‘H. The following conditions
are equivalent:

(i) T=0;
(ii) M(T) =0.

Similar in spirit to the previous corollary, the next theorem deals with the opera-
tor I (instead of 0).

Theorem 3.2.4. Let T = (T, T,) be a pair of operators on H with the spherical polar
decomposition T = (V1 P, V,P). The following conditions are equivalent:

i) T=1I;
(i) M(T) = Land Re (V;'V3) = %1.

1
Proof. (i) = (ii): If T = I, then, obviously, P = V2[ and V; = V, = —I. It

V2

immediately follows that (ii) holds.

1
(ii) = (i): Assume now that M(T) = I and Re (V;'V») = EI. We have that
2 = V,P+PV;,,i =1,2,and so

Vi =Vl =-(VfV P+ V]'PVy),

N =N =

Vi = Vol =S (V3VaP + V3 PVy).

Therefore,

1
(ViVi+ Vi Va)P + o (Vi PV1 + VS PVa)

1
P+ 5 (VyPVi + V5 PV).

Vi+Vy =

Nl =N =

It follows that Vj* 4+ V5 is positive. Observe that ker(M(T)) = {0}, and thus
ker(T) = {0}, by Theorem 3.2.2. Since V;*V; + V; 'V, is an orthogonal projection
onto (ker(T))+ = {0}+ = H, we have that V;'V; 4+ V;V, = I. Using the fact that

1
Re (Vi'V,) = §I' ie. V'V + V; Vi = I, it follows that
(V1 + V2)2 = (Vl + Vz)*(vl + Vz)
= 2].
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From the uniqueness of a positive square root, we have that V; + V5 = v/2I. Again,
from M(T) = I, it follows that

21 =VP+ PV, i=1,2,

and so,
41 = (Vi + Vo)P + P(V4 + V) = 2V/2P.
1 1
Therefore, P = +/2I. Now, [ = E(ViP—i—PVi),i = 1,2, implies V} = V, = EI.
Finally, we conclude that T = 1. |

Theorem 3.2.5. Let T = (Ty, Tp) be a pair of operators on H and U € B(H) be a unitary
operator. Then

MUTUY) = UM(T)U".
Proof. Let S = UTU* = (UT U*, UT,U*). Consider the spherical polar decomposi-
tions T = VPrand S = WPs. Let us show first that

Ps = UPrU*.
Indeed,
P = UT{U*UT,U* + UT; U UT,U*
= U(T; Ty + T, To)U* = UP2U* = (UPrU*)?

From the uniqueness of a positive square root, the conclusion follows.
Now, let us show that W = UVU*. We have

S, = UT,U* = UV.PyU* = UVUFUPLU* = ViPs, i=1,2,
where V; = UV;U*,ie. V= (V1,V,) = UVU*. Note that
ViV + V5V = UV VL + VL) U™
Let S = U((ker(V;) Nker(V))4), and let y € S be arbitrary. Then, y = Ux, for
some x € (ker(V;) Nker(V,))+, and so
(V7 + V3 Th)y = U(VEVE + V5 Vo) U Ux
=U(VfVi +VyVh)x =Ux = .
Thus, we conclude that (V3, V3) is a spherical partial isometry such that V;'V; +
V5V = Ion U((ker(V;) Nker(V))1). Also, for x € H,
x € ker(S) <= x € ker(UT1U") Nker(UT,U")

— UNhU'x=UT,U'x =0
— TWU*'x =TU'x=0

<= U"x € ker(Ty) Nker(Ty)
<= U"x €€ ker(V1) Nker(V,)
— UV U'x=UWU'x=0
< x € ker(V).
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Therefore, ker(S) = ker(V), and so it must be W = V = (UV;U*, UV,U*). This
implies that

M;(S) = %(WiPS + PsW;)
= %(UViU*UPTU* + UuPrPruuv;ur)
= J(U(VPr + PrVUY)
= UM;(T)U",
for i = 1,2, which yields the wanted result. |

By the previous theorem, we see that the spherical mean transform “behaves
nicely” with respect to the unitary equivalence.

In general, it is not true that or(T) = o7(M(T)) (see Example 3.3.8 below).
However, in the case when T is a commuting spherical partial isometry, we get the
affirmative answer. In order to prove our claim, we need the following definition
and the theorem.

Definition 3.2.1. [15] Let A = (A4,...,A;) and B = (By,..., B,) be the be two
n-tuples of operators on H. We say that A and B criss-cross commute (or that A criss-
cross commutes with B) if AZ’B]'Ak = AkB]AZ and BiA]'Bk = BkA]'Bi, for all i,j,k =
1,...,n.

Theorem 3.2.6. (cf. [17, 18]) Let A criss-cross commute with B on H, and assume that
AB is commuting. Then

or(BA)\ {0} = or(AB)\ {0}.

Theorem 3.2.7. Let V = (V1, V,) be a spherical partial isometry. Then
1
M(V) =5 (I +P)V, (I +P)Va),

where P = \/V{Vi + VS V).

Moreover,
or(V) = or(M(V)).
Proof. The spherical polar decomposition of V is given by V; = V;P, i = 1,2, where

P=./ViVi+V;V,. Fori e {1,2}, we have

1 1 1
Mi(V) = 5(ViP+ PVi) = (Vi + PVi) = S (I + P)V,
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which proves the first part of the claim.

Using the fact that V. = (V3, ;) is a commuting pair, we will show that V =
(V1, Vo) criss-cross commutes with P = (I + P,I + P) and that VP is commuting.
Since V;P = V;,i = 1,2, we have that

Vi(I+P)V, = (Vi + V1P)V, =21V,
=2V,Vi = (Vo + VoP)Vy = V(I + P) V3.

We conclude that V criss-cross commute with P as the other condition in cross-
commutativity trivially holds. VP is also a commuting pair since

Vi(I+ P)Vo(I+ P) = V(I + P)Vy(I+P).

All conditions of Theorem 3.2.6 are therefore satisfied. Thus,
or(M(V))\ {0} = %UT((I +P)W, (I+P)V2) \ {0}
= 2or(PV)\ {0} = 207(VP)\ {0}
= 2or(Vi(1+P), Va(I + P)\ {0}

= %UT(ZVLZVZ) \ {0}

Furthermore, assume that V is Taylor invertible. Then V"V + V5V, is invertible or-
thogonal projection, and so V;'V; + V3V, = I,ie. P = I. Thus, M(V) = V and so
M(V) is Taylor invertible.

Now assume that M (V) is Taylor invertible. In particular, we have that ker(M(V)) =
{0}. By Theorem 3.2.2, it follows that ker(V) = {0}. Again, using the fact that
Vi Vi + V5V, is an orthogonal projection onto (ker(V))?, it follows that V;'V; +
V5V, =1, and so, P = I. This implies that M (V) = V, and so V is Taylor invertible.
This completes the proof. H

We shift our focus now to the topological properties of the spherical mean trans-
form. In order to prove our next result, we need the following theorem.

Theorem 3.2.8. [55] The spherical Aluthge transform (Ty, Tp) — (Tq, T2) is (|||, ||])-
continuous on B (H).

Theorem 3.2.9. Let T = (Ty, Tp) be a commuting pair of operators with ker(T) = {0}.
The spherical mean transform (Ty, T) — (M1(T), M2(T)) is (|||, SOT)-continuous.
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Proof. Let Tg = (T3, T3) = (V3Po, ViPy) € (B(H))? be an arbitrary commuting
pair such that ker(Typ) = {0} and assume that the sequence T, = (T;,T7) =
(VT}PH, VnZPn) converges in norm to Ty. It follows that T}, converges in norm to T},

i = 1,2, and so, by continuity, T 1! 4 T2° 72 converges in norm to T&*T& + Tg*Tg.
In other words,

(3.2) 1Py — Pl =0 and |vPs— /Poll =0, 1 — oo,

Leti € {1,2} be arbitrary. First, note that

||PnVéVpn_PnV1§vP0” < HPnVrZ;HH\/Pn_ a2l
< N PalllVPy = V/Poll = 0,

as ||P,|| is a bounded sequence and (3.2) holds. Furthermore, by Theorem 3.2.8, it
follows that

|1PuVi/Py — VPu/PoVi/Bol| = IV Pav/PuVi/ Py — P/ PoVi/ By |
< HVPnHHVPnVrZzVPn_ V P0V6VP0||
= VPl T}, — T§|
< [[VPull[[Tw — Tol| — 0.

Again, using (3.2),

VP PoViV/Po = PoViv/Poll = [IVPu VPOV Po — V/Po/ PV v/ ol
< [IVRoViVPolllIVPu = v/Bol| 0.

Therefore,
1P, Vin/Py — PoVi/Po|| < ||PuVin/Py — P, VAP
+ |1PuVi/Py — P/ PoVEN/ Py |
+ IV P/ Py Vin/ Py — PyVi/Po|| — 0.
Hence, for each x € R(\/Py), we have
(3.3) | P, Vix — PyVix|| — 0.

By the continuity argument, the previous statement holds for each x in R (v/Py) =

(ker(y/Py))*. But ker(y/Py) = ker(Py) = ker(Ty) = {0}, and so R(v/Py) = H.
Thus, (3.3) is true for all x € H, which completes the proof. |
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3.3 SPHERICAL MEAN TRANSFORM OF 2-VARIABLE WE-
IGHTED SHIFTS

We start this section with the derivation of the general formula of the spherical
mean transform of an arbitrary 2-variable weighted shift.

Theorem 3.3.1. Let W, ) = (Ty, Ty) be a 2-variable weighted shift. Then M(W(lx’ﬁ)) =
(Ml(w(a,ﬁ))/ Mz(W(,X,/;))) is given by

[ 2 | @2 2 2
w + By + \/"‘k+s1 T Bire,
2

2 2 2 2
\/"‘k Akt /Y, T Picse
MZ(W(“,ﬁ))ek = 51( \é 2 2€k+52,

Mi1(Wep))ex = Tk Chters

forall k € Z2%, where e; = (1,0), &2 = (0,1),

X 02 p2
——, ifa + B 70,
(3.4) T =3 (/a2 + B
0, ifai + B3 =0,
and
5k e 2 2 0
(35) b= \Jad + B2

0, if ol + Bz = 0.
Proof. Letk = (ky,ky) € Z2 be arbitrary. First, observe that
* * 2 2
(T T+ T T2)e(ky k) = (&, k) F Blky k) ) €K1 K2) -

Therefore,

_ /.2 2
Pei, ky) = \/“(kl,kQ) T Bl o) € k1 k)
It is now easy to see that
Vi€t ko) = Vikiko)Clki+1k) AN V2C(k, ky) = Ok ky)€(ky k1)

where 7y, 1,y and dx, 1,) are given by (3.4) and (3.5), respectively.
We have that

— 2 2
V]'Pe(kllkZ) T \/lx(kl,k2) + ﬁ(kl,kz)vle(kllkZ)

= ’Y(klrkZ) \/“%kl,kz) + ﬁ%kl,kz)e(kl"_lrkZ)’
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while
PVie(i, ky) = 7 (k1 ko) PE (I +1k,)
_ 2 2
_ r)/(kllkZ) \/(X(kl—‘rl,kz) + ‘B(kl—‘rl,kz)e(kl‘f'l,kZ).
Similarly,
_ 2 2
Vzpe(kllkZ) o “(kl,kz) + ’B(kl,kz)vze(kllkZ)
_ 2 2
_ 5(k1/k2) “(kl,kz) + ﬁ(kl,kz)e(klrk2+1)’
and

PVZe(klsz) - 5(k1,k2)Pe(k11kz+1)

_ 2 2
= Oky k) \/[X(kl,szrl) + ﬁ(kl,k2+1)e(k1,kz+1)'

Using the notation k = (kq,k2), 1 = (1,0), &2 = (0,1), we immediately obtain that

1
Ml(W(“,‘B))ek = E(le + PVl)ek
\/“%( + IB%( + \/(Xlz(+€1 + ’B%(+€1
=Tk 5 €k+eqs
and
1
Mz(W(“,ﬁ))ek = E(VZP + PVZ)Ek
Vo B0, T B,
= (Sk 5 ek+82.
This completes the proof. u

Remark 3.3.2. Let W, gy = (T, T2) be a 2-variable weighted shift. From the previous
theorem, we have that M(W , g)) = (M1(W (4 p)), M2(W , g))) is a 2-variable weighted
shift, as well.

Corollary 3.3.3. Let W, g) = (T4, T2) be a 2-variable weighted shift such that af + i #
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0 for each k € Z2. Then, MWy p)) = (M1(Wy p)), Ma(W, g))) is given by

2 2
_ 14 Mere, T Bire, e
2 \ o + B3 e

2 2
B W ve, T Piye
Mo>(W e ="—|1+ 2 2 | erie,
2( (zx,ﬁ)) k ) \ “i"’rgi k+ep

forall k € Z%, where ey = (1,0), &2 = (0,1),

In the sequel, for the sake of simplicity, we will always assume that a3 + % # 0
for each k € Z2.

First observe that directly from Theorem 3.1.2, we have the following result.

Corollary 3.3.4. Let W, ) = (Ty, T2) be a 2-variable weighted shift. Then, M(W, g)) =
(M1(W o)), M2(W(yg)) is spherically p-hyponormal (for 0 < p < 1) if and only if

(3.6) m(a)g +m(B)y > m(a)g_e, +m(B);

k—ep”

forall k € Z%, where ey = (1,0), &2 = (0,1),

2 2
Wre, T Bire
2 2
g + By

m(a) = ay 1—1—\

2 2
“k-ﬁ-?_z + lBk-i-Sz
2 2
a + By

m(B)x = Px 1"‘\

and m(a) (1,0 = m(B)o,-1) = 0.

In general, spherical (Aluthge, Duggal, mean) transforms do not preserve hy-
ponormality of operator pairs. In the following theorem, we give some sufficient
conditions for the map Wy, g) — M (W, g)) to be hyponormality preserving.

Theorem 3.3.5. Let W(, 5y = (T1, T2) be a 2-variable weighted shift. Assume that the
following conditions hold:

(1) W (4p) is hyponormal;

(1) &k 4 1ky) = X(ky kot 1) A Bk 11k0) = Blkijpr1) forall ke ko > 0;
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(iii) forall ky,ky > 0,

2 2 2 2 2 2
M k) T Blk ) < \/ (Bt Bl1i)) (i) Blriri))

Then M(W (4 g)) is hyponormal.

Proof. Let (k1,k2) € Z3 be arbitrary and let {GIEkZ) }kez, be the sequence defined as

2 2
X ky) T Bl 1)

Ol(ck2) =0 52 , k € Z,. Using condition (ii), we have that
(k/kZ) (k/kZ)
2
k
()i T BV = (Fie) + Bl (1 + 91£12)> /
and

2
k
m(a)%kl—l,kZ) + m(;B)%kl,kz_l) — (“%kl—l,kz) + ﬁ%kl,k2—1)> <1 + 9]&12)1) .

It is easy to see that condition (iii) implies that the sequence {Glng) tkez, is non-

( (k2)

. ko)
decreasing. Hence, le > Gkrl, and so

2 2
<1+ 9,§’f2)> > <1+ e,ﬁ’fZ_)l) .

Using condition (i) and (3.1), we have that
2
k
m(a)%klsz) - m(ﬁ)%klsz) - (lx%khkz) +‘B%k1,k2)> (1 - 9’E12)>

2
k
= (a%’ﬁ*l/kz) +‘B%k1/k2*1)> (1 + ngli)1>

= (), 1) + 1By o 1)

Thus, inequality (3.6) is satisfied. Using Corollary 3.3.4, we finally conclude that
M(W 4,p)) is hyponormal. |

Remark 3.3.6. The analogue of the previous theorem where hyponormality is replaced with
p-hyponormality, for any 0 < p < 1, holds as well.
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Recall the following definition:

Definition 3.3.1. A sequence {0y }xcz, of real numbers is said to be a Stieltjes moment
sequence if there exists a positive Borel measure u on the closed half-line [0, +o0) such
that

oo
o = / Kdu(t), ke Z..
0
The measure y is called a representing measure of {0y }rez, -

The reader is referred to [20] for comprehensive information regarding the Stielt-
jes moment sequence and the Stieltjes moment problem.
Note that for all kK € IN, by applying the Cauchy-Schwarz inequality, we obtain

= ([ Fann)

2

= 0k—10k+1,

and thus, |0x| < /0x_10x+1. Therefore, we obtain the following corollary of Theo-
rem 3.3.5.

Corollary 3.3.7. Let W, g) = (T1, T2) be a 2-variable weighted shift. Assume that the
following conditions hold:

(i) W (4 p) is hyponormal;
(i) Ok +1ky) = X(ky kp+1) AN Bk 11ky) = Blky kpr1) for all ki, ky = 0;
(iii) Forall ky > 0, the sequence {cTIEkZ)}keZ+ given by

k
a,§ ) = (X%k/kz) + 'B%k,kz)’ keZy,

is a Stieltjes moment sequence.
Then M(W (, g)) is hyponormal.

Proof. The proof follows immediately from Theorem 3.3.5 and the discussion pre-
ceding the corollary. u

We finish this section by providing an example of an operator pair T such that
or(T) # op(M(T)). Moreover, we will show that M(T) is Taylor invertible, even
though T is not.
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Example 3.3.8. Let {e(k, k,)} (k, kp)cz2 be the canonical basis of 1*(Z?) and for n € Z let

0 1, ifniseven,
"\ 1/n?, ifnis odd.

Let Wy, g) = (T1, T2) be the bilateral 2-variable weighted shift defined as follows:

Tle(kllkz) = K(ky ko) € (k1 +1,k2)7 and Tze(klzkz) = ®(kykp)€(ky ka+1)

where ok, k) = Ok, 1k, (K1, k2) € 72,

We have that ,

Tle(k1,k1+1) - 92k1+1e(k1+1,k1) - (2k1 + 1)2e(k1+1,k1)

and, similarly,
1
Tze(k1/k1+1) = (Zk + 1)26(k1,k1+2)'

Therefore, Tiex, x,+1) — 0 and Toe, x,+1) — 04as ky — oo. Therefore, W, g) = (T1, T2)
is not Taylor invertible (as it is not bounded below).

On the other hand, M(W , g)) = (M1(W,g)), M2(W, g))) is also bilateral 2-
variable weighted shift (Remark 3.3.2), and by Corollary 3.3.3, we have

Oky+k, T Oy 1ky 41
Ml(w( ﬁ)) (kik2) — L 2 1y €k +1kp)7

and

Ok +kr + Oky+kp+1
Mz(w(“rﬁ))e(kllkz) == 2 — (ki kp41)

Since for each (ky,ky) € Z2, we have

1> 9k1+k2 + 9k1+k2+1 > maX{9k1+k2, 9k1+k2+1} — 1

2 - 2 2’

it follows that M(W , g,) is Taylor invertible. |
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CHAPTER 4

SUBNORMAL DUALS AND
COMPLETION TO NORMALITY

Motivated by the definitions of subnormal duals (see Section 1.2.1), and with the
main goal to consider the completion of upper triangular 2 x 2 operator matrix (with
known diagonal blocks) to a normal operator, we introduce the following definition:

Definition 4.0.1. Let A € B(#) and B € B(K). We say that operators A and B are
normal complements if there exists C € B(K, H) such that the operator matrix

¥ Me= 3 5]

is normal.
Also, let
N(A,B) ={C € B(K,H) : Mc given by (%) is normal}.
Clearly, operators A and B are normal complements if and only if there exists C €

B(IC, H) such that

(4.1) A*A — AA* = CC*
(4.2) B*B — BB* = C*C
(4.3) A*C = CB.

It is important to observe the difference between duals and normal complements,
since if A and B are normal complements by Definition 4.0.1, then it does not follow
that B is the dual of A, by definition introduced in [44], as A may not even be pure.
As already mentioned, the definition 4.0.1 is introduced with the aim of answering
the question on the completion of operator matrices to normality, and thus we do
not impose any additional restrictions on operators A and B.
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4.1 DIFFERENT CHARACTERIZATIONS OF NORMAL
COMPLEMENTS

In the next two theorems, we will give some characterizations for operators A, B
to be normal complements in terms of some blocks of these operators. First, recall
that an operator T € B(H) is called posinormal if there exists a positive operator
Q € B(H) such that TT* = T*QT. That every hyponormal operator is posinormal
follows directly by Theorem 1.1.7 and the fact that T is posinormal if and only if
R(T) C R(T*) (see [155, Theorem 2.1]).

Theorem 4.1.1. Let A € B(H), B € B(K). Let A} = P/C\7(A)lA|N(A)i and B, =
p /C\;( B)LB | A(B)L- The following conditions are equivalent:

(i) Operators A and B are normal complements;
(ii) Operators A and B are posinormal, and A1 and By are normal complements.

Moreover,
N(A,B) ={C;®0: C; € M(A1,By)}.

Proof. (i) = (ii) : Assume that A and B are normal complements and let C €
(A, B). Then A and B are subnormal, and therefore posinormal. Thus, they have
the following representations:

ws A= 3 () - ().
(4.5) B = %1 8} : (j/vv(ﬁ%);) 7 (%(Z%);)
e [5 5] () - (40) s

C4 = 0, which by (4.2) gives that C; = 0. Therefore C = C; ® 0, where by (4.1)-(4.3)
we have that C; € 91(A1, By), i.e. A1 and B; are normal complements.
(ii) = (i) : The converse is obvious. |

Theorem 4.1.2. Let A € B(H), B € B(K) be given with pure parts A, and B, respec-
tively. The following conditions are equivalent:

(i) Operators A and B are normal complements;
(ii) Operators A, and By, are normal complements.

Moreover,
MN(A,B)={C;®0: C € ‘)T(Ap, Bp)}.
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Proof. (i) = (ii) : Assume that operators A and B are normal complements and let
C € B(K,H) be such that M¢ is normal. Then A and B are subnormal, and using
Theorem 1.2.2, we have an appropriate decompositions of # and K such that

4.6 4= Al Gem) -~ Gel):
(47) B = %” zﬂ : (Ep%) - (Ep%)
e = &) G < (xlim)) = (shy) B 41030 normaity ot 1,

B(H,(A)) we have that C3 = 0 and C4 = 0, which further by (4.2) and normality of
B, implies that C; = 0. Now (4.3) implies A;‘,Cl = C1B,. Therefore, C = C; © 0 and
C1 € N(Ap, Bp). Thus, A, and B, are normal complements.

(ii) = (i) : The converse is obvious. [

The next theorem presents necessary and sufficient conditions for the completion
of operator matrix M¢ given by (x) to a normal operator, in terms of the existence
of a partial isometry with prescribed initial and final spaces. Let us remark that the
assumption that A € B(#H) and B € B(K) are hyponormal operators is natural
since it is the necessary condition for A and B to be normal complements.

Theorem 4.1.3. Let A € B(H) and B € B(K) be hyponormal operators. The following
conditions are equivalent:

(i) Operators A and B are normal complements;

(ii) There exists a partial isometry U € B(IC, H) with the initial space M 2 R([B*, B])
and final space N' O R([A*, A]) such that

(4.8) [A*, AJU = U[B*, B],
(4.9) A*[A*, A]Y?2U = u[B*, B]'/?B.
Moreover,

N(A,B) = {U[B*,B]Y2: U is a partial isometry from part (ii)}.

Proof. (i) = (ii) : Let C € B(K, H) be such that M¢ is normal and let C = U|C| be
its polar decomposition. By (4.1), we have |C*| = [A*, A]'/2, while (4.2) gives |C| =
[B*, B]'/2. Then C = U[B*, B]'/?, and since C* = U*|C*| is a polar decomposition
for C* (Theorem 1.1.9), it follows that

[A*, A]Y*U = u[B*, B]'/?,
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which further implies that
[A*, AJU = [A*, A]V2U[B*, B]'/? = U[B*, B].
Finally, from (4.3) we get

A*[A*, A]Y2U = A*C = CB = U[B*, B]'/?B.

It is easy to check that R([B*, B]) and R([A*, A]) are respectively, initial and final
space of U.

(i) = (i) : Assume that there exists a partial isometry U € B (K, H) with the
mentioned properties and let C := U[B*, B]'/2. We will show that the operator
matrix M¢ is normal.

Note that (4.8) implies that C = [A*, A]'/2U. Indeed, let

o[ e[ 0

Then, PV = VP so by P'/2V = VP2, we get C = U[B*, B]'/2 = [A*, A]'/2U.
By (4.9), it follows that A*C = CB. Using the fact that R(T) = R(T'/2) for any
positive operator T, we obtain

Cc*C = [B*, B]*/2u*U[B*, B]'/* = B*B — BB".
Furthermore,
CC* = [A*, A]V2UUr[A*, A]V? = A*A — AA™.

Thus, equalities (4.1)-(4.3) are satisfied, and thus A and B are normal complements.
|

Now, let us consider the following notation introduced in [106]: For two positive
operators A € B(H) and B € B(K),

¢(A,B) = {AY2UBY?: U e B(K,H), |U|| <1}.

In the next theorem, we show that for normal complements A,B € B(H) an
operator C € B(K,H) for which M is a normal operator can be represented for

any A € [0,1] in the form C = [A*, A]zuA[B B]'z", where U, € B(I,H) is a
contraction.

Theorem 4.1.4. Let A, B € B(#H) be normal complements. Then

(4.10) C () (A AN [BY,BI' ).
AeOl}
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Proof. Let C € M(A,B) and let A € [0,1] be arbitrary. Now, the fact that for an
arbitrary operator A € B(#) and all x,y € H (see [111, Theorem 3]),

[(Ax,y)| < (JAP % ) (AP0 Nyy), 0<A<T,
together with (4.1) and (4.2), gives that
[(Cx,y)| < ([B*, B*x, x)([A*, A]' "My, y).
Now, by Lemma 1 from [117] we have that

[B*, B]A C*
>
C [A*, A7 = 0,

which implies the existence of a contraction S € B(? ) such that

1-A

C* = [B*,B]25[A%, A] 7,
ie. C = [A*, A]'Z S*[B*, B2 (see [85, p. 547]). This implies that
C € ¢([A*, A]'4, [B*, B]Y).

Since C € 91(A, B) and A € [0, 1] were arbitrary, inclusion in (4.10) follows immedi-
ately. u

In the case when A € B(H) and B € B(K) are normal complements and one of
them is quasinormal we have that both are quasinormal. Furthermore, in that case,
pure parts of A and B are unitarily equivalent. The converse also holds which will
be shown in the next theorem.

Theorem 4.1.5. Let A € B(H) and B € B(K) be such that one of them is quasinormal.
The following conditions are equivalent:

(i) A and B are normal complements;
(ii) Pure parts of A and B are unitarily equivalent.

Proof. (i) = (ii) : Assume that A and B are normal complements and let C be such
that Mc is normal. Observe that if one of A and B is quasinormal, then both of
them are quasinormal. Indeed, using (4.1) (or from Lemma 1.2.10), we have that A
is quasinormal if and only if A*C = 0,i.e. CB = 0 which is by (4.2) equivalent with
the fact that B is quasinormal. Thus, the assumption of the theorem implies that A
and B are quasinormal. Let A = A, ® A, and B = B, @ By be the pure-normal
decompositions of operators A and B, respectively. Since A and B are quasinormal,
it follows that A, and B, are pure quasinormal operators. Also, by Theorem 4.1.2,
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it follows that A, and B, are normal complements. In other words, there exists
D € B(K,(B), H,(A)) such that the operator matrix

A, D
ND:{OP B*]
p

isnormal. Since B, is pure, by Theorem 1.2.4, we have that Np is the minimal normal
extension for A,. Also, Ay is a pure quasinormal operator, and so it is a self-dual,
by Theorem 1.2.9. Therefore, it is unitarily equivalent to its dual, i.e. A, and B, are
unitarily equivalent.

(ii) = (i) : Now assume that the pure parts of A and B are unitarily equiv-
alent. Then, there exists a unitary transformation U € B(H,(A), K,(B)) such that
Ap = U*ByU. Quasinormality of one of the operators A and B implies the quasinor-
mality of its pure part which by A, = U*B,U implies that pure parts of both opera-
tors are quasinormal. Thus, A, is a pure quasinormal operator, and since any pure
quasinormal operator is a self-dual subnormal operator, there exists C € B(H,(A))
such that

A, C
chlop A*}
p

is normal. Now let V = [(I) Z(H . Using the fact that A, = U*B,U, we have

. 1 01[4, C1[I o0
VNV _{o u} [o Asl o ur
4, cur ][4, cu
“lo uau| =0 B

Since N is normal and V is unitary, it follows that VN{V* is normal, and thus A,
and B, are normal complements. Theorem 4.1.2 now yields that A and B are normal
complements. This completes the proof. u

The previous theorem can be treated as a generalization of the next simple ob-
servation.

Corollary 4.1.6. Let A € B(H) be normal and B € B(K) be subnormal operator. The
following conditions are equivalent:

(i) A and B are normal complements;
(ii) B is normal.

Proof. The proof follows immediately by noting that the normality of A implies that
the pure parts of A and B are unitarily equivalent if and only if B is normal. L
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4.2 JOINT SPECTRAL PROPERTIES OF NORMAL COMPLE-
MENTS

It is interesting to remark that in the case when A € B(H) and B € B(K) are
given operators the problem of completion of the operator matrix M¢ to Fredholm
operator has one very interesting property. Namely, the existence of an operator
C € B(K,H) such that Mc is a Fredholm operator is equivalent to the existence of
such invertible C € B(K, H) (see [64]). The same property holds for some other
completions (see [59, 60, 190]). As we will see in the next result, this is not the case
for the completion of Mc to a normal operator. In other words, if A € B(#H) and
B € B(K) are normal complements, then C € 91(A, B) can not be invertible.

Theorem 4.2.1. Let A,B € B(#H) be normal complements. Then 0 € o(C) for all C €
MN(A, B).

Proof. Let C € M(A, B) be arbitrary. Assume to the contrary, that 0 ¢ ¢(C), ie. C
is invertible. By (4.3), we have that C"A = B*C*, i.e. A and B* are similar. Since
A and B* are subnormal, by [89, Corollary 1] it follows that both are normal and
unitarily equivalent. Then (4.1) implies that C = 0, which is a contradiction. Thus,
0€o(C). |

Furthermore, in the next theorem, we will prove that for any subnormal operator
A € B(H) the spectrum of its self-commutator contains 0, i.e. self-commutator is
not invertible.

Theorem 4.2.2. Let A € B(H) be a subnormal (or hyponormal) operator. Then 0 €
a([A*, A]).

Proof. Since A is subnormal it follows that A is hyponormal, i.e. A*A — AA* > 0. If
we suppose that 0 ¢ o([A*, A]), then P = A*A — AA* > 0 and we have that

|A*Al| = sup (A*Ax,x) = sup ((AA*x,x)+ (Px,x)) > |AAY||,
[x[=1 [[x[[=1

which is not true (since ||[A*A|| = [[AA*||). Thus 0 € o([A*, A]). |

From the above theorem, we can conclude that for C € 91(A, B) we have that
0 € 07(C) Noy(C), i.e. we have the following corollary:

Corollary 4.2.3. Let A,B € B(H) be normal complements. Then 0 € o([A*, A]) N
o([B*,B]) and o([A*, A]) = o(|B*, B]).

In general, when we consider different properties of M¢, we can realize the sim-
ilarity of A and B concerning some properties. Having in mind certain results on
completions of the upper triangular operator matrix to invertibility and Fredholm-
ness, we can reach the following conclusions:
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Theorem 4.2.4. Let A € B(H) and B € B(K) be given. Then the following hold:

(i) If the operator matrix Mc given by (%) is invertible for some C € N(A, B), then both
A and B are left invertible. Furthermore, if M is invertible, then the invertibility of
one of the operators A and B implies the invertibility of the other one.

(ii) If the operator matrix Mc given by (x) is Fredholm for some C € M(A, B), then A
and B are left semi-Fredholm. Furthermore, if M¢ is Fredholm, then the Fredholmness
of one of the operators A and B implies the Fredholmness of the other one.

Proof. (i) This follows from the well-known result that concerns the completion of
an upper triangular operator matrix to an invertible operator (see [81, 100]). So,
there exists C € B(K, H) such that the operator matrix M¢ is invertible if and only
if A and B are left invertible and dim A/ (B*) = dim R(A)*.

Part (ii) follows by Theorem 3.8 from [64]. |

In the next theorems, we will consider special cases when A € B(#) and B €
B(K) are normal complements or when A € B(#H) and B € B(K) are normal
complements such that one of them is quasinormal. First, we will see that if A €
B(H) and B € B(K) are normal complements and if for some C € 91(A, B) we
have that Mc is injective, then both A and B are injective (that is not valid in the
general case). Also, we will show that instead of implications that we have in items
(i) — (i) of Theorem 4.2.4, we will get equivalences when A € B(#) and B € B(K)
are normal complements such that one of them is quasinormal.

Theorem 4.2.5. Let A € B(H) and B € B(K) be normal complements. If the operator
matrix Mc is injective for some C € M(A, B), then both A and B are injective.

Proof. Assume that M is injective for some C € (A, B). Then, it is easy to see that
A is injective and N (C) N NV (B*) = {0}. Since N'(C) = N (C*C) = N([B*,B]), and
N ([B*, B]) N N(B*) = N(B) N N(B*), we can conclude that N'(B) NN (B*) = {0}.
Since operator B is subnormal, we have N/ (B) C NV(B*). Thus V'(B) = {0}, i.e. Bis
injective. |

The case when one of A € B(H) and B € B(K) which are normal complements
is quasinormal we consider in the next theorem:

Theorem 4.2.6. Let A € B(H) and B € B(K) be normal complements such that one of
them is quasinormal and let C € N(A, B). Then the following hold:

(i) Mc is invertible if and only if both A and B are left invertible;
(ii) Mc is Fredholm if and only if both A and B are left semi-Fredholm operators;

(iii) Mc is regular if and only if both A and B are regular operators.
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Proof. Let us suppose that A is quasinormal. Then A*C = 0, which together with
(4.1) — (4.3) implies that

(4.11) M:Mc = [A A0 ]

0 B*B|°

(i) Using the fact that a normal operator is invertible if and only if it is left invert-
ible, we get by (4.11) that Mc is invertible if and only if A and B are left invertible.

(ii) Using (4.11) and normality of Mc, itis clear that M is Fredholm if and only
if A and B are left semi Fredholm operators.

(iii) Since the regularity of operator X is equivalent with the regularity of X*X,
it is clear from (4.11) that Mc is regular if and only if A and B are regular. L

By Theorem 4.2.6 we can conclude thatif A € B(#) and B € B(K) are normal
complements such that one of them is quasinormal, then the operator matrix Mc is
invertible (Fredholm or regular) for some C € 9(A, B) if and only if it is invertible
(Fredholm or regular) for all C € 91(A, B).

Concerning regularity of M¢ in the case when C € (A, B) we have the follow-
ing result:

Theorem 4.2.7. Let A € B(H) and B € B(K) be normal complements such that one of
them is quasinormal and let C € (A, B). If A, B and C are all regular, then (A*)" and
(B*)" are normal complements and (C*)* € M((A*)*, (B*)T).

Proof. First, observe that the Moore-Penrose inverse of a regular normal operator is
also normal. The proof now follows by the fact that A*C = CB = 0, since in that
case it is easy to check that

ML = {N 0 } .

C+ (B*)+
|

Definition 4.2.1. An operator A € B(H) is called a self-complemented subnormal
operator if 91(A, A) is a non-empty set.

In the sequel, we shall write 91(A, A) = 9M(A). Following (4.1) — (4.3), we have
that A is a self-complemented subnormal operator if and only if there exists a normal
operator C € B(?H) such that

(4.12) [A*,A] =CC* and A*C =CA.

In that case, 91(A) consists of normal operators only.

Obviously, every quasinormal operator A is self-complemented subnormal (take
C = (A*A — AA*)1/2) and A is self-complemented if and only if the pure part of A
is self-dual.

The next theorem gives that any linear combination of C € 91(A) and its adjoint
is non invertible operator.
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Theorem 4.2.8. Let A € B(H) be a self-complemented subnormal operator. Then
0 € c(AC+ uC*)
forany C € N(A) and any A, u € C.

Proof. Assume that A € B(H) is a self-complemented subnormal operator and let
C € 9M(A) and A, u € C be arbitrary. Observe that A*C = CA implies that A*C* =
C*A. Therefore,

A*(AC + uC*) = (AC + uC*)A.

We can now finish the proof in an analogous way as in Theorem 4.2.1. L

As a corollary, we have that real and imaginary parts of C € 91(A) are not in-
vertible.

Corollary 4.2.9. Let A € B(H) be a self-complemented subnormal operator and let C €
N(A). Then Re (C) and Im (C) are not invertible.

If A is self-complemented and C € 91(A), Theorem 4.2.1 yields that 0 € o(C).
The following results give some sufficient conditions for o(C) = {0} which is equiv-
alent to the normality of A.

Theorem 4.2.10. Let A € B(H) be a self-complemented subnormal operator. If there exists
C € M(A) such that A and C" commute for some n € IN, then A is normal.

Proof. Let A € B(H) be a self-complemented subnormal operator and assume that
there exists C € 91(A) and n € IN such that AC" = C"A. Since C is normal we
have that C" is normal, and so by Theorem 1.1.12, it follows that A(C")* = (C")*A.
Therefore,

A(CCH" =C"A(C")* = (CCH)"A.

Theorem 1.1.1 now implies that A commutes with CC* = [A*, A]. The normality of
A now directly follows from [150, Corollary 1]. |

Theorem 4.2.11. Let A € B(H) be a self-complemented subnormal operator. If C € 91(A)
satisfies any of the following conditions:

(i) AC =CA,
(ii) A*C = AC,

(iii) R(C) L R(Im (A)),

(iv) Re (C) and Re (C?) commute with A,

then A is normal.
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Proof. If C satisfies any of the conditions (i) — (iii), then the proof follows immedi-
ately from Theorem 4.2.10 and (4.12).
Now assume that C satisfies condition (iv). Since A commutes with Re (C), we
have that
A(Re (C))? = (Re (C))?A.

Using the normality of C, it follows that
A(C? +2CC* 4 (C*)?) = (C® +2CC* + (C*)P) A,

ie. A(Re(C?)+ CC*) = (Re(C?) + CC*)A. Now, ARe (C?) = Re(C?)A implies
that A commutes with CC* = [A*, A], and so A is normal. |

Corollary 4.2.12. Let A € B(H) be a self-dual subnormal operator. Then A does not
commute with any C € 9(A).

4.3 SELF-DUALITY OF ALUTHGE AND DUGGAL TRANS-
FORMS

This section commences with two particular results that provide sufficient condi-
tions that Aluthge and Duggal transforms of pure hyponormal (semi-hyponormal)
operator A € B(H) are self-dual subnormal operators.

Let us first observe that if A € B(#) is a pure hyponormal operator with a
dense range, then A is injective and in the polar decomposition of A = U|A|, we
have that U is a unitary operator. Indeed, by A*A > AA* we have that N'(A) C
N(A*) = R(A)+ = {0}. Also, by N (U) = N(A), R(U) = R(A), UU* = Pruy
and U"U = Py )1, it follows that U is a unitary operator. Moreover, using the
polar decomposition of A = U|A| and unitarity of U, we have that hyponormality
of A is equivalent with

|A]2 > U|A|PU*,
ie.
U*|AlPU > A

Now, we are ready to prove our first result.

Theorem 4.3.1. Let A € B(#H) be a pure hyponormal operator of dense range with the
polar decomposition A = U|A| and let P = (U*|A|*U — |A|?)'/2. If PA is a self-adjoint
operator, then A is a self-dual subnormal operator.

Proof. First observe that [(A)*, A] = U*|A]2U — |A|? = P2 and that self-adjointness

of PA implies that PA = (A)*P. By Theorem 1.2.5, these two facts will be sufficient
for A to be a self-dual subnormal operator if we show that A is pure. Suppose that
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£ is a non-zero reducing subspace for A on which A is normal. Then |A|U(L) C L,
U*|A|(£) € £ and

(4.13) U*|A]?Ux = |A|?x, forall x € L.

These imply that
[AP(£) = U*|Al(JAJU(L)) € £,

so L is a reducing subspace for |A|?, and thus it is a reducing subspace for |A], as
well. Since N (|A]) = N (A) = {0}, it follows that |A| has dense range and since
L is a reducing space for |A] it follows that R(|A|?|z) = R(|A||z) = L. Now by
U*|A|(L£) € Land R(|A]|z) = L, we get that L is an invariant space for U*. Using
(4.13), we have that U|A|?x = |A|?Ux, for any x € £ and from R(|A]2|;) = L it
follows that

u(L) C JARU(L) C JA[(L) = L.

Hence, £ is invariant for U. Since it is also invariant for U*, it is reducing for U.
Thus, £ is a reducing subspace for both |A| and U, and so it is a reducing subspace
for A. Also, by (4.13) and the fact that for any x € £ we have that U*x € £, it
follows that
U*|APUUYx = |A]PU*x  forallx € L,
ie.
|A|*x = U|A|*U*x forall x € L,

which is equivalent to AA*x = A*Ax, for any x € L. Hence, A is normal on £,
which is a contradiction. We conclude that A is pure, which completes the proof. W

In order to prove the next result that considers the case when the Aluthge trans-
form of a pure semi-hyponormal operator is a self-dual subnormal operator, we
need the following auxiliary result:

Theorem 4.3.2. [38, Lemma 4] Let T = U|T| be a pure p hyponormal operator with dense
range. Then the Aluthge transformation T is pure (p + ) -hyponormal.

Theorem 4.3.3. Let A € B(H) be a pure semi-hyponormal operator of dense range with
the polar decomposition A = U|A| and let P := (U*|A|U — U|A|U*)'/2. If [A*, A] and
PA|AY2 are self-adjoint operators, then A is a self-dual subnormal operator.

Proof. Since A is semi-hyponormal and has a dense range, we have that U is unitary.
By the properties of the polar decomposition we know that A = U|A| implies that
A = |A*|U and |A| = U*A (Theorem 1.1.9). Hence |A| = U*|A*|U. Since A is
semi-hyponormal, we have that

|A| = U*|A*|U < U*|A|U,
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i.e. UA|U* < |A| because U is unitary. Thus, U*|A|U — U|A|U* is positive, and so
P is well-defined.
Also, we have that

[(A)*, A] = |A]'Y2P?AlV? = Q*Q,

where Q = P|A|/? is a positive operator. Positivity of Q follows by the fact that
[A*, A] is self-adjoint if and only if P2 commute with | A| that is equivalent with the
commutativity of P and |A|'/2. Also, using that PA|A|1/ 2 is a self-adjoint operator
and that P and |A|'/2 commute, we get that QA = (A)*Q. Finally, using Theorem

4.3.2 and Theorem 1.2.5 we can reach the conclusion that A is a self-dual subnormal
operator. H

Definition 4.3.1 (cf. [119]). Let T = U|T| be the polar decomposition of T € B(H ).
Operator T is the é-class operator if U?|T| = |T|U?.

Motivated by the above definition and Theorem 4.3.3, we have the following
corollary:

Corollary 4.3.4. Let A € B(H) be a pure semi-hyponormal 5-class operator of dense range
which polar decomposition is given by A = U|A|. Then A is a self-dual subnormal operator.

Proof. Let P = (U*|A|U — U|A|U*)Y2. Then [A*, A] = |A|P%. Now the proof
follows immediately by Theorem 4.3.3 and a simple observation that A is A J-class
operator if and only if P = 0. u

Theorem 4.3.5. Let A € B(H) be given. If the polar decomposition of A is A = U|A|
where U is unitary, then the following conditions are equivalent:

(i) A is normal;
(ii) A is a 6-class operator and N'(H) NN(A, A) # @.

Proof. Notice that normality of A is equivalent with the fact that |A| and U commute,
ie. A= A.

(i) = (ii) : Let us suppose that A is normal. By commutativity of |A| and U we
have that A is a d-class operator. Also, 0 € N'(H) NN(A, A) = N (H) N9(A, A), so
the second condition holds.

(ii) = (i) : Assume that A is a §-class operator and that there exists C € N (H) N
N(A, A). Then, [A*, A] = [(A)*, A],ie.

(4.14) |A|? — U|APU* = U*|APU — | A%
Since A is the J-class operator, we have that |A|U? = U?| A| which implies

(4.15) U*|A|PU = U|A)PU*.
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Now by (4.14) and (4.15) we have that
[A]? = ulAPPU,
ie. |A|?U = U|AJ?. Thus, A is normal. H

The next result is an auxiliary one which gives us that an arbitrary reducing
space for A € B(?H) is also a reducing space for both transformations, Aluthge and
Duggal.

Lemma 4.3.6. Let A € %(’H) be given operator. Then any reducing subspace for A is also
a reducing subspace for A and A.

Proof. The fact that M is a reducing subspace for A is equivalent with the fact that
A commutes with Py (Theorem 1.1.3). If the polar decomposition of Ais A = U|A|,

then we have that U and | A| commute with Py, (see [90 p- 63]) Evidently, Aand A
commute with Py, i.e. M is a reducing subspace for Aand A. n

Let A € B(#) be a self-dual operator with the polar decomposition A = U|A|
and let C € 91(A). If we assume that A has a dense range, then U is unitary. Op-
erator C € 91(A) is normal, it can be represented as C = V’|C| for some unitary
V' (see [90, p. 66]). The next theorem, however, shows that, in some cases, for any
nontrivial common reducing subspace for A and C we have that the restrictions of
U and V must be different.

Theorem 4.3.7. Let A € B(H) be a self-dual d-class operator with dense range with the
polar decomposition A = U|A| and let C € N(A). If C = V|C]| is a decomposition of C
where V is unitary, and M is a nontrivial common reducing subspace for both A and C,
then U| pq # V.

Proof. Assume to the contrary, that there exists a nontrivial closed subspace M
which reduces both A and C such that U|r = V|p. By Lemma 4.3.6, M also
reduces A. That M is a reducing subspace for |C| and V follows from [90, p. 66]
and Theorem 1.1.3. Thus, M is reducing subspace for A, C, |A|, U, |C|,V and A.

Let us accept the following notations: if M is reducing subspace for an operator
X then we can represent X as 2 x 2 operator matrix with respect to the decom-
position H = M @& M+ and by X; and X, we denote its (1,1) and (2,2) blocks,
respectively.

Since A has a dense range, we have that A and A are unitarily equivalent. Thus,
A and A are normal complements and it is straightforward to check that U*C ¢
‘ﬁ(ﬁ, A). Also, it is easy to see that A; and Kl are normal complements and

IC1| = ViCy = UfCy € M(A1, A7).
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Therefore, N'(H) N9(A1, A;) is non-empty. Since A; is the d-class operator,
Theorem 4.3.5 implies that A; must be normal, which is in contradiction with A
being pure. Thus, it must be U|r( # V|, which completes the proof. u

Remark 4.3.8. Let us remark that the previous theorem also holds in the case when C =
V|C| is the "ordinary” polar decomposition of C.
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CHAPTER 5

A NOTE ON SOME RELATED CLASSES
OF LINEAR OPERATORS

This chapter explores different classes of operators related to normal and subnor-
mal operators. In Section 5.1, we further extend some results regarding generalized
powers of linear operators and also introduce the concept of generalized logarithms.
In Section 5.2, we define a new class of operators called polynomially accretive op-
erators, and thereby extend the notion of accretive and n-real power positive op-
erators. We give several properties of the newly introduced class and generalize
some results for accretive operators. The final section of this chapter, i.e. Section
5.3, focuses on the study of solvability of the general system of operator equations
A;XB; = Cj, i = 1,2. Here we present some necessary and sufficient conditions for
the existence of the solutions (Hermitian solutions, positive solutions) and also ob-
tain the general forms of Hermitian solutions and positive solutions to the system

above. We also study the solvability of the *-order operator inequality C % AXB.

5.1 POSITIVE OPERATORS AND GENERALIZED POWERS

In a recent paper, A. Bachir, M. H. Mortad and N. A. Sayyaf [12] introduced
generalized powers of linear operators, allowing operators to be raised not only to
numbers but to other operators, as well. They gave several properties as regards
this notion. The aim of this section is to further extend their results and also answer
the question regarding the monotonicity of the map T — AT. We also introduce the
concept of generalized logarithms. More precisely, for two positive and invertible
operators A and B such that 1 ¢ o(A), we define the logarithm of B to base A,
denoted by log , B, and investigate some of its properties.
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5.1.1 PREVIOUS RESULTS

For any A € B(H), it is well known that the series Y5> 4+ converges in B ().
This allows us to define e for any A € B(H), without using all the theory of the
functional calculus.

If A is self-adjoint, then it is easy to see that e/ is self-adjoint, as well. The op-
posite, however, may not be true. The simplest example is A = 27mil. For more
information on the topic, we refer a reader to [118], [151], and [158].

As regards the logarithms of bounded operators, there are several possible ways

to define them. For example, we may use a series

log A := i w

n=1

(A—I)".

The previous series converges in B(H) whenever A € B(H) and ||[A—I]| < 1.
Another way is to say that if operators A,B € B(H) satisfy e = B, then A is
defined to be a logarithm of B. Since e = eA27 the logarithm defined this way
is not a single valued. The third way is to use the continuous functional calculus, as
follows.

Let A € B(H) be positive and invertible, and so ¢(A) C (0,c0). Hence the
function log is well-defined on ¢ (A). Therefore, it also makes sense to define log A.
We call it the logarithm of A. It is also clear why log A is self-adjoint. The follow-
ing example shows the analogy with an ordinary exponential and logarithm of real
numbers.

Example 5.1.1. Let A € B(#H) be a self-adjoint operator. Then
loge? = A.
Moreover, if A is positive and invertible, then
JogA — 4
|

It is easy to see that log A is a unique self-adjoint solution to the operator equa-
tion T = A. Indeed, by the previous example, €64 = A, and if T; and T, are
self-adjoint operators such that el = A = ¢'2, then

T, = log(e™) = log(e?) = T».

In [12], the authors introduced the concept of generalized powers of operators as
follows.
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Definition 5.1.1. Let A, B € B(7H) such that A is positive and invertible. Define

AB.— eBlogA.

Then B is called the generalized power of A.

The preceding definition does generalize the usual definition of (ordinary) pow-
ers of operators as, for example, if B = nl, where n € IN, then

A — enllogA — enlogA — elogA” — A"

The authors also proved somewhat expected identities as regards generalized pow-
ers.

Theorem 5.1.2. [12] Let A, B, C € B(H) such that A is positive and invertible. Then
(i) IB=1,A° = Iand A" = A;

(ii) (AB)¢ = ACBC whenever A, B and C pairwise commute, and B is positive and
invertible;

(iii) (AB)C = ACB;
(iv) ABAC = ABTC whenever A, B and C pairwise commute.

Note that in part (iii) of the previous theorem, the self-adjointness of B and com-
mutativity condition AB = BA should also be added. Otherwise, A may not even
be positive (see Example 5.1.4 below).

In [12, Proposition 2.2], the self-adjointness of B is also missing. Here we state
the correct version.

Proposition 5.1.3. [12] Let A € B(H.) be positive and invertible. Then AB is positive and
invertible for any self-adjoint B € B(H) such that AB = BA. Moreover,

log A" = Blog A.

The proof remains the same. Namely, the authors showed that if AB = BA then
Blog A = log(A)B, from which they concluded that Blog A is self-adjoint. But this
is only possible if B is self-adjoint. The following example illustrates the necessity
of self-adjointness of B.

Example 5.1.4. Let A = el and B = intl. Obviously, AB = BA, but AB is not positive
since AB = (el )" = '] = —1. |

There is also a connection with Theorem 1.1.16. Namely, the authors in [12]
proved an analogue of Remark 1.1.17.
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Theorem 5.1.5. [12] Let A, B € B(H.) be both positive such that A < B and A is invert-
ible. Then
AT < BT

for any positive T € B(H) provided T, A and B pairwise commuite.

After that, the authors asked whether the previous result holds if the commu-
tativity of A and B is dropped. The answer is negative, as the following example
shows:

Example 5.1.6. Let

21 31 20
P P )

Obviously, both A and B are positive and invertible since det(A) = 1 and det(B) = 2.

Also, A < Bas
3 1 21 10
B_A—[1 1}_{1 1}_{0 0]20'

Since T = 21, we have

r ot w2 a2 10 4] [53] [51
B°—A" =B A‘[4 2] [32]_{1 0}'

51
But {1 0} #0,as

51
10

‘:—1<0.

Thus, it is not true that AT < BT,

Frequently in the sequel, we will tacitly use Spectral Theorem for self-adjoint
operators. For more information on the topic, we refer a reader to [46], [72] and
[133].

5.1.2 GENERALIZED POWERS OF OPERATORS

In this section, we present some new results regarding generalized powers of
operators.

Theorem 5.1.7. Let A € B(H) be a positive and invertible operator such that 1 ¢ o(A)
and let B,C € B(H) be self-adjoint operators such that both B and C commute with A.
Then the following conditions are equivalent:

(i) BC =CB;
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(i) APAC = ACAP.
Proof. (i) = (ii): Assume that BC = CB. Since B and C commute with A it follows
that they also commute with log A, and therefore Blog A commutes with Clog A.
Hence, eB1984 commutes with ¢“1084 je. ABAC = ACAB.
(ii) = (i): Assume that ABAC = ACAB ie.
eBlogAeClogA — eClogAeBlogA.

Since BA = AB, it follows that Blog A = log(A)B. Both B and log A are self-adjoint,
and so Blog A is self-adjoint, as well. It now follows that e?1°84 is positive, and thus
log(eBlogA)€ClogA — eClogA log(eBlogA)'

Therefore,
Blog Ae“1984 = ¢Clos8ABog A,
Since C is also self-adjoint, using a similar argument, we conclude that
Blog(A)Clog A = Clog(A)Blog A,
ie.
BClog® A = CBlog” A.
By the Spectral Mapping Theorem, 1 ¢ (A) implies that0 ¢ log(c(A)) = o(log A).
Thus, BC = CB. [ | [ |

As an immediate corollary, we obtain the following well-known result:
Corollary 5.1.8. [179] Let A, B € B(H) be self-adjoint. Then

AB=BA & %P =eBeh.

Proof. Obviously, el is a positive operator such that 0,1 ¢ o(el) and both A and B
commute with el. The conclusion now follows directly from Theorem 5.1.7. u

Theorem 5.1.7 does not hold in general if the condition 1 ¢ o(A) is dropped, as
the following example shows.

Example 5.1.9. Let

By ey

01 10 0 2
Obviously, B and C are self-adjoint operators which commute with A, and
ABAC — ACAB

as AB = A€ = I. But
0 1] [1 0 1 0] Jo 1 0 1
BC_CB_L 0}'{0 2}_[0 2}'{1 0}_{—1 01'

and so BC # CB. |
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In Theorem 5.1.2, it was shown that if A is positive and invertible, and B and C
are such that A, B and C pairwise commute, we have that
ABAC — ABJrC'
The following two theorems provide the generalizations of this result.

Theorem 5.1.10. Let A € B(H) be a positive and invertible operator and let B,C € B(H)
be such that B and C commute with both A and [B, C]. Then

ABAC — A3[BCllogA pB+C

Proof. Note that AB = BA implies that B commutes with log A, and by the same
reasoning, C also commutes with log A. Thus,
Blog(A)[Blog A,Clog A] = log(A)B(BC — CB)log* A
— log(A)(BC — CB)Blog® A
= [Blog A, Clog A|Blog(A).
We get that Blog A commutes with [Blog A, Clog A], and similarly, Clog A com-

mutes with [Blog A, Clog A], as well. Using the definition of generalized powers
and the Baker-Campbell-Hausdorff formula (see [96, Theorem 5.1.]), we obtain

ABAC — eBlogAeClogA

—e [BlogA,ClogA}eBlogA—&—ClogA

1
2
_ e%[B,C] log? Ap(B+C)log A

A3[BCllog A pB+C

This completes the proof. u

In the following theorem, we further remove the commutativity conditions.
Theorem 5.1.11. Let A € B(H) be a positive and invertible operator and let B,C €
B(H). Then

ABC = lim (AB/m4C/M)",

n—o00

Proof. Using the Lie-Trotter product formula (see [173]), we have
AB+C — e(B+C) log A
— pBlog A+Clog A

— lim (e(BIOgA)/ne(ClogA)/n>”
n—oo

— lim (eB/nlogAeC/nlogA>n
n—oco

— lim (AB/nAC/n>n )

n—oo
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Theorem 5.1.12. Let A € B(H) be positive and invertible and let B,C € B(H ). If there
exists an invertible operator S € B(H) which commutes with A and such that C = SBS™,
then

A€ =5APs L,

In other words, AB is similar to AC.

Proof. Since S commutes with A, we have that S~! commutes with log A. Using the
properties of the exponential function, we have

AC — ASBS™! _ ,SBS'logA

_ eS(BlogA)S* GeBlogAg—1

= SABs—1,
]

We finish this section by giving several results regarding the monotonicity of the
function T — AT,

Theorem 5.1.13. Let A € B(?H) be positive and invertible and let S, T € B(H.) be self-
adjoint such that AT < AS and both S and T commute with A.

(i) Ifo(A) C (1,00), then T < S.
(ii) Ifo(A) C (0,1),then T > S.

Proof. Let us prove part (i) first. Assume that AT < AS, ie. eTlosA < eSlog4,
Since T and S commute with log A, we have that e7°84 and ¢°1°84 are positive and
invertible. As a consequence of the classical Heinz inequality (Theorem 1.1.16), we

have that

Tlog A Slog A
7

loge <loge

ie.
Tlog A < Slog A.
Since 0(A) C (1,00) it follows that o(log A) = logc(A) C (0,00). Thus, log A is
positive. Hence, the inequality Tlog A < Slog A becomes
(log A)/2T(log A)'/? < (log A)'/2S(log A)Y/2.

Multiplying from both sides by (log A)~1/2, the last inequality yields T < S.
In order to prove (ii), note that o (A~1) C (1, 00). Also, using Theorem 5.1.2, part
(iii), we have that
(Afl)T — AT(*I) — A(*I)T — (AT)fl.
Similarly (A1) = (AS)~1. Now,
0<AT <A = o<A <At = o<c@AaA S <@AaHh

By applying part (i) to the operators A~!, T and S, we conclude that T > S. W
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The converse does not hold in general, as there are self-adjoint matrices A and B
such that A > B but e? > eP (see [134] for a counterexample).

In the following theorem, we are going to use the fact that if A and B are com-
muting self-adjoint operators and A < B, then e/ < 5.

Theorem 5.1.14. Let A € B(H) be positive and invertible and let S, T € B(H) be self-
adjoint such that A, S and T pairwise commute.
(i) If 0c(A) C (1,00), then
T<S « AT <AS
(ii) Ifc(A) C (0,1), then
T<S & AT>A5
Proof. In both cases, we only need to show the = direction.
(i) Assume that T < S. Since log A is positive and commutes with S and T, it

follows that
(log A)/2T(log A)1/? < (log A)'/25(log A)'/?,

ie.
Tlog A < Slog A.

Now, Tlog A commutes with Slog A, and so eTlog A < pSlogA 1n other words,
AT < AS.
(i) In this case, — log A is positive, and so

—TlogA < —SlogA,

ie. Tlog A > Slog A. Therefore, eTlogA > pSlogA Hence, AT > AS. |

5.1.3 GENERALIZED LOGARITHMS OF OPERATORS
Here, we introduce the concept of generalized logarithms of operators.

Definition 5.1.2. Let A,B € B(H) be positive and invertible operators such that
1 ¢ o(A). The logarithm of B to base A, denoted by log , B, is defined as

log, B = log(B)(log A) .

Note that log 4 B given by the previous definition is well-defined since 1 ¢ o (A),
and so 0 ¢ log(c(A)) = o(log A).

In general, log , B may not be a self-adjoint operator, as the following example
illustrates.
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Example 5.1.15. Let

20 0 —1
A—{O 3} and B—{l O}'

Then | y
_|log2 0 10 —m/2
log A = { 0 10g3] and logB = [7{/2 0 |’
and so
log , B = log(B)(log A) !

| 0 —m/2) |1/log2 0

/20 0 1/1og3

_ 0 —7/log9

|t/ log4 0 ’
which is not a self-adjoint matrix. u

The following theorem gives a characterization of log, B as a solution to the
operator equation AT = B.

Theorem 5.1.16. Let A, B € B(H) be positive and invertible operators such that 1 ¢ o(A)
and let T € B(H) be an arbitrary operator. The following conditions are equivalent:

(i) T =log, Band AB = BA;
(i) T is self-adjoint, AT = B and AT = TA.
Proof. (i) = (ii): Assume that T =log, B and AB = BA. Since

AlogaB _ Alog(B)(logA)*1 _ elog(B)(logA)*llogA — o8B _ B

7

we have that AT = B. Using the fact that A commutes with B, we have that A and
log A both commute with log B. Therefore,

log(B)(log A)~! = (log A) 'log B.
This implies the self-adjointness of T and also
AT = Alog(B)(log A)~! = log(B)(log A)'A = TA.

(ii) = (i): Now assume that T is self-adjoint, AT = B and AT = TA. As in part
(i), we can show that Alog4aB — B. Thus, A%848 = AT, and so

elogA(B) logA _ eTlogA/
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ie.
elogB — eTlogA.

From the self-adjointness of T and the fact that A and T commute, we have that
T'log A is also a self-adjoint operator. Therefore,

elogB — eTlogA — IOg elogB — 1Og€T10gA,
i.e. log B = Tlog A. By multiplying from the right-hand side by (log A)~!, we get

that T = log(B)(log A)~! = log , B.
It remains to show that AB = BA. From

Alog(B)(log A)~! = log(B)(log A)"'A = log(B)A(log A) 1,

by multiplying from the right-hand side by log A, we have that A commutes with
log B and so it also commutes with ¢!°88 = B. This completes the proof. L

Remark 5.1.17. From Theorem 5.1.16, we conclude that log , B is a unique self-adjoint
solution to the operator equation AT = B which commutes with A, provided A and B
commuite.

Remark 5.1.18. Under the commutativity assumption of A and B, we also have
log, AP =log(AP)(log A)~! = Blog(A)(log A)~! = B.
Thus, in case when A and B commute, we have that
log, AB =B and Al%81B =B,
Here we state some elementary properties of generalized logarithm.

Theorem 5.1.19. Let A, B, C € B(H) such that A is positive and invertible. Then

(i) logs I =0andlog, A =1,

(ii) if B and C are commuting positive and invertible operators, then

log ,(BC) = log, B +log , C.

(iii) log,4(B~") = —log 4(B).
Proof. (i) This is obvious from the definition of logarithm.
(ii) Using [12, Proposition 1.1.], we have
log ,(BC) = log(BC)(log A) !
= (log B+ log C)(log A) *
=log(B)(log A) ! +10og(C)(log A) !
= log, B +log, C.

(1i7) This follows from the previous two parts. |
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We also obtain another expected property of the generalized logarithm.

Theorem 5.1.20. Let A, B € B(H) be positive and C, D € B(H ) be self-adjoint such that
A, B and C are invertible and 1 ¢ o(A). If A commutes with C and B commutes with D,
then

log ,c(BP) = Dlog ,(B)C ..

Proof. Since C commutes with A and both C and log A are invertible (as 1 ¢ c(A)),
it follows that Clog A is self-adjoint invertible operator. Thus, 0 ¢ ¢(Clog A), and
therefore AC = 1084 is positive invertible operator such that 1 ¢ ¢(A°), by the
Spectral Mapping Theorem. Thus, X > log ,c X is a well-defined map.
Since A commutes with C and B commutes with D, by Proposition 5.1.3, we have
that
log(A€) = ClogA and log(BP) = DlogB.

Finally,
logsc(B") = log(B”)(log A“) ™"
= Dlog(B)(Clog A)~!
= Dlog(B)(log A)~1C™!
= Dlog,(B)C L
This completes the proof. L

The following theorem is similar in spirit to Theorem 5.1.7.

Theorem 5.1.21. Let A,B,C € B(H) be positive and invertible operator such that 1 ¢
o(A) and B and C both commute with A. Then the following conditions are equivalent:

(i) BC =CB;

(ii) log ,(B)log, C =log,(C)log ,(B).

Proof. (i) = (ii): Assume that BC = CB. Since B and C commute with A, it follows
that log B and log C commute with log A, and therefore log(B)(log A) ! commutes
with log(C)(log A) . Hence, log ,(B) log 4, C = log 4(C) log 4 (B).

(ii) = (i): Assume thatlog,(B)log, C =log,(C)log,(B)., i.e.

log(B)(log A) log(C)(log A)~ = 1log(C)(log A) 'log(B)(log A) ™.

Since, B and C commute with A, it follows that log(B) log C = log(C) log B. Fur-
thermore,
e!°8 B log C = log(C)el8 5,

ie.

BlogC = log(C)B.
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From here,
log C log C
Be'°8% = ¢°8%B,

and so, BC = CB. |

The following theorems regard the monotonicity of a function T > log 4 T.

Theorem 5.1.22. Let A, S, T € B(H) be positive and invertible operators such that both S
and T commute with A and T < S.

(i) Ifo(A) C (1,00), thenlog , T <log, S.

(ii) Ifo(A) C (0,1), thenlog, T > log , S.
Proof. Let us prove part (i) first. Assume that T < S. Then logT < log$S. Since S
and T commute with A, it follows that log T and log S commute with (log A)~!, and
thus

log(T)(log A)~1 <log(S)(log A)~L.
Hence, log, T < log, S.
Now assume that c(A) C (0,1). Then c(A~!) C (1,0). By applying part (i) to

the operators A~ T and S, we have that

log, 1T <log,:S.
Also, using Theorem 5.1.20, we have that
—log, T=1log, 1T <log, 15=—1log,S.
Therefore, log , T > log , S. u

Theorem 5.1.23. Let A,S, T € B(H) be positive and invertible operators such that A, S
and T pairwise commute.

(i) Ifc(A) C (1,00), then
T<S <& log,T<log,S.

(ii) Ifc(A) C (0,1), then
T<S <& log,T>log,S.

Proof. Inboth cases, we only need to show the <« direction.

(i) Assume thatlog, T < log, S, i.e. log(T)(log A)~! < log(S)(log A)~!. Since
S and T commute with log A , it follows thatlog T < log S. From the commutativity
of log T and log S, it now follows that eo8T < logS Thus § < T.

(ii) Now assume that 0(A) C (0,1) and log, T > log, S, i.e.

log(T)(log A)~! > log(S)log(A) ™.
From here,
log(T)(—log A)~! < log(S)(—log A)~L.
Since — log(A) is positive and commutes with log T and log S, we have thatlog T <
log S. Again, since T and S commute, it follows that elogT < plogs jo T <. |

72



CHAPTER 5. A NOTE ON SOME RELATED CLASSES OF LINEAR OPERATORS

5.2 POLYNOMIALLY ACCRETIVE OPERATORS

We introduce a new class of operators called polynomially accretive operators, with
an aim to extend the notion of accretive and n-real power positive operators. We
give several properties of the newly introduced class and generalize some results
for accretive operators. We also prove that every 2-normal and (2k + 1)-real power
positive operator, for some k € IN, must be n-normal for all n > 2. Finally, we give
sufficient conditions for the normality of T in the previous implication.

5.2.1 MOTIVATION

Besides several classes mentioned in Chapter 1 which generalize the class of nor-
mal operators, there are many more. In [108], the author introduced another gen-
eralization of normal operators, called n-power normal operators. Namely, the op-
erator T is n-power normal operator for some n € IN if T" commutes with T*, i.e.
T"T* = T*T". For more information on n-power normal operators, see [4], [40] and
[41].

More recently, in [77], the authors further generalized the notion of n-power nor-
mal operator to the class of polynomially normal operators. An operator T is said to
be polynomially normal if there exists a non-trivial polynomial p such that p(T) is
normal. We also have to mention that the idea of considering this class of operators
is not new, and can be traced back to the work of Kittaneh [116].

The class of accretive operators recently followed a similar path as the class of
normal operators. Recall that the class of accretive operators is a subset of B(H)
consisting of all operators that have the positive real part. In other words, operator
T is accretive if and only if Re (T) > 0. Throughout the literature, accretive operators
are also known as real positive operators in the case of general Hilbert spaces, and
Re-nnd (Re-nonnegative definite) matrices, in a finite-dimensional case (cf. [24, 58,
175, 180, 189]).

In [94], the authors introduced and studied the operator T satisfying T2 > —T*2,
and in [13], the author further generalized the notion of accretive operators by in-
troducing the n-real power positive operator. Namely, for n € IN, an operator T is
said to be n-real power positive operator if

Tn + T*n Z O,

or, equivalently, Re (T") > 0. The author in [13] also gave several properties regard-
ing this notion. Inspired by these results, as well as the development and the path
taken in generalizing the class of normal operators, it is natural to extend the notion
of n-real power positive operators to an even wider class related to polynomials.
Through the rest of this chapter, C|z] will denote the set of all non-trivial complex
polynomials in one variable. Note that if p € C|[z], then p € C[z], as well, where

p(z) = p(z),z € C.
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Definition 5.2.1. Let T € B(H) and p € C[z]. If T satisfies the inequality
(5.1) p(T) +p(T%) >0,

then T is called p-accretive operator.
Operator T € B(H) is polynomially accretive, if T is g-accretive for some poly-
nomial g € C[z].

Remark 5.2.1. Note that if T € B(H) and p(t) = t", for some n € IN, then T is a n-real
power positive operator. Also, if T is p-accretive for p(t) = t, then T is accretive. Thus, the
set of all polynomially accretive operators contains all accretive and all n-real power positive
operators.

Remark 5.2.2. In the sequel, real positive and n-power real positive operators will be called
accretive and n-accretive operators, respectively. Also, n-power normal operators will be
simply called n-normal operators.

5.2.2 GENERAL PROPERTIES
We start with the following elementary observation.
Theorem 5.2.3. Let T € B(H) and p € C|[z]. The following conditions are equivalent:
(i) T is p-accretive;
(it) p(T) is accretive.
(iii) Re (p(T)x,x) >0, forall x € H;
(iv) T* is p-accretive.

Proof. (i) < (ii) : Obvious.
(i) < (iii) : We have that

>0, forallxe #H,

+ ( )x,x) >0, forallx e H,

)+ (x,p(T)x) >0, forallx € H,
+ (p(T)x,x) >0, forallx € H,

<= Re(p(T)x,x) >0, forallx € H.

(i) < (iv) : This follows directly from the definition.

Theorem 5.2.4. Let p € Cz| and T € B(H) be p-accretive. Then

(i) If zeroes of p do not belong to o(T), then p(T)~" is accretive.
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(ii) If S is unitarily equivalent to T, then S is p-accretive.
(iii) If M is a closed subspace of H which reduces T, then P§T|x, is p-accretive.

Proof. (i) Assume that the zeroes of p do not belong to ¢(T). Then, by the Spectral
Mapping Theorem, we have that p(T) is invertible. Since p(T) is accretive, for all
x € H, we have that

0 <Re (p(T)p(T) 'x,p(T) 'x) = Re (x, p(T) 'x) = Re (p(T) 'x,x).

Thus, p(T) ! is accretive.

(if) By assumption, S is unitarily equivalent to T, and so there exists a unitary
operator U € B(H) such that S = U*TU. Then S* = S*T*S, and it is easy to see
that p(S) = U*p(T)U and p(S*) = U*p(T*)U. From (5.1) it now follows that

p(S) +p(8") = Up(T)U + U"p(T")U = U*(p(T) +p(T"))U > 0,

and so S is p-accretive.
(iii) If M is a closed reducing subspace for T, then T can be represented as

r_[Too] (MY (M
- 0 TZ . ML ML .
From here,

r=|§ &) rm= G 0] = PG )

Using the fact that T is p-accretive, for any x € H, we have

s S]] - movnns

Thus, P{,T|\ = T is p-accretive. |

Theorem 5.2.5. Let p € Clz|and T € B(H). If T = Ty & T>, then T is p-accretive if and
only if Ty and T, are p-accretive.

Proof. The “if” part follows from part (iii) of the previous theorem.
Now assume that T; and T, are p-accretive and let [x y]" € H @ H be arbitrary.

Then,
p(Ty) 0 1 [x] [x]y _ oo [p(T)x] [x
Re(["0) ] [o] o)) =Re (o) )
= Re ((p(T1)x, x) + (p(T2)y, )
= Re (p(T1)x,x) +Re (p(T2)y, )
>0
Thus, T is p-accretive. .
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Theorem 5.2.6. Let T € B(H). If T is k-accretive for all 1 < k < n, then T is p-accretive
for any polynomial p of a degree n with nonnegative coefficients.

Proof. Let p(t) = ap + ayt + - - - + a,t" be an n-th degree polynomial with nonnega-
tive coefficients. Then,

Re (p(T)x,x) = Re (i 2, TFx, x)
k=0

n
=Re )_ ar(T*x, x)
k=0
n
=Y @Re (TFx, x
k=0

n
= ag||x||* + Y aRe (Tkx, x)
k=1
> 0.

Theorem 5.2.3 now yields the wanted result. H

Theorem 5.2.7. Let T € B(H) and q,v € C[z]. Consider F = q(T) +7(T*) and G =
q(T) —7(T*) and let p(z) = q(z)r(z), z € C. The following conditions are equivalent:

(i) T is p-accretive;
(ii)) GG* < FF*.
Proof. By direct computation, we have

FF* = GG™ = (q(T) +7(T7))(q(T") +r(T))
= (q(T) =7(T%))(q(T") = r(T)

q(T)g(T") +q(T)r(T) +7(T*)q(T") +7(T")r(T)

= @(T)g(T") = q(T)r(T) =7(T*)q(T") +7(T")r(T))

2(q(T)r(T) +7(T")q(T"))

2(p(T) +p(T7))-

~—

Therefore,
T is p-accretive <= p(T)+p(T*) >0 <= FF*—GG* >0,
from where the conclusion follows. [ |

Corollary 5.2.8. Let T € B(H) and q,r € C[z]. Consider F = q(T) +7(T*) and G =
q(T) —7(T*) and let p(z) = q(2)r(z), z € C. If T is p-accretive, then R(G) C R(F).

Proof. The proof follows from the previous theorem and Theorem 1.1.7. u
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5.2.3 THE STRUCTURE OF p-ACCRETIVE OPERATORS

Now we aim to give some representations of the structure of polynomially ac-
cretive operators. The starting point in our discussion will be the following repre-
sentation theorem of 2-normal operators proved by Radjavi and Rosenthal in [153].
We present it here in a slightly different form.

Theorem 5.2.9. [153] Let T € B(#H ). Operator T is 2-normal if and only if

A0 O
5.2) T=|0 B C|,
0 0 —B

where A, B are normal, C > 0, C is one-to-one and BC = CB. Moreover, B can be chosen
so that o(B) lies in the closed upper half-plane and the Hermitian part of B is non-negative.

In the case when polynomial p has only even powers, the characterization of
polynomially accretive operators is rather simple.

Theorem 5.2.10. Let T € B(H) be a 2-normal operator with the matrix representation
given by (5.2) and let p € C|z] be a polynomial with even powers only. Then T is p-
accretive if and only if A and B are p-accretive.

Proof. First note that, since B and C commute, we have that

A2 0 0
T>=10 B2 0
0 0 B?

Since polynomial p has even powers only, we have that p(z) = g(z?) for some poly-
nomial g € C|z]. Therefore,

q(A?) 0 0 p(A) 0 0
p(T)=q(T*)=| 0 q(B) 0 | =0 pB) 0 |.
0 0 q(B? 0 0 p(B)
The conclusion now follows by combining Theorem 5.2.3 and Theorem 5.2.5. L

Lemma 5.2.11. Let T € B(H) be a 2-normal operator with the matrix representation given
by (5.2) and let p € C|z| be a polynomial of a degree at least 3 and with exactly one odd
power k > 3. If Re (p(B)) and Re (p(—B)) have closed ranges, then T is p-accretive if and
only if the following conditions hold:

(i) Ais p-accretive;

(ii) |B] < u(Re (p(B)))ﬁ,for some p > 0.
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(iii) |B|(Re (p(B)))¥1 < v(Re (p(—B)))FT for some v > 0.

Proof. Let p(z) = ap+a1z+ - - - + a,z", n > 3. Using representation (5.2), we have
that
p(A) 0O 0

0 pB) D

0 0 p(=B)

for some D. Since k > 3 is the only odd integer such that a; # 0, we have that
D = a;B*"1C. Therefore,

4

p(T) =

p(A) +p(A") 0 0
p(T) +p(T*) = 0 p(B) +p(B*) aB1C ,
0 @ (B*'C)*  p(~B)+p(—B*)
Re(p(4)) 0 0
Re (p(T)) = { 0 Re(p(B))  #BIC ]
0 (4B*1C)* Re(p(—B))

Thus, we have that T is p-accretive if and only if the following two conditions hold:

(') Re(p(A)) = 0;

Re(p(B))  FB'C

@ | e i) >

Obviously, conditions (i) and (i’) are equivalent. By Theorem 1.1.11, condition (ii’)
is equivalent to the conjunction of the following three conditions:

(i") Re (p(B)) > 0;
(ii") R(BE1C) € R((Re (p(B)))1/2)

(iii") Re (p(—B)) > L F*F, where F = ((Re (p(B)))!/2)" Bt-1C.

First, we focus on condition (ii’'). Let us show that (ii”) = (ii). Note that
since C is one-to-one, we have that R(C) is dense in . Thus, B*"1(R(C)) C
R((Re (p(B)))'/?) now implies that

R(B*!) € R((Re(p(B)))!/2).
By assumption, a positive operator Re (p(B)) has closed range, and thus,
R(Re (p(B))) = R((Re (p(B)))'?).
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Therefore,
R(B!) C R(Re (p(B))).
By Theorem 1.1.7, there exists 4’ > 0 such that
1 pyk— 2
BB < ' (Re (p(B)))
Using the fact that B is normal, it follows that
B = (B"B)*! < ' (Re (p(B)))”.

1
Since the function f(x) = x2*-1 is operator monotone (Theorem 1.1.16), we have

[B] < ()7 (Re (p(B))) 1.

1
By taking u = (p/)2* 71, condition (ii) now follows. The reverse implication can
be proved in a similar manner by noting that normality of B and Theorem 1.1.1
imply that |B| and (Re (p(B)))k%l commute, and thus the function g(x) = x2*-1)

preserves monotonicity, by Remark 1.1.17. Thus, (ii) < (ii").

Let us now show that (iii) < (iii’"). Assume that (iii"’) holds. Since B is nor-
mal, C is positive and BC = CB, we have that both B and C commute with a pos-
itive operator Re (p(B)). By Theorem 1.1.1, they also commute with Re (p(B)))'/2,
which further implies, using the Spectral Theorem for normal operators, that they

commute with ((Re (p(B)))'/ 2)+, as well. Thus, by Theorem 1.1.14, we have that
operator F = ((Re (p(B)))l/z)Jr BK~1C is normal. Hence, F*F = FF*, and so

2
Re (p(—B)) > @FF*.

By Theorem 1.1.7 and using the closedness of range of Re (p(—B)), we conclude that
R(F) € R((Re (p(—B))'"?)) = R(Re (p(—B))),

Le.

53) B R ( ((Re (p(8)))"2)' €) € R(Re (p(-5)))

Observe that

R (((Re (p(B)))!/2)")
=R (((Re (p(B)))"/2)")

R
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Combining this with (5.3), and again using the fact that Re (p(—B)) has closed
range, we have

R(B* 'Re (p(B))) € R(Re (p(~B))).
Theorem 1.1.7 now implies that there exists v > 0 such that
B*"VRe (p(B))* < v'Re (p(~B))™.
Using the fact that |B| and Re (p(B)) commute and Theorem 1.1.15, monotonicity of

1
f(x) = x2-1) now implies

|B|(Re (p(B)))FT < v(Re (p(~B)))FT,

1
where v = (v/)2¢-1). Therefore, (iii) holds.
Using the similar arguments and comments as in part (ii) = (ii"), we can show that
(iii) = (iii""). This completes the proof. |

Remark 5.2.12. If T and p € C|z] are as in Lemma 5.2.11, we can see that p-accretivity of
T implies that the operators A, B and —B are also p-accretive.

Theorem 5.2.13. Let T € B(H) and p € C[z] be as in Lemma 5.2.11. If operator T is
p-accretive then A is p-accretive and there exists A > 0 such that

(5:4) 1B < [BIRe (p(B))) T < A(Re (p(~B)))F.

Moreover, if B is left-invertible, then the reverse implication holds, as well.

Proof. (=) Assume that T is p-accretive. By Lemma 5.2.11, we have that A is
p-accretive and there exists y, v > 0 such that

(5.5) B| < u(Re (p(B)))FT

and )

[B|(Re (p(B)))F1 < v(Re (p(~B)))FT.

Let A = max{y, v}. Then the second inequality in (5.4) is obviously satisfied. Now
using the fact that B is normal, (5.5) yields

BIRe (1(8))) "t = B1ERe ((2)) " 1
> 1B/ BB > {18

Hence, (5.4) holds.
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(<=:) To prove the reverse inequality, it is enough to show that condition (ii) in
Lemma 5.2.11 is satisfied. Observe that |B| is invertible since B is left-invertible, by
assumption. Therefore, using the normality of B, the inequality

1 1
+IBI* < |BIRe (p(B))) <1
implies that
[BI=2|BI2B|~2 < A|B|~> (|B[Re (p(B)))"7) |B 2,
ie. .
Bl < A(Re (p(B)))*.
Thus, T is p-accretive and the proof is completed. u

Theorem 5.2.14. Let T € B(H) and let k € IN. The following conditions are equivalent:
(i) T is 2-normal and (2k + 1)-accretive;

(ii) T = Ty ® Ty, where Ty is normal and (2k + 1)-accretive, and T, is nilpotent of index
2.

Proof. (i) = (ii). Assume that (i) holds. Since T is 2-normal, it is given by (5.2). By
analysing the proof of Lemma 5.2.11, we have that (2k + 1)-accretivity of T implies
that A is (2k + 1)-accretive, and also the following conditions hold:

(i//) BZk+1 + (B*)ZkJrl > 0;
(ii”) R(szc) C 'R((BZk+1 + (B*)2k+1)1/2);
(ZZZH) (_B)Zk—l—l + (_B*)Zk-l-l > 0.

Condition (iii"") is equivalent with the fact that
_ <B2k+1 + (B*)2k+1> — (_B)2k+1 + (_B*)Zk—l-l > 0.

This, together with (i”), implies that B%*+1 + (B*)2**1 must be equal to the zero
operator. Therefore,
R((BZkJrl + (B*)ZkJrl)l/Z) _ {O}

Condition (ii") yields that R(B?*C) C {0}, and thus CB* = 0. But C is one-to-one,
and so B%* = 0. The only nilpotent normal operator is the zero operator, and hence,
B = 0. Let

0 0

Then, T = Ty & T, where Tj is (2k + 1)-accretive and T is nilpotent of index 2, as
required.

(ii) => (i) Now assume that (ii) holds. Then T?> = T? & 0 implies that T2 is
normal. Similarly, T#**1 = T#%1 @ 0 yields the (2k + 1)-accretivity of T. |

T1:AandT2:{0 C:|
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Corollary 5.2.15. Let T € B(H). If T is 2-normal and (2k + 1)-accretive for some k € IN,
then T is n-normal for all n > 2.

Proof. It follows immediately from the representation of T given in Theorem 5.2.14.
[ |

Remark 5.2.16. In general, under the conditions of Corollary 5.2.15, we cannot conclude
that the operator T is normal. To see this, it is enough to take any non-normal operator T
such that T = 0.

In the following proposition, motivated by [4, Lemma 2.28], we give a necessary
condition for the normality of T.

Corollary 5.2.17. Let T € B(#H) be such that T is 2-normal and (2k + 1)-accretive for
some k € N. If R([T*, T]) € N(T")*, for some | > 2, then T is normal.

Proof. Since T is 2-normal and (2k + 1)-accretive, we have that T is n-normal for all
n > 2, by Corollary 5.2.15. Specially, T is I-normal and (! + 1)-normal. Thus,

TITT* — Tl+1T>k _ T*Tl+1 — T*TZT — TIT*T’

ie. T/(TT* — T*T) = 0. Thus, R([T*, T]) € N (T NN (TH* = {0}, from where it
follows that TT* = T*T, i.e. T is normal. |

Corollary 5.2.18. Let T € B(H). If T is injective, 2-normal and (2k + 1)-accretive for
some k € IN, then T is normal.

The following corollaries are matrix analogues of the previous results, presented
in the language of matrix theory.

Corollary 5.2.19. Let A bean x n complex matrix and let k € IN. The following conditions
are equivalent:

(i) A?is normal and A®*+1 is Re-nnd.
(ii) A = Ay @ Ay, where A1 is normal, A%kﬂ is Re-nnd, and A, is nilpotent of index 2.

Corollary 5.2.20. Let A be a n x n complex matrix. If A% is normal and A***1 is Re-nnd
for some k € IN, then A" is normal for all n > 2.

Corollary 5.2.21. Let A be a n x n complex non-singular matrix. If A? is normal and
A1 s Re-nnd for some k € N, then A is normal.
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5.3 POSITIVE AND SELF-ADJOINT SOLUTIONS TO THE
SYSTEM OF OPERATOR EQUATIONS

Operator equations is one of the branches of operator theory that has many ap-
plications in other fields of mathematics and science. For example, the most notable
applications can be found in control theory, information theory, linear system theory,
and other areas (cf. [9]). In 1966, Douglas [79] established the celebrated “Douglas
Range Inclusion Theorem”, in which he gave some equivalent conditions for the ex-
istence of a solution to the operator equation AX = B (see Theorem 1.1.7). Later,
many mathematicians considered some related problems of the solvability of some
operator equations derived from AX = B (see [57, 58, 62, 65, 76, 78, 177, 183, 184,
125]). For example, Daji¢ and Koliha [69] considered the existence of hermitian so-
lutions and positive solutions to the system of operator equations AX = C,XB =D
and also gave their concrete forms. Based on that, Arias and Gonzalez [9] studied
the existence and expression of positive solutions to operator equation AXB = C
with arbitrary operators A, B and C. The authors in [67] further generalized the
results of [9]. For the C*-algebra setting see [63]. Recently, Vosough and Moslehian
[176] considered the system of operator equations BXA = B = AXB and char-
acterized representations of the solutions to the system, while Zhang and Ji [188]
extended their results to the system AXB = C = BXA. In this section, we fur-
ther extend the problem, and consider the relevant problems of the solutions to the
system of operator equations A XB; = Cj, i = 1,2, as well as solving the operator

inequality C < AXB, where A < B means
AA*=BA* and A"A= A"B.
The following simple, but useful results, will often be used throughout this section:

Lemma 5.3.1. [9] Let T € B(H,K) and C € B(G, K) such that R(C) C R(T). Then
T'C € B(G, H).

Theorem 5.3.2. [90, p. 55] Let M be a dense subspace of a Hilbert space H, and let T be a
linear operator from M to a Hilbert space K. If T is bounded, then there exists a unique T
which is the extension of T from H to K, that is Tx = Tx forall x € M and ||T|| = ||T||.

The operator T is called the continuous linear extension of T. In the sequel, if T is
(possibly) not defined on a whole space H, with D(T) we shall denote the domain
of T.

5.3.1 SOLVABILITYOF A, XB; =C;,i=1,2

We start by giving some conditions for the existence of solutions, Hermitian so-
lutions, and positive solutions to the system of operator equations A;XB; = C;, i =
1,2.
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Theorem 5.3.3. Let A; € B(H,K), B; €
that D(BY) = D(B) and R(C;Bf) C D(A
following statements are equivalent:

B(F,G)and C; € B(F,K),i=1,2. Assume
N, i=1,2 IfAIC,Bf = A*CZB; then the

(i) The system of operator equations

A1XB1 = (y,
AxXBy =

is solvable;
(ii) R(C;) C R(A;) and R((ATC;))*) CR(B}),i=1,2.

Proof. (i) = (ii) Assume that there exist X such that A;XB; = C;, i = 1,2. Then,
obviously R(C;) € R(A;) and so A;rCi € B(F,H). Moreover, as A;rAi)N(Bi = A:-rC,-,
we have that R((ATC;)*) C R(B}),i=1,2.

(ii) = (i) Now assume that (i7) holds. Since R(C;) C R(A;), it follows that C; =
A;ATC;. Also, from R((AfC;)*) C R(B}) C R(B!B;), we get that ATC; = ATC,B!B;.
Thus,

C; = A;ATC; = A;ATC,B!B;.

Let X := A1C,B} = AJCyB. Then

AXB, = AjATC1BIB = ¢
AyXBy = AyASC,BIB, = Co.

We will show that X is bounded. From R(C;) € R(A;) we have that ATC; ¢
B(F,H). Since R((A1C1)*) C R(B;), by Theorem 1.1.7, there exists Z € B(G, H)
such that (ATCy)* = BiZ*, i.e.

AlC, = ZB,.
We get that X = ATC;Bf = ZB,Bf € B(D(Bf), H). Let X, € B(G, H) be a continu-
ous linear extension of X. Since R(B;) C D(B) = D(X), we have that XoB; = XB;.

Similarly, XoB; = XB,. It is obvious now that X € B(G, H) is a solution to the sys-
tem AiXBZ' = Cl', 1= 1,2. |

In the next theorem, we establish a relationship between solutions to the system
A;XB; = C;, i = 1,2 and solutions to the system XB; = AJ{Cl,AzX = CzB;r which
shall be useful to give the general hermitian solutions and positive solutions to the
system A;XB; = C;, i =1,2.

Theorem 5.3.4. Let A; € B(H,K), B; € B(F,G)and C; € B(F,K), i = 1,2. If
R(B1) € R(By) and R(A3) C R( 1), then the following statements are equivalent:
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(i) The system of operator equations

A1XBy =(y,
A XBy =

is solvable;
(i) R(C1) € R(A1), R(C;) C R(Bj) and the system of operator equations
XB; = ATCy,
AxX = GBS

is solvable.

Moreover, if one of the previous conditions holds, then every solution of XBy = AYCy,

ArX = CzB;r is also a solution of A;XB; = C;,i = 1,2. Also, for X € B(G,H) such that
A;XB; = C;,i = 1,2, we have that

P,

RADAE

R(B) | D(B))

is a solution of XBy = AYCy, A,X = GBl.

Proof. (i) = (ii) Assume that there exist X such that A;XB; = C;, i = 1,2. Then
obviously R(Cy) € R(A;) and R(C;) C R(Bj). Also, from R(B;) C R(By) and
R(A;) C R(A;), we may conclude that By = B;BIB; and A, = AyATA;. Let

Y := AYA1XByB} € B(D(B}),H). Then
YB; = ATAXB,BIB; = ATAXB; = Al
A)Y = AyAYA1XB,BY = Ay XByB = C,B].

Let Yo € B(7g,H) be a continuous linear extension of Y. Since R(B;) C R(B,) C
D(BS) = D(Y), we have that YyB; = YBy, and thus

YoB, = AlC,.

Also, since R(C;) C R(B3), by Theorem 1.1.7, there exists Z € B(G, H) such that
C; = B3Z*, ie.

Cyr = ZBy.
We get that C;B} = ZB,B} € B(D(B}),H). Thus, it allows a continuous linear
extension on G. Let x € G be arbitrary and let (x,), € D(B}) such that x, — x, n —
co. Then

AzYOX = Az( 11m Yxn) = lim AzYxn

n—o00

= lim Cszxn == CzB+

n—oo
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Thus, Yy € B(G, H) is a solution to the system XB; = AICy, A, X = ?B;

(ii) = (i) Now assume that (ii) holds. Since R(C;) C R(A;) and R(C;) C
R(B3), we have that C; = A1 AYC; and C; = C2B}B,. Now let X € B(G,H) such
that XB; = AlC; and ArX = CyB}. Since R(B,) C D(BI) = D(C,B)), it follows
that

A1 XB) = A1AIC = ¢
A2XBy = C,BIBy = C2BiB, = Cy.
Thus, the system A;XB; = C;, i = 1,2 is solvable. |
The next theorem gives conditions for the existence of a Hermitian solution of

the system A;XB; = C;, i = 1,2.

Theorem 5.3.5. Let A;,B;,C; € B(H),i =1,2such that C; < Ap < A1;,Cy <B1 < By
and ATA; [D(B;): ByBl. If the system of operator equations A;XB; = C;, i = 1,2 is
solvable, then the following statements are equivalent:

(i) The system of operator equations

A1XB; = (4,
ArXBy = Cy
has a hermitian solution;
(ii) The system of operator equations
XB; = AlC,,
AxX = B!

has a hermitian solution.

Proof. (i) = (ii) Assume that there exist a hermitian operator X € B(#) such that
A;XB; = Cj,i =1,2. It follows from the proof of Theorem 5.3.4 that

Yo := At A XB,B} € B(H)

is a solution of the system XB; = A{Cl, ArX = CZB;r . Let x € H be arbitrary and let
(xn)n € D(B;r) such that x, — x, n — . As AIAl = BzB;r on D(Bg), we have

(Yox,x) = nli_r>ro1°<Y0xn,xn> = nli_r)rg(}(AIAQ?&B%xn,xn)

= lim (ATA XATAyxy, x,) = lim (xn, ATALX* AT Aqxy)
n o0

n—oo
= J%(xn,AIAl)?BzBIXH = Jiggo(xn,Yoxn>
= (x, Yox).
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Thus, Yy € B(H) is a hermitian solution of the system XB; = AICy, A, X = C,B].
(ii) = (i) Now let Y € B(H) be a hermitian solution of the system XB; =

A{Cl, ArX = CzB;r . Tt follows that X = Y is a hermitian solution of the system
A;XB; = C;,1 =1,2 by Theorem 5.3.4. |

The next theorem, similar in spirit to Theorem 5.3.5, gives conditions for the
existence of a positive solution of the system A;XB; = C;, i =1, 2.

* * * *
Theorem 5.3.6. Let A;,B;,C; € %(H), i=1,2suchthat C; < Ay < A1,C < B < By
and ATA, DBt = ByBl. If the system of operator equations A;XB; = C;, i = 1,2 is
solvable, then the following statements are equivalent:

(i) The system of operator equations

A1XBy =(y,
AzXBZ = C2
has a positive solution;
(ii) The system of operator equations
XB; = AlC,,
AxX = GBS

has a positive solution.

Proof. (i) = (ii) Assume that there exist a positive operator X € 2B(H) such that
A;XB; = Cj, 1 =1,2. It follows from the proof of Theorem 5.3.4 that

Yo := ATA1XB,B} € B(H)

is a solution of the system XB; = A{Cl, ArX = CZB;r . Let x € H be arbitrary and let
(xp)n € D(B;) such that x, — x, n — . As AIAl = BZB;r on D(B;), we have

(Yox,x) = ,}Eﬂo(Yox”’x”) = Jﬂ(AIAl)?BZB;xn,x@

= lim (XATAqx,, AYA1x,) > 0.
n—oo
Thus, Yy € B(H) is a positive solution of the system XB; = AICl, ArX = CzB;r.
(ii) = (i) Now let Y € B(H) be a positive solution of the system XB; = ATCy,
ArX = CZB;r . It follows that X = Yis a positive solution of the system A;XB; = C;,
i = 1,2 by Theorem 5.3.4. u
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Now we are ready to establish the general form of the Hermitian solution of the
system A;XB; = C;,i=1,2.

* * * *
Theorem 5.3.7. Let A;, B;,C; € B(H),i =1,2suchthat C; < Ap < A1,C, < B1 < B
and

(5.6) AT A, p(at)= AAl = BIB, p(sy= B,BI.

If the system of operator equations A;XB; = C;, i = 1,2 has a hermitian solution, then the
general Hermitian solution has the matrix representation

X1 X1z]
5.7 X =
6.7 [Xi‘z X»

in terms of H = R(A}) ® N (A1), where Xy is a hermitian and Xq1 = Pml? [m
1
satisfying that Y is a hermitian solution of XBy = AYCy, AyX = CoB].

Proof. Suppose that X € 9B(H) has the matrix decomposition (5.7). Since Ay <*
A1, Bi <* By and (5.6) holds, we have that A; and B;, i = 1,2, have the matrix

representations
o Ail 0 L Bil 0 .
AZ_|:0 0:|I Bl_|:0 O ’ 1_1/2/

with respect to H = R(A;) & N (A1). Therefore,

AZ'XBZ' = AixllBi = AZPR(AT)Y r

Ry By =12

Since R(B1) € R(Bz) and R(Cy) C R(A1), we have

_ v _ T v
A1XBy = A PrizeyY Iy B = AIATAY By

= A1YB;, = A AlC = (.
From R(Aj;) € R(A7) and R(C;) C R(Bj), we get

AzXBz - AZPWY rm

= A)YBy = CB}By = CoBiBy = G

B, = AyATAYB,

Also, for an arbitrary z € R(A}) = R(By),

(X11z,2) = <PW17Z,Z> = (Yz, Psris2)

R(A7)
= <Z, Y*Z> = <sz, YZ>
= (z, PWYZ> = (z, X112),
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so Xj; = X11. Hence, X is a hermitian solution to the system A;XB; = C;,i = 1,2.
On the contrary, assume that X € B(#) is a hermitian solution to the system

A;XB;=C;,i=1,2. Set
X — [Xn X1z]

Xo1 X

in terms of H = R (A7) ® N (A1). From Theorem 5.3.5, it follows that

Y :

PriaXPriey) [o(sy) € BH)

is a solution of the system XB; = AICl, ArX = CzB;f. Now,
PraanY v = Praan Pran X PRy 1oy [R5

= PraapPriap AP

- PR(A;)X [R(B,):

and therefore,

YT

P
I

Xll =P X f R(AI)

R(A})™ '"R(B2) R(Bz) *

The fact that X is hermitian implies X,; = XJ, and X5, is hermitian. Hence, X has
the form of (5.7). |

Corollary 5.3.8. Let A;,B;,C; € B(H), i = 1,2 such that R(A1) and R(By) are closed,
Ci <A< A, C < By <Byand
AYA, = AAT = BIB, = B,B].

If the system of operator equations A;XB; = C;, i = 1,2 has a hermitian solution, then the
general Hermitian solution has the matrix representation

X11 Xlz]
X —
[sz X»

in terms of H = R(A]) & N (A1), where Xoy is a hermitian and Xq1 = PR(A;)? 'R(B,)
satisfying that Y is a hermitian solution of XBy = AYCy, AyX = CoB].

In the following, we obtain the representation of positive solutions to the system
of equations A;XB; =C;, i =1,2.

* * * *
Theorem 5.3.9. Let A;,B;,C; € %(’H), i=1,2suchthat C; < Ay < A1,C < B <By
and

(5.8) AJA1 Ipan= A1A] = BiBy [y = B2BJ.
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If the system of operator equations A;XB; = C;, i = 1,2 has a positive solution, then the
general positive solution has the matrix representation
Xu Xi2

(5.9) X — . - I
X1o ((X11) X12) (Xll) Xip+ F

1
in terms of H = R(A;) ® N (A1), where F is positive, R(X12) € R(X?) and Xq1 =
PfR(A;)Y [772(32) satisfying that Yisa positive solution of XB; = AICL A X = CgB;.

Proof. Suppose that X € 9B(H) has the matrix decomposition (5.9). Since A, <*
A1, By <* By and (5.8) hold, we have that A; and B;, i = 1,2, have the matrix

representations
o Ail 0 o Bil 0 .
A1_|:0 0:|I Bl_|:0 O ’ 1_1/2/

with respect to H = R(A;) & N (A1). Therefore,

AZ'XBZ' = Al-ani = AZPR(AT)Y r

R B =12

Since R(B1) € R(Bz) and R(Cy) € R(A1), we have
By = A1ATAYB;

AXB1 = MPRianY TnG,)

= A1YB; = A Al = (.
From R(A;) € R(A7) and R(C;) C R(B;), we get

AQXBZ = AzPTAl*)Y rm

= A)YBy = C;BIBy = &3BIB, = Co.

B, = A,ATAYB,

Also, for an arbitrary z € R(A}) = R(By),

<X112,Z> = <PW?Z,Z> = <YZ, PWZ>

= (YPruan? Priap?) 2 0

so X117 > 0. Hence, X is a positive solution to the system A;XB; = C;,i =1, 2.
On the contrary, assume that X € B(H) is a positive solution to the system

Al’XBi = Ci,i = 1,2. Set
X — [Xll Xlz]

Xo1 X

in terms of H = R (A7) ® N (A1). From Theorem 5.3.6, it follows that
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is a solution of the system XB; = AICl, ArX = CZB; Now,

PrianyY Try) = PrianPrianXPrizy) Ip(sg) [R(By)

R(By) [R(8,)

and therefore,

1
The fact that X is positive implies that X1 = X7,, R(X12) € R(X7{;) and

X = ((X%1)+X12)*(X1%1)+X12 +F,
where F is positive (see Theorem 1.1.11). Therefore X has the form of (5.9). |
Corollary 5.3.10. Let A;, B;,C; € B(H), i = 1,2 such that R(A1) and R(B,) are closed,
C1 < Ay < Ay, Cy < By < Byand
AYA, = AAT = BB, = B,B].

If the system of operator equations A;XB; = C;, i = 1,2 has a positive solution, then the
general positive solution has the matrix representation

X1 X12

X = 1 1
X5 (X3)TXp)* (X)) X1+ F

1
in terms of H = R(A;) ® N (A1), where F is positive, R(X12) € R(X?) and Xy1 =
Pr(an)Y Ir(B,) satisfying that Y is a positive solution of XBy = AYCy, AyX = CyB].

5.3.2 SOLVABILITY OF C % AXB

The next theorem provides necessary and sufficient conditions for the solvability
*
of operator inequality C < AXB.
Theorem 5.3.11. Let A, B, C € B(#H). The following statements are equivalent:

(i) Operator inequality C ; AXB is solvable;

(ii) The system of operator equations

AXBC* = CC?,
C*AXB =C*C

is solvable.
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(iii) R(CC*) C R(A), R(C*C) C R(B*) and the system of operator equations
XBC* = A'ccr,
C*AX = C*CBt
is solvable.

Proof. (i) < (ii) This follows immediately from the definition of *-order.

(ii) < (iii) Observe that R(BC*) C R(B) and R((C*A)*) = R(A*C) C R(A*).
The proof now follows from Theorem 5.3.4. u

Corollary 5.3.12. Let A,B,C € B(H) such that R(A) and R(B) are closed or R(C) is
closed. Then the following statements are equivalent:

(i) Operator inequality C % AXB is solvable;
(i) R(C) C R(A) and R(C*) C R(B*);
(iii) Operator equation C = AXB is solvable.
Proof. (i) = (ii) Assume that there exists X € B(H) such that C % AXB. Then

R(CC*) C R(A) and R(C*C) C R(B*), by Theorem 5.3.11. If R(A) and R(B) are
closed, we have that

If R(C) is closed, then

R(C) = R(CC*) C R(A),
R(C*) = R(C*C) C R(B*).

In both cases, R(C) € R(A) and R(C*) C R(B*).
(ii) = (iii) This follows from Theorem 1.1.6.
(iii) = (i) Obvious. [

*
We now consider a special case when B = I, i.e. we consider the equation C <
AX. Using Theorem 5.3.11 and Corollary 5.3.12, we get the following corollaries:

Corollary 5.3.13. Let A, C € B(H). The following statements are equivalent:

(i) Operator inequality C ; AX is solvable;
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(ii) The system of operator equations
AXC* = CC,
C*AX =C"C
is solvable.
(iii) R(CC*) C R(A) and the system of operator equations
Xc* = Atccr,
C*AX =C"C
is solvable.
Corollary 5.3.14. Let A, C € B(H) such that R(A) or R(C) is closed. Then the following

statements are equivalent:

(i) Operator inequality C ; AX is solvable;
(ii) R(C) C R(A);
(iii) Operator equation C = AX is solvable.

We now give a general form of the solution of C % AX.

Theorem 5.3.15. Let A, C € B(H) such that R(C) = R(C) C R(A). Then, the general
solution of the inequality C % AXis

_ 7t
X - A C + PN(C*A)Z - PWQN(C*A)ZPR(C*)’

where Z € B(H) is arbitrary.
Proof. Assume that R(C) = R(C) C R(A) holds. By the previous corollary, the
inequality C % AX is solvable. Also, the general solution of the equation AXC* =
CC*is
X = Afcc*c* + v — ATAaycrc
= Afcc'c+Y - AtAYC'C
= ATC+Y - ATAYC'C.

where Y € B(H) is arbitrary. Note that ATC : H +— H is bounded since R(C) C
R(A). If X satisfies the equation C*AX = C*C, then

C*A(ATC+Y — ATAYC'C) = C*C
C*AATC + C*AY — C*AATAYCYC = C*C

=
= C*C+C*AY — C*AYC'C = C*C
= C*AY(I-C'C)=0.
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Thus, Y is a solution of the equation C*AX (I — C'C) = 0. Since
(I-cfo)y(1—-ctoyt =1-Cfc,
it follows that

Y =27 (C*A)f'C*Az(I - CctC)(I - ctC)!
=7 (C*A)TC*AZ(1-C'C),

where Z € B(H) is arbitrary. Replacing Y in the formula for X, we get
X =A'C+2Z - (C*A)TC*AZ(I -

fC)
—ATA(z — (C*A)'C*Az(I - C'C))CC
= ATC+ 2z - (C*A)'c*AzZ(I - C'C) — ATAzC'C
= ATC+(I1—-(C*A)TC*A)Z - (A*A— (C*A)tC*A)zCtC
= ATC+ Pycin)Z — (P — Priarcy) ZPr(c)-
Since R(A*C) C R(A*), it follows that
Praasy — Praaro) = By = PR (coay

Finally, we conclude that the general solution of C % AXis
_ gt
X =AC+Pyxca)Z — Priamon e a)2Pr(cr)

where Z € B(H) is arbitrary.

Using the fact that
* BB* = AB* BB* = BA* *
B<A& & & BT < AT,
B*B = B*A B*B = A*B

we also have the following corollaries for the inequality C % XB:

Corollary 5.3.16. Let B, C € B(#H). The following statements are equivalent:

(i) Operator inequality C % XB is solvable;
(ii) The system of operator equations

B*XC = C*C,
CB*X =CC*

is solvable.
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(iii) R(C*C) C R(B*) and the system of operator equations
XC = B*'C*C,
CB*X =CC*
is solvable.

Corollary 5.3.17. Let B, C € B(H) such that R(B) or R(C) is closed. Then the following
statements are equivalent:

(i) Operator inequality C % XB is solvable;
(ii) R(C*) C R(B*);

(iii) Operator equation C = XB is solvable.

Corollary 5.3.18. Let B,C € B(H) such that R(C*) = R(C*) C R(B*). Then, the
general solution of the inequality C < XB is

X = CB"+ ZPy(cp+) — Pric)ZPriyoN (cBry

where Z € B(H) is arbitrary.
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CHAPTER 6

A NOTE ON g-NUMERICAL RADIUS OF
LINEAR OPERATORS

In this chapter, our primary focus is on exploring the concept of the g-numerical
radius, denoted as wj(-), for operators on Hilbert spaces. We delve into the investi-
gation of various inequalities associated with these values, extending along the way
the well-known results regarding the numerical radius that occurs when we plug in
g = 1. Additionally, we provide explicit formulas for calculating wy(-) in specific
cases of operator matrices, as well as in the case of the rank one operators. Finally,
we explore various analytical properties of w,(-) when it is treated as a function of
the parameter q.

6.1 MOTIVATION

As already mentioned in Section 1.1, the numerical range of some A € B(H) is
defined as the set
W(A) = {{Ax,x): x € H, ||x|| =1},

while the numerical radius is given by

w(A)= sup |w|
weW(A)

Similarly, the g-numerical range for g € D is defined via
(6.1) Wy(A) = {{Ax,y): vy e H, x| = llyl =1 (xy) = 4}
while the g-numerical radius represents the value

(6.2) wy(A) = sup |w|
weW,(A)
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Here, it is worth pointing out that the g-numerical radius is merely a general-
ization of the numerical radius, given the fact that w,;(A) = w(A) for [q] = 1.
This observation follows from the fact that the equality would have to hold in the
Cauchy-Schwarz inequality |q| = |(x,y)| < ||x||||ly]| = 1, provided |gq| = 1. From
here, it is clear that y = Ax would need to be true for some A € C, |A| = 1, hence
(A%, y)] = |(Ax, 2]

Obviously, if dim (#) = 1, then W;(A) is nonempty if and only if |g| = 1, while
if dim (H) > 2, it is easy to see that WW;(A) is always nonempty. Thus, in the se-
quel, we shall restrict ourselves to the Hilbert spaces of dimension at least two. The
set W;(A) was originally introduced in [127] for operators on finite-dimensional
unitary spaces. The motivation for (6.1) is natural and comes from the problem of
constrained optimization of bilinear functionals. More details about this set can be
found in [91, Chapter 8]. We also refer a reader to some recent contributions to the
subject. See, for example, [34, 35, 36, 37, 93,107, 123, 121, 148, 154].

In a recent paper by Moghaddam et al. [129], the g-numerical radius w,(A) was
considered for arbitrary operators A € B(H) and values of g4 € (0,1), and the
following two inequalities were derived.

Theorem 6.1.1. [129, Theorem 2.1] Let A € B(H) and q € (0,1). Then
q
(6.3) [A[] < wq(A) < [|A],
22— %) !

and for any normal operator A,

7 Al < @a) <Al

Theorem 6.1.2. [129, Eq. (23)] Let A € B(H ) and q € (0,1). Then

q q
6.4 w(A) Cwy(A) L ———=w(A).
( ) 2_q2()— Q()—l_ﬂ()
An inequality similar to (6.4) holds in the scenario when we are dealing with a
finite-dimensional Hilbert space H, as demonstrated by Li et al. [122].

Theorem 6.1.3. [122, Theorem 2.5] Suppose q1,q2 € C satisfy 0 < |q2| < |q1] < 1. Then
for a finite-dimensional Hilbert space H and any A € B(H ), we have

2 Wi (A) € g1 Wy, (A).

Motivated by the aforementioned results, our central goal is to investigate the
various properties of the g-numerical radius with the purpose of obtaining stronger
results. As animmediate improvement over the inequalities stated in Theorems 6.1.1
and 6.1.2, we present the following theorem.
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Theorem 6.1.4. Let A € B(H) and q € D. We then have

(6.5) 9] w(A) < wy(A),
as well as
65) )1 < wg(a) < 141,

Also, if the operator A is normal, then
(6.7) g - Al < wq(A) < || Al

Besides that, our second main result represents an inequality which generalizes
the well-known equality (see, for example, [91, Proposition 5.1, (i)])

—+00
(6.8) w (@ An> = sup w(Ap)
n=1

nelN

regarding the numerical radius of an operator EB:; Ay, where A, € B(H,) for each
n € N, and (Hn)qen is a given sequence of Hilbert spaces. We disclose the afore-
mentioned result in the form of the next theorem.

Theorem 6.1.5. Let (H,)en be a sequence of Hilbert spaces and let A, € B(Hy) for all
then € N. Ifg € D\ {0}, then

_ 2
< lal+2v1-q] sup Wy (Ay).
|q| nelN

(6.9) sup wy(An) < wy (ég An>
n=1

nelN

Bearing everything in mind, the structure of the chapter shall be organized as
follows. In Section 6.1.1 we disclose certain well-known theoretical results regarding
the numerical and g-numerical radius. Afterward, we use Section 6.2 in order to
give an elementary proof of the fact that (B(#),w,) is a Banach space for each
g € D\ {0}. In this section, we also demonstrate the validity of Theorem 6.1.4
along the way. Subsequently, we regard w, as a function in g € ID in Section 6.3, and
establish some of its analytical properties, including its continuity. In Section 6.4 we
offer a full proof of Theorem 6.1.5 along with some additional results regarding the
g-numerical radius of special cases of operator matrices. We also give an explicit
formula for the g-radius of rank one operators, as well as a generalization of the
Buzano inequality (see [29, 87]).
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6.1.1 PRELIMINARIES

This brief section will serve to disclose some theoretical results regarding the
numerical and g-numerical radius which will be used throughout the remainder of
the chapter. It is well known (see, for example, [91, 95]) that

(6.10) %HAH < w(A) < ||A|| foreach A € B(H).

The left-hand side inequality in (6.10) is a direct consequence of the polarization
identity and the parallelogram law. Besides that, we will heavily rely on the fol-
lowing lemma which elaborates on the properties of the numerical radius of some
operator matrices.

Lemma 6.1.6. [105, Lemma 2.1] Let A, B € B(H) and 6 € R. Then

@ w([f v]) = maxte,wm);

o ) -+( )
wo((? )< )
(iv) w ( ]) =max{w(X+Y),w(X-Y)}

. 0 Y
In particular, w < {Y O] ) = w(Y).

In the rest of the chapter, we will apply Lemma 6.1.6 in order to obtain certain
generalized results regarding the g-numerical radius of corresponding operator ma-
trices. While dealing with the g-numerical radius, one of its most important prop-
erties used will be its radial symmetry. This observation is quite simple to prove,
alongside the following statements given in the next lemma which represents a di-
rect consequence of the results obtained in [91, Proposition 3.1, Chapter 8], as well
as (6.2).

o X

<X =o
> =

Lemma 6.1.7. For A,B € B(H) and A € C, g € ID we have following properties:
(i) wg(AA) = Ay (A);
(ii) wq(A+ B) < wq(A) + wy(B);

(iif) wy(U*AU) = wy(A), where U € B(H) is a unitary operator;

(iv) wyg(A) = wy(A) forall A € Cwith [A| = 1.
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6.2 NORM PROPERTIES

By implementing (6.3), it is not difficult to conclude that the function wy: B(H)
R is a norm on the space B(#H ), for each g € D\ {0}. This result is actually well-
known and can be proved in many ways. For example, if the Hilbert space H is
tinite-dimensional, then the corresponding proof can be carried out by using the
strategy from [122, Theorem 3.1].

In this section, our goal will be to prove Theorem 6.1.4 and then provide an
elementary proof of the fact that (B (# ), w,) is a Banach space for each g € D \ {0}.
We begin by interpreting equations (6.1) and (6.2) in order to derive an alternative
formula for defining the g-numerical range and g-numerical radius of an operator.
The corresponding result is disclosed in the following elementary lemma.

Lemma 6.2.1. Forany A € B(H) and q € D, we have

610 Wi(A) = {atany) + 1= laB(Atw) Il = =1, ) =0}
Also, we have

(6.12) wy(A) = sup{|q| Ay, I+ 1 - 1aP - [(ALY)] < vl = [Hl =1 (Ly) = o}'
Proof. Let x,y € H be unit vectors such that (x,y) = g. From H = lin{y} & {y}+,

we have that there exist some A € C and v € {y}* such that x = Ay + v. This
implies g = (x,y) = A, hence we obtain x = qy + v. From 1 = ||x||?> = |q|*> + ||v]?,

we get ||v|| = /1 — |q|?, which means that

(6.13) x =qy+/1—|g|2t for some unit vector t € {y}*.

It is obvious that the converse is also true, i.e. if (6.13) holds, then (x,y) = g. The
noted observation directly implies (6.11) from (6.1).
It is clear that w,(A) is finite. By using (6.2), we see that

wy(A) = sup {|q<Ay,y> ST AL Tyl = I =1, (y) = o}.
If we denote
s = sup{wr Ay )+ T LB 1ALyl = e =1, () :o},

it becomes trivial to see that s is finite and that w,(A) < s. Thus, in order to complete
the proof regarding (6.12), it is sufficient to demonstrate that w,(A) > s.
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Let e > 0 be an arbitrary constant. Then, there certainly exist two vectors y,t € ‘H
such that |ly|| = [|t]| =1, (y,t) = 0 and

q] - [{Ay, y)| + /1= |q|>- [(At,y)| > s —¢,

which promptly gives

9(Ay,y)] + \\/1 - |Q|2<At,y>‘ e

Now, it is easy to see that there exists a 8 € R such that t; = ¢/ t € H satisfies

19{Ay, y)| + ' 1- |q|2<At1,y>’ - ‘LI(Ay,w +4/1— |q|2<At1,y>‘ :

From here, we quickly obtain that

wy(A) > \q<Ay,y> e |q|2<At1,y>1 S5

Since € > 0 can be arbitrarily chosen, we see that w,(A) > s. H

By relying on Lemma 6.2.1, we are now able to give the complete proof of Theo-
rem 6.1.4.

Proof of Theorem 6.1.4. By implementing (6.12), we immediately see that the inequal-
ity |g| - |{Ay, y)| < wy(A) holds for each unit vector y € H. Inequality (6.5) follows
directly from here. Furthermore, it is obvious that w,;(A) < ||Al|. By combining
(6.5) and (6.10), it becomes straightforward to obtain (6.6). Also, if the operator A is
normal, then w(A) = || A|| necessarily holds (see, for example, [95, Theorem 1.4-2.]),
which directly leads us to 6.7 by simply applying (6.5). L

We are now in a position to implement Theorem 6.1.4 in order to provide a quick
and concise elementary proof regarding the norm properties of w,; on B(H). We
demonstrate the said result in the following theorem.

Theorem 6.2.2. If H is a Hilbert space and q € D \ {0}, then (B(H), wy) is a Banach
space and the norm wy is equivalent to the standard operator norm || - || on B(H).

Proof. By implementing (6.6), it is not difficult to establish that w,: B(H) — Ris a
norm on B(H ), hence (B(H), w,) is a normed space. From the same inequality, we
deduce that the norm w,; must be equivalent to the standard operator norm || - || on
B(H). For this reason, (B(#H ), w,) must be a Banach space. |
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Remark 6.2.3. Theorem 6.2.2 could also be proved in a different manner, by using the
convexity arqument. Namely, let y € H be an arbitrary unit vector and let z € {y}* be
some unit vector. Moreover, let t1 = z, t, = —z and

a1 = q{Ay,y) +/1—|q|*(Aty,y) and ay = q(Ay,y) +/1— [q]* (AL, y).

Since (t1,y) = (t2,y) = 0, (6.11) tells us that ay,a, € Wy(A). Due to the fact that
Wq(A) is a convex subset in C (see, for example, [91, Theorem 3.2]), we have that

11
9{Ay, y) = 5a1 + 582 € Wy(4),

which promptly gives (6.5).

Here, we note that Theorem 6.1.4 can also be applied to extend some other well-
known claims. For example, it is possible to obtain a generalization of an earlier
result given in [91, Proposition 5.1 (g)] by relying on a similar proof strategy.

Corollary 6.2.4. Let A € B(H) and g € D\ {0}. Then
6.14) lim {/wy(A7) = r(A).

Proof. By applying (6.6), we obtain the inequalities

1 |q| n n n
1/? 1A < {fwg(An) < A7) forallthen € N.

Now, it is sufficient to use Gelfand’s spectral radius formula and the fact that g # 0

in order to reach lim {/w,(A") = r(A). |
n—o0
Remark 6.2.5. Let A € B(H). It is easy to show that

w(A) = sup|[Re (e A)].
PR

Indeed, for an arbitrary x € H, we have that |(Ax, x)| = sup Re (e (Ax, x)). Thus,
feR

sup||Re (e A)|| = sup w(Re (¢PA)) = w(A).
ER IS

However, if g € D \ {0}, then

wy(A) = sup|[Re (¢ A) |
PR
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may not be true. For example, it is enough to take A = I, where 1: H — H is the identity
operator on H. Moreover,

w(I) # sup N(Re (¢*1)),
fcR

where N is an arbitrary C*-norm on B(H ). This is due to the fact that

sup N(Re (1)) = N(I) =1,
feR

while wy(I) = |q|.

It is well known that the subalgebra of all invertible operators B(H) ™! in B(H)
is open with respect to the topology generated by the operator norm. By Theorem
6.2.2, it is also open with respect to the topology generated by wy(-), where g €

D\ {0}. The following theorem provides an estimate for the radius of a ball centered

at some invertible operator and contained in B (#) .

Theorem 6.2.6. Let A, B € B(H) and let g € D\ {0}. If A is invertible and

IS
6.15 A—B _—,
( ) wq( ) < 4(Uq(A_1)
then B is also invertible.

Proof. Assume that B € B(# ) satisfies (6.15). Using (6.6), it follows that
g)* > 4wq(A_1) -wy(A—B)
9l o1y 14l
>4 .11 ANl
>4 4. Wy gy
> [qP A7 (A= B)|| = g1 = A7'B| = I-A"'B|| <1.

Thus, A~1B is invertible, and so the operator B is also invertible. |

Another well-known result regarding the ordinary numerical radius is the power
inequality. More precisely, for A € B(#H) and n € IN, we have that w(A") < w"(A)
(see, for example, [91, Theorem 3.1]). An analogous power inequality holds in the
case of the g-numerical radius as well, as the following two theorems show.

Theorem 6.2.7. Let A € B(H) and g € D\ {0}. Then wy(A) < |q| if and only if
wy(A") < |q| foralln € N,

Proof. We shall present the sketch of the proof as it essentially uses the same ideas as
the ones used in the proof of [95, Theorem 2.1-1]. First, we have that w,(A) < |q] if
and only if Re((I —zA)x,y) > Oforallz € Dandall x, y € H such that ||x|| = [|y|| =
1, {(x,y) = g. Also, from wy(A) < |gq] and (6.5), it follows that r(A) < w(A) < 1.
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Now, for an arbitrary z € ID we have that the operator I — zA is invertible since
r(zA) < 1. Also, forall z € D and all x,y € H such that ||x|| = |ly|| =1, (x,y) =g,
the inequality Re((I —zA)x,y) > 0 implies that Re((I — zA) 'x,y) > 0. Finally, let
n € IN be arbitrary and let e denote the n-th root of unity. Using the identity

a1

-1
(I-z"A") (I—zA) 1+ (I—ezA) 14+ <I — 8”_12A> ] , z€D,

we have that Re((I —z"A")x,y) > O forall z € D, and all x,y € H such that
x|l = |lyll =1, (x,y) = q, which is equivalent with the fact that w,(A") < |q]. ®
Theorem 6.2.8. Let A € B(H) and q € D. Then

1" twg (A") < wq (A) forall n € N.

Proof. If A = 0 or g = 0, the theorem trivially holds. Thus, we may assume that A #
0and g € D\ {0}. By Theorem 6.2.2, we have that w,(A) # 0and so w, (%A) =

|q|. For an arbitrary n € IN, Theorem 6.2.7 now yields w, ((wq?A) A) n) < |q|, which
promptly gives the inequality |g|"w,(A") < w}(A). |
As a direct consequence of Theorem 6.2.7 and (6.6), we have the following result.
Corollary 6.2.9. Let A € B(H) and g € D\ {0}. If wg(A) < |q|, then
|A"|| <2 forall n € N.

We finish the section by pointing out that, although w, is a norm on B(H) for

any g € D\ {0}, the same cannot be said about wy. This observation is not difficult
to prove and the corresponding result is given within the following short lemma.

Lemma 6.2.10. The function wy is not a norm on B(H ) for any Hilbert space H. The set
Py={A€B(H): wy(A) =0} isaclosed subspace in (B(H), || -|)-

Proof. In order to show the first statement disclosed in the lemma, it suffices to con-
sider the identity operator I: # — #. It is straightforward to obtain wy(I) = 0
directly from (6.2), which clearly indicates that wy is not a norm.

We shall now prove the rest of the lemma. Let A,B € Py and «, € C. By
implementing (i) and (ii) from Lemma 6.1.7, we get

wo(wA + BB) < |a] - wo(A) + |B| - wo(B) = 0,

which leads us to «A + BB € DPy. If (An)uen is a sequence in Py and A € B(H) is
such that nlgr.}o |A;, — A|| = 0, then from (ii) of Lemma 6.1.7 and (6.6), we have

wo(A) < wo(A — Ap) +wo(An) < [|[A = Anl| +0 = [|A — Ay
for all the n € N. This implies wy(A) = 0. |
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Example 6.2.11. We may also point out that (6.14) is not necessarily true when q = 0. As
in the proof of Lemma 6.2.10, the identity operator I € B(H) satisfies wo(I") = wo(I) =0

for all the n € N. This means means that lim {/wo(I") = 0. However, on the other hand,

n—oo

r(I) =1. u

6.3 ANALYTICAL PROPERTIES

In this section, we will regard w,(-) as a function in 4 € D, and our primary
intention will be to inspect some of its analytical properties. To begin, we notice
that the aforementioned function is necessarily continuous whenever A € B(# ) for
some finite-dimensional Hilbert space H, as shown by [122, Theorem 2.9]. We shall

promptly prove that wy(+) is a continuous function in g € D for any Hilbert space
H.

Theorem 6.3.1. Let A € B(H) for some Hilbert space H. The function f4: D — R given

by
fa(q) = wy(A)  forall the g € D,

is continuous on D. Also, we have

max fa(q) = [|Al|
gelD

Proof. We shall use ¢4(g,v,t) to denote
galqy,t) = lal- KAy, )| + 1= lql>- (AL y)l, q€CyteH.

By applying (6.12), it becomes clear that

falg) = sup ga(q,yt) forallge D.
lyll=|tll=1
(y,£)=0

Let g9 € D be a fixed complex number. For any g € D and all unit vectors y,t € H
satisfying (y, t) = 0, it is not difficult to establish

184(9,y,1) — ga(q0,y,t)| =
= el = o) - w1+ (1=l = 1= o) - e |

<19l NAIIP+ |1 = TaP = /1= 0P

_ (yq — qo| + '\/1 — g2 - \/1 — [go/? ) -[IAT-
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From here, we quickly conclude that

fa(g) — falgo) =] sup galgyt)— sup galqoy.t)|
lyll=1t]=1 lyll=t]=1
(y,t)=0 (y,t)=0
< sup |ga(q.y.t) —ga(q0,y,t)|
lyll=1t=1
(y,t)=0

< (I =aol+ | /1= g = 1= I
-

it is clear that f4 must be continuous on the set D. Since the set D is compact, it is
obvious that max f4(g) certainly exists. Furthermore, we have that

)11l

Given the fact that

1 _ _ 2 _ _ 2
qlg%(lq qo|+‘\/1 41 \/1 |90l

geD

geD
[All = sup |[{(Ax,y)|=sup sup [(Ax,y)]
[lxll=llyll=1 qeD [x[[=[y[=1
{xy)=q
= sup fa(q) = max f4(q) = maxw,(A),
geD geD geD
which completes the proof. u

Theorem 6.3.1 tells us that the function f4 must be continuous on D. We shall
finish the section by inspecting the complex differentiability of f4 on ID.

Theorem 6.3.2. Let A € B(H). We have:
(i) Ifa € D, then the derivative f); (a) either does not exist or f'(a) = 0.

(ii) If f4 is differentiable on D, then fa(q) = || A|| for all the g € D.

Proof. (i) Leta € D\ {0} be a given point and assume that f), (a) exists. By imple-
menting (iv) from Lemma 6.1.7, it is not difficult to conclude that f/,(a) = 0. On the
other hand, if 2 = 0 and if the complex derivative f/, (0) exists, then

fa(t) — fa(0)

lim
t—0
te[-11]\{0}

must also exist. The function

(—1,1]\ {0} 3 t — fA<f>t :gA(O)
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is clearly odd, which implies f/, (0) = 0.

(ii) From (6.6) we have that w;(A) < ||Al|. Thus, it is sufficient to show the
converse. Let ¢ > 0 be an arbitrary constant. It is clear that there must exist unit
vectors x,y € H such that |(Ax,y)| > ||A] —e. If we denote (x,y) = s, it is then
evident that s € ID and ws(A) > ||A|| — e. Since the function f, is differentiable on
D, it is surely constant on ID. Due to the fact that f4 is continuous, it is easy to see
that it must also be constant on ID. Now, we obtain wq(A) = ws(A) > ||A|| — e for
any q € D. Given the fact that ¢ > 0 was arbitrarily chosen, it promptly follows that
wy(A) = |4 .

Example 6.3.3. If A = 0, then, obviously, f',(q) exists for all the g € ID. However, the
converse is not true. In other words, if there exists a derivative f),(q) for all the g € D,
then it does not follow that A = 0. For example, we can choose H = C2and A = [6 _01 ]
First of all, we notice that || A|| = max{|1|,| — 1|} = 1. We shall now prove that f,(q) =

1 = || A|| holds for all the q € ID. By virtue of (iv) from Lemma 6.1.7, it is sufficient to take

into consideration the values g € [0,1]. Let x = {CQS “} €C’andy = {C.OS b 1 € C? for
sin & sin B

(a,B) = (% arccos g, — arccos q). In that case, we clearly have ||x|| = ||y|| = 1. Also,

(x,y) = cos(a — B) = cos2x = q, while (Ax,y) = cos(a + B) = 1. Hence, ws(A) > 1,

which means that wg(A) = 1. |

6.4 g-NUMERICAL RADIUS INEQUALITIES

We now aim to investigate some properties of the g-numerical radius of operator
matrices, as well as the rank one operators. By virtue of property (iv) from Lemma
6.1.7, it is enough to restrict ourselves to the case g € [0, 1].

6.4.1 INEQUALITIES INVOLVING OPERATOR MATRICES
We will start by giving a full proof of Theorem 6.1.5.

Proof of Theorem 6.1.5. In order to prove the left-hand side inequality in (6.9), it is
enough to note that the operator @, %] A, is a dilation of Ay for each k € IN, which
means that wy (Ay) < wy (B, An) must hold for any k € N. Thus,

400
sup wy(An) < wy (@ An> .
nelN n=1

We shall now demonstrate the right-hand side inequality in (6.9). Take s &
Wy (D2 Ay) to be an arbitrary value from the g-numerical range of @ A,. By

108



CHAPTER 6. A NOTE ON g-NUMERICAL RADIUS OF LINEAR OPERATORS

applying Lemma 6.2.1, we see that for each n € N, there exist vectors t,,y, € Hy
such that

+o00 +o0 +o0 e}
Sl = S o1 S ) - <@tm@yn> o,
n=1 n=1 n=1

and

=q<(§An>€§ym@yn F (éo}o )étn,@yn

n=1 n=1 n=1

+o00
(6.16) =q ) (AYn,Yn) +1/1— Z (Antn, Yn).
n=1

For the first sum stated in (6.16), we promptly obtain

—+o00 —+o00
| Z <An]/nz yn> ‘ < Z | <An]/nz yn Z | nYn, yn
n=1

n=1

>0
+00
2 Yn Yn
— A, () I
E”MW”QMOH%W
>0
+oo ) +oo ,
< Yyl W(An)ésuﬂliw(An) Yyl ZSUIEW(An)-
— — €
>0 " >0 "

As for the second sum given in (6.16), it is possible to use the polarization identity
in order to quickly obtain

[(Auta,yn)| < w(An) (1l + llyal]?) ~ forallne N.
Hence, it is not difficult to get

—+00 —+00
|Z<Antnryn>| < Z|<Antn1yn>|

= 2 2
< ¥ w(an) (Itall? + lyal?)
n=1

< supw(A (Z 1]l + Z ||an|2> = 2sup w(Ap).

nelN n=1 n=1 nelN
Therefore, we have

+o00
5| S‘ﬂz nYnsYn |+\/1_ |Z (Antu, Yn)|
n=1
< gsupw(Ay)+24/1—g?supw(A,) = (q—i—Z\/l —qz) sup w(Ay).

nelN nelN nelN
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Since the value s € W, (@, An) was chosen arbitrarily, it promptly follows
that

(6.17) wy <é§ An> < <q +24/1— q2> sup w(Ay).
n=1

nelN

By combining (6.17) with (6.5), we reach

—+00 /—
wy (@ An) < q+2 supwq 1),
n=1

nelN

thus completing the proof. u

By applying Theorem 6.1.5 on the simple scenario when we have just two oper-
ators A, B € B(#H), it is straightforward to obtain the following corollary.

Corollary 6.4.1. Let A,B € B(H ) and q € (0,1]. Then

(6.18)
max{n(A)B)) < o ([3 5] ) < THAIEE

max{wy(A),wy(B)}.

By plugging in g = 1 in Theorem 6.1.5 and Corollary 6.4.1, we obtain (6.8) and
the equality from part (i) of Lemma 6.1.6, respectively. Furthermore, the statements
(ii) and (iii) from Lemma 6.1.6 hold for the g-radius as well. We demonstrate this
fact in the following quick lemma.

Lemma 6.4.2. Let A,B € B(H),q € Dand 0 € R. Then

@ (| o)) =« ([3 o))
@ (5 5]) =[5 2))
@ n([s 6]) = ([3 8])

Proof. The proof is basically the same as the one for the ordinary numerical radius

by using the property (iii) from Lemma 6.1.7. Namely, the result of the given lemma
stated in (i) follows by applying the equality w, (U*TU) = wy(T), where T = [ § 4]

represents the starting operator, while U = [é ei"(/)z I} is the unitary transformation

operator. The remaining two statements of the lemma can be obtained by applying
the same equality on the unitary operator U = |9 [].
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We now provide another quick lemma that represents a generalization of the
statement (iv) from Lemma 6.1.6.

Lemma 6.4.3. Let A,B € B(H) and g € (0,1]. Then

o, renaora (i 1)

2
<1r2v1=g Vqlq max{w,(A + B),w,(A — B)}.

In particular, we have the following inequalities

wy(B) < w, ([0 BD < %ﬁqzwq(s).

B 0
Proof. Let U = Lz [ 1, 1]. It is then clear that U is a unitary operator on H & H and

" V2
it is easy to see that
A B|l.«_|A+B 0
als alu=1"" A%

(5 2]) = ([70" 2%])

The inequality (6.19) follows immediately by applying Corollary 6.4.1. u

Thus, we obtain

It is worth pointing out that Lemma 6.4.3 can be applied in order to give a gen-
eralization of a well-known result (see, for example, [105, Theorem 2.4])

max{w(A + B),w(A — B)} 0 A w(A+ B)+w(A—B)
<w <
2 - B 0])— 2
regarding the numerical radius of operator matrices. We disclose the corresponding
inequality in the form of the following theorem.

Theorem 6.4.4. Let A,B € B(H ) and q € (0,1]. Then
max{wy(A + B),wy(A — B)} 0 A
< Wy

2 B 0
(6.20)

< TEZVIET (0,44 ) + wy(A - B)).

Proof. By applying Lemma 6.4.3 and the statement (iii) from Lemma 6.4.2, we get

wq(A‘l‘B)Sw”l(;A:)LB AgBD
a1 D)
<an([5 8]) e ([3 8) =2 (3 4])
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Thus, we have

6.21) w < w, ([g ‘SD .

Now, by using the statement (7) from Lemma 6.4.2 and by applying (6.21) where we
take —B instead of B, we further obtain

Ut )

The left-hand side inequality from (6.20) follows from here.

In order to prove the right-hand side inequality given in (6.20), we observe that
for the unitary operator U = \16 [T71], we get

R |

By implementing Corollary 6.4.1, (6.22), the statement (i) from Lemma 6.4.2 and
Lemma 6.4.3, we conclude that

an([3 2]) = (u[3 4] )
_ %wq ([_?;_BB) —?A_+BB)D

S%wq({AgB —<A0+B>D+%“"7<{—<AO—B> AEBD

— 2 —
S1q+2\/1 qwq(A—|—B) 1q+2\/1 (A B)

+22Vq1 —T (wg(A+ B) + wy(A - B))

thus completing the proof. u

By implementing Theorem 6.4.4, it now becomes possible to easily derive an
inequality regarding the operator matrix [2 5|, where the operators A,B,C,D €

B(7H ) are entirely arbitrary. We disclose the said result in the next theorem.

Theorem 6.4.5. Let A,B,C,D € B(H) and q € (0,1]. Then

wq([é g]) q+2\/1_7 (max{wq(A),wq(D)}Jrwq(B+C)42rwq(B—C)>'

Proof. The desired inequality follows directly from the statement (i7) given in Lemma
6.1.7, Corollary 6.4.1 and Theorem 6.4.4. u
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By using the statement (i) from Lemma 6.1.6, it is evident that w(A) = w ([4 §])
for any operator A € B(#H ). The given equality brings up the problem of examining
the relationship between w,(A) and w, ([4 9]) for a given operator A € B(H). We
shall soon find out that these numbers do not have to be equal even in the simplest
cases, such as A = I. In the remainder of the section, we shall deal with such
questions for certain special cases of operator matrices.

Theorem 6.4.6. Let g € [0,1]. Then

o of) ="

Proof. For any vectors [ﬁl] , B 1} € H® H, we have
2 2

(o ) [a]) - o

Thus, we need to compute
X2 Y2

/

Consider some two vectors [ﬂ , [Z,] € H®Hsuchthata =a, b= -V, as well as

sup {1, 0)+ |

’ =1, (x1,y1) + (x2,42) = q}'

1 1-—
lall = 1| = /=5-% and b = ]| = /=5

It is not difficult to see that both of these vectors are unit vectors. Also, it is straight-

forward to check that (a,a") + (b,V') = g and (a,d’) = #. For this reason, we

conclude that w, ([£8]) > #

In order to finalize the proof, it is sufficient to demonstrate that there do not exist

two vectors {xl} , B 1} € H ® H such that
2

- IE]

If such vectors were to exist, we would have that |(xq,y1) — g > 12;q since the
triangle inequality would yield

1+
=1 G+ () =g and () > F5

1+ 1—
[(x1,y1) —ql = x,y1)[ —g9 > Tq— = — 1
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Moreover, by using the Cauchy-Schwarz inequality, we obtain

1+9¢ 1—9¢g
[x1llllyall > —— and  [[xaf[[ly2]] > ——
2 2
From here, it follows that ||x1||||y1|| + ||*2]//|ly2]] > 1. However, this is not possible

given the fact that

lea - flyal | all? + flyall®

1.
2 2

x|l lyall + el fly2ll <

We have obtained a contradiction, which completes the proof. u
It is trivial to derive the following two direct corollaries of Theorem 6.4.6.

Corollary 6.4.7. Let q € [0,1]. Then

wq(l):wq<[(l) 8}) — gq=1

Corollary 6.4.8. Let q € [0,1]. Then

(B B

Proof. Let U € B(H) be the unitary operator from the proof of Lemma 6.4.3. By
applying Theorem 6.4.6 and Lemma 6.4.2, we quickly obtain

([F ) =en([50 0 ]) =2 (s 5]) =1en

as well as
I —I -1 0 00
(e ) =enl(o" i-tn]) =2 (5 3]) =1
thus completing the proof. u

We finish the section by providing an explicit formula for computing the g-
numerical radius of a special type of operator matrix.

Theorem 6.4.9. Let g € [0,1]. Then
w (19 11 = 14+ +/1—¢g?
7\10 0|) 2 )
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Proof. 1t is easy to establish that the desired value represents the supremum of
|(x2,y1)| under the conditions

(xi,y1) + (x2,p2) =q and |al® + [l =1 = [lya|® + Iy,

where x1, x2,y1,¥2 € H. Let |[x1]| = cosa, |[x2|| = sina, [[y1]| = cosp and ||y2|| =
sin B for some &, B € [0, 5]. By using the Cauchy-Schwarz inequality, we have

. 1. 1.
[(x2,y1)] < llx2lllya]] = sinacos p = 7 sin(a — B) + 7 sin(a + B).
By additionally using the triangle inequality, we also obtain

q=lql = x,y1) + (x2,92)| < [xallllyall + llx2lll[y2]] = cos(a — ),
which promptly leads to sin(a — ) < /1 — ¢%. From here, we immediately reach

1—q2+1:1+\/1—q2
~ 7 —

(623) el < YT 5

_ 2
which means that w, ([§{]) < #.

In order to show that w, ([J4]) = M, it is sufficient to find concrete feasi-
ble vectors x1, x2,y1, Y2 € H for which |(x, y1)| = g. This can be achieved by simply
showing that the equality in (6.23) can be achieved for certain vectors. It is not dif-
ficult to see that we may choose the value &, 8 € [0, 7] so that « — B = arccos q and
« + B = 7. By choosing the vectors x1, x2, 41,2 € H so that

X1 =cosae, Xp =sinae, y; = cos e, Yy = sinPe,
for some arbitrary unit vector e € H, all the applied inequalities will quickly become

| — 1+\/1_q2. .

equalities, hence |(xp, y1) >

6.4.2 g-NUMERICAL RADIUS OF RANK 1 OPERATORS
If a,b € H, we can represent the one-dimensional operator A € B(H) as follows:
Ax = (x,a)b, x € H.

We shall symbolize this operator as a ® b. For an operator defined in this manner,
we observe the following properties:

* The adjoint of 4 ® b, denoted as (a ® b)*, is equal to b ® g;

* The operator norm of a2 ® b is equal to the product of the norms of 2 and b, i.e.
la & b]| = all|[b]];
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* The g-numerical radius of a ® b is the same as that of b ® a for all g in the
interval [0,1].

In [29], the author obtained an extension of Cauchy-Schwarz inequality in the
following way: if a, b, x are vectors in a Hilbert space H, then

al|ll|bl| + [{a,b
LITETEIN

This is known as Buzano inequality. For a simple proof, see [87]. As a direct conse-
quence, the authors in [87] also obtained the following result.

Theorem 6.4.10. If a,b € ‘H, then

(6.24) [{a,x){x, b)| <

la}][b]] + [{a, b)]
. .

In this section, we will derive the corresponding formula for wy(a ® b).
The main result of this section is the following theorem.

Theorem 6.4.11. Let a,b € H and q € [0,1]. Then, we have

b)|
626  wylawy) = LllblTala bl V1= faapie )

(6.25) w(a®b) <

2
Proof. If a = 0 or b = 0, the theorem trivially holds. Thus, let a,b € H \ {0}, and
assume that ||a|| = ||b|| = 1. From the equality ((a ® b)x,y) = (x,a)(b,y) for any

x,y € H, and from (6.12), we have
wﬂa®b%=ﬂm{m 1@ ), y) |+ 1- ¢l (a@b)ty) | a4>=owuuzum1=1}

627) -—am{q]ay Wb |+ 1= (ta) (y,b) ty>—0|un—rwu—1}

Since H = span {a} & {a}™, each of the vectors t,y,b €  can be represented as

(6.28) t=(t,aya+t,
(6.29) y=(y,a)a+yi,
(6.30) b= (ba)a—+ b,

where t1,1,b; € {a}" are uniquely determined. Now, from (6.28), (6.29), and (6.30)
and ||a|| = 1, it follows that

(6.31) It1]l = /1= [{a,1)]?,
(6.32) [l = /1= 1@y,
(6.33) b1l = /1 = [{a, b)|>.
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By replacing (6.28) and (6.29) in 0 = (t,y) and from (a,;) = 0 and (a,t;) = 0, we
obtain the equality

0=(a,t){ay) + {t,y1).

From here and from the Cauchy-Schwarz inequality, we have

(@, 5) (v, @) = [(t1, y1)]

< [[tall Iy

= /1 1(a,0)2/1 - |{a, )]
= \/1 — (@, )% = a,y) [> + [{a, t) |*[{a, y) |

By squaring the last inequality, we get

[(a,t)] < \/1—[{a,y)>.

From here and from (6.27), we have that

@y(a ) < sup {q- 100 b+ 1= 2y 1= [ b Iyl =1}
Similarly, we get the equality

(y,b) = (y,a) - (a,b) + (y1,D1),
and from the Cauchy-Schwarz inequality and (6.32) and (6.33), it follows that

[y, b)| = [{y,a) - (a,b) + (y1,b1)]
< |y, a) - (a,b)| + |(y1, 1)
(6.34) < [y, a) - (@, bY| + |[ya]] - | |1l
= (@) - {a,B)| + /(1 — [{a,y) P) (1 — |{a, ) ).
Therefore,
(6.35) wy(a®b) < sup I(y),

lyll=1

where we introduced the notation for y € H:

1) = (alto sl + 1=\ 1= o) (16,060l + /0= P - anp).

Let y € M be an arbitrary vector such that ||y|| = 1, and let a, 8,y € [0, 5] such
that

g =cosa, |(y,a)| =cosB and |(a,b)| = cos~.
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Using the introduced notation, it follows that

I(y) = (cosa cos B + sina sin B)(cos B cos y + sin B sin y)
— cos(x — B) cos(p — 7)

1 1
= Ecos(oc —7)+ Ecos(a—I-’Y_Zﬁ)
1 1
(6.36) <z 4= - '
<5 +5 cos(a — )
1 1 . .
=5 + E(cosoccos'y4—s1nocsmq/)
1
=5+ (ﬂaby+¢1— 1—Kﬂ@|0

for each unit vector y € H. From (6.35) and (6.36), we have the estimate

1
(6.37) wy(a®b) < 5T (q |ab|+\/1— (1—|{a, b>|)>
We will prove that equality actually holds in (6.35). Let us take
a+y . ‘X"{"Yiar(ab) b
= Cos a4+ sin etars\y)
! 2 2 o]

where we take arg(a, b) to be zero whenever a and b are orthogonal. Then,

a4 . plarg(ab) b

= sin —
7 2 6]
and the following are true:
(6.38) arg(y1,b1) = arg(a, b),
(6.39) y1 € span{b1},
(6.40) p="tT

To achieve the equality in (6.35), it is sufficient that equalities in (6.34) and (6.36)
hold. Due to (6.40), the equality in (6.36) holds, and due to (6.38) and (6.39), the
equality in (6.34) holds. Now the equality holds in inequality (6.37). Therefore, we
have

64 wfeen) =141 (0 Lo+ 0- a- wnR).

118



CHAPTER 6. A NOTE ON g-NUMERICAL RADIUS OF LINEAR OPERATORS

Since a,b € H \ {0}, from (6.41) and the homogeneity of wy, it follows that

o0 90) = - ((p) @ (gap))
= flalli- !§+§ (q%,%\ ¥ J - (1— o)

_ la[[lib]] + ql{a, b)]| \/ \/||a||2||b||2—| (a,b)[2.

)

This completes the proof. u

Remark 6.4.12. When we choose g = 1 in Theorem 6.4.11, we obtain the formula (6.25).
Moreover, Theorem 6.4.11 generalizes Theorem 6.4.10. Indeed, for given vectors a,b € H
and every q € [0, 1], we have that

[(a,x){b,y)| = [{(a @b)x, y>\

(6.42) < llalllipll + ql(a, v \/Ha||2||b||2—] (a,b)|?

2

whenever the vectors x,y € H are such that ||x| = HyH = 1and (x,y) = q. When
we plug q = 1 in the (6.42), we get the inequality (6.24), since y = ax for some o € C,
\a| = 1. In other words, the inequality (6.42) represents a generalization of the classical
Buzano inequality.

Corollary 6.4.13. Let a,b € H and q € [0,1]. If the operator a ® b is nilpotent, then we
have
1+ +/1— g2
wqla®b) = ==L lal||j].

Proof. 1t is easy to see that the operator a ® b is nilpotent if and only if (a,b) = 0.
Applying directly Theorem 6.4.11, we obtain the wanted formula. |

The following two corollaries are closely related to Theorem 6.4.6 and Theorem
6.4.9.

Corollary 6.4.14. Let a,b € H and g € [0, 1]. Then, we have the equality

wq(a®b):wq<[a@§b g])

Proof. For each B} € H® H,wehave

1 S e S e R A O B 0
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From the previous equality, we have that [a ©b 0} = {a] ® [b] . Theorem 6.4.11

 ([o] o)
WWWNHM@H®+

now implies
a®b 0\ _
“il\l o o)~
_1
2

g

«/1— b]|*
0
all||b]| + gl {a, b \/1— 2
_ I HH I 2Q| : q \/H”H 16]12 = |(a, b) |2
= wy(a®b),
which yields the wanted formula. u

Corollary 6.4.15. Let a,b € H and q € [0,1]. Then, we have the equality

an([5 *87) ==L

0 O

Proof. For each Lﬂ € H ®H,wehave

o S L= 1 = [ = L R o] = (= ol )

from where it follows that [8 a(}é) ] = B} Q

(o "0"]) = Q}BD

l—|

} Using Theorem 6.4.11, we obtain

—
o

uwu}mw+
I - K-

||a||||b||+q VARt G TR
— -\ lalzp]2 — 0

1+\/—

= =T al o).

2

——
QO

This completes the proof. u
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Remark 6.4.16. Note that we could have obtained the same formula by applying Corollary

6.4.13 since the operator [8 4 GS} b] € B(H & H) is nilpotent.
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CHAPTER 7

CONCLUSION

In this concluding chapter, we recapitulate the significant insights and contribu-
tions that have emerged from our exploration of subnormal operators and related
topics. More precisely, we shall go through all the chapters (except Chapter 1), em-
phasizing one more time our main results, and overall contribution of the disserta-
tion.

Chapter 2. In this chapter, we affirmatively answered the question posed by R.
E. Curto, S. H. Lee, and J. Yoon in [51], providing an alternative approach to the
one applied in [146]. Our approach proved to be highly effective in the context of
multivariable operator theory as well. Initially, we established characterizations of
matricially and spherically quasinormal tuples in terms of their minimal normal
extensions. This foundational insight paved the way for a multivariable adaptation
of Theorem 2.1.2, which directly addressed the aforementioned question.

Later in the chapter, we shifted our focus to a broader approach to Problem 2.1.1,
where we considered the square as a product. This led to a series of intriguing ques-
tions closely related to the renowned Fuglede-Putnam Theorem. Among other sig-
nificant findings, we demonstrated that when the coordinate operators of a (jointly)
quasinormal pair share both the same (closed) range and the same null space, the
normality of their product implies the normality of each individual operator. We
then extended our exploration by relaxing the quasinormality conditions to subnor-
mality. Thus, it may be really interesting to go even further. More precisely, we may
ask the following question:

Problem. Let T = (Ty, T) be a jointly (hyponormal) pair such that Ty T, is normal (quasi-
normal, subnormal). Find sufficient conditions for Ty and T, to be normal (quasinormal,
subnormal).

Chapter 3. In this chapter, we introduced the concept of the spherical mean
transform for operator tuples and elucidated several crucial properties of this trans-
form. Among these properties, we demonstrated the preservation of the null space
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under the transform and investigated its behavior under unitary equivalence. Fur-
thermore, we explored various spectral properties of the spherical mean transform.
Notably, we established that while the transform does not generally preserve the
Taylor spectrum, it does so in the case of spherical partial isometries, for instance.
Additionally, we delved into the challenge of characterizing the mean transform
of 2-variable weighted shifts, one of the most significant classes of operator pairs.
Under specific conditions, we demonstrated that the p-hyponormality of such pairs
remains intact through the transformation.

Overall, this chapter represents the start of the theory of spherical mean trans-
form of operator tuples. From a practical standpoint, a similar observation can be
made as in the case of the ordinary mean transform. Specifically, obtaining the
spherical mean transform of an operator tuple is generally more straightforward
than acquiring the spherical Aluthge transform of the same tuple. This distinction
arises from the fact that the latter necessitates the determination of a square root of
a positive operator, which is not a trivial task in general.

Chapter 4. The main focus of this chapter was the completion of upper trian-
gular 2 x 2 operator matrices to normality, as similar completion problems exist for
other operator properties such as invertibility, Fredholmness, regularity, and more.
In pursuit of this goal, we introduced the concept of normal complements, a cat-
egory of operator pairs that can be seen as an extension of the concept of subnor-
mal duals. Within this chapter, we provided a comprehensive exploration of these
newly introduced pairs. Our analysis covered various characterizations, with re-
spect to the various Hilbert space decompositions, as well as in terms of the polar
decompositions of operators.

After that, we explored different spectral properties shared among the coordi-
nate operators of normal complements. We showed that there are significant spec-

C
0 B*} can be nor-
mal. For instance, it was shown that 0 € ¢(C) for any such C. Additionally, we
outlined the conditions under which 0 = ¢(C), particularly in scenarios involving
self-complemented subnormal operators.

Concluding this chapter, we turned our attention to the examination of situations
in which the Aluthge and Duggal transforms of pure hyponormal operators are in-
deed self-dual subnormal operators. Furthermore, we provided some applications
that stem from these results.

Considering that these topics introduce relatively novel concepts within the realm
of completion problems in operator theory, numerous uncharted directions await
further exploration. Although we present only a few in this context, the potential
for future research and development in this field is substantial.

tral restrictions on operator C for which the operator matrix [
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Problem. An operator A is self-complemented if there exists C such that the operator matrix

A C
7.) i
is normal. In which way the properties of A are changed if we replace A* with B €
{AY, (AN, ALA, ..} in(7.1)?

Problem. Consider an operator matrix n—tuple

M_AC_A1C1 Ay G An Cy
€710 B] " \|0 B]’|0 By)”"""|0 Bu|)"
Find the necessary and sufficient conditions (or provide the characterization of C) under
which the operator matrix M possesses specific properties like normality, Taylor invertibility,

and more, when operator tuples A and B are known. This is closely related to the lifting
problem for subnormal operators (see [120, 126, 141]).

Chapter 5. This chapter was split into three main sections, each of which deals
with specific problems.

In Section 5.1, we delved into an examination of various properties associated
with generalized powers of operators and introduced the notion of generalized log-
arithms for operators. In doing so, we extended certain findings from [12]. Our
investigation revealed that numerous properties akin to those of the ordinary log-
arithmic function can be extended to the bounded operators setting. However, it’s
important to note that the applicability of several results hinges on specific commu-
tativity conditions.

Further research can be extended in several ways. As mentioned in [12], one
obvious way is to try to define a similar notion for the class of unbounded opera-
tors (see [132, 159]). Also, the current definitions hold only for positive operators.
We may try to extend it for arbitrary self-adjoint, or even normal operators. Further-
more, commutativity assumptions may also be dropped in some cases (see [73, 131])

In Definition 5.1.1, the commutativity of A and B is not required, and therefore, in
general Blog A # log(A)B. This means that for a positive and invertible A € B(H)
and an arbitrary B € B(7H), it makes sense to actually define the left and right
generalized powers:

Bg — pBlogA g AB — plog(A)B

Note that in that case, it means that in Section 5.1, we actually proved the results for
B A, although most of the result would also hold for A® due to symmetry or some
commutativity conditions.

These newly introduced concepts exhibit some interesting properties. For in-
stance, using the fact that for any two invertible operators S and T we have that
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o(ST) = ¢(TS), we can establish that for any positive A € B(H) such that 0,1 ¢
o(A) and any invertible B € B(H), the spectra of A and A® coincide, i.e.

c(BA) = o(AB).

The conclusion immediately follows from the equality of spectra ¢(Blog A) and
o(log(A)B), combined with the Spectral Mapping Theorem.
Another noteworthy property is the intertwining relation

AB=BC = AB= BC

which follows from the Spectral Theorem, provided A, C € B(#) are positive and
invertible.

Similar concepts can also be defined for the generalized logarithms. Further-
more, the concepts regarding generalized powers have potential applications, such
as defining the tetration operation on B(# ) and introducing an operator version of
the Lambert )V function.

In Section 5.2, we contributed to the ongoing research in operator theory, which
explores various classes of operators closely tied to the fundamental concepts of
normal and accretive operators ([13], [77]).

Within this context, we introduced a novel class known as polynomially accre-
tive operators, expanding the classes of accretive and n-real power positive opera-
tors. Our central focus in this section revolved around giving some representation
results, building upon the foundational Radjavi-Rosental Theorem [153].

One of the significant outcomes of our research lay in establishing a profound
connection between normal and accretive operators. Specifically, we drew inspira-
tion from recent findings, such as those presented in [74], which demonstrate that
if the powers T and T of an invertible operator T are both normal, where p and
g are coprime integers, then the operator T itself must be normal. In a similar vein,
we derived results that align with the spirit of this theorem.

To be more specific, our research revealed that when T2 is normal and T" is accre-
tive, where 1 is an odd integer greater than one, an intriguing consequence emerges:
T" must be normal for all values n > 2. Furthermore, under the additional assump-
tion that R([T*,T]) € N(T')* for some | > 2, we established that the operator T
must be normal. Thus, a natural question arises:

Problem. Let T € B(H) be an invertible operator. If TP is normal and T17 is accretive for
some comprime numbers p and q, does it follow that T is normal?

We believe these results will not only contribute to the ongoing research in oper-
ator theory but will also pave the road for further exploration of the topic.

Lastly, Section 5.3 was dedicated to addressing the solvability of a general system
of operator equations

A1XB1 = (q,
ArXBy = (.
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Solving this system without additional assumptions poses formidable challenges at
present. Nevertheless, we managed to make significant headway by providing the
necessary and sufficient conditions for the solvability of such a system, shedding
light on the specific scenarios in which solutions can be found. Special focus was
put on finding the general forms of Hermitian and positive solutions.

Furthermore, we delved into the exploration of the solvability of the x-order op-

*
erator inequality C < AXB. This inequality essentially corresponds to the following
system of operator equations:

AXBC* = CC7,
C*AXB = C*C.

We unveiled that the solvability of C % AXB bears particular significance only when
the ranges of the involved operators are not closed. In other instances, the solvability
of the inequality is equivalent to the solvability of the operator equation C = AXB.

* *
Additionally, we provided the general forms of the solutions for C < AX and C <
XB.
It's worth noting that this section, while insightful, presents opportunities for
refinement, given that some of the assumptions in our results currently limit their
applicability to highly specific cases.

Chapter 6. In this chapter, our primary objective was to delve into the concept
of the g-numerical radius, denoted as wy(-), for operators on Hilbert spaces. Our
exploration centered around investigating a range of inequalities associated with
these values. As we progressed, we extended the well-established results related to
the numerical radius, which is the special case when g equals 1.

For instance, when considering the equality for the ordinary numerical range of
a direct sum of operators, it is expressed as

—+o00
w (@ An> = sup w(Ay)
n=1

nelN

In this chapter, we demonstrated that for g € D \ {0}, this equality translates to
inequality

+o00 — 2
sup wy(Ay) < wy (@ An> < 4] ‘|‘2‘ 1—q] sup wy(An).
nelN n=1 Q‘ nelN

Problem. Is it possible to establish tighter bounds for the inequality mentioned above?

Furthermore, we provided the explicit formulas for computing wy(-) in specific
scenarios, such as operator matrices and rank one operators. Specifically, for a rank
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one operator a ® b, the formula is given by

al|||b|| +g|{a,b 1—¢?
L R 2 WA e g

wy(a®b) = >

Lastly, we explored various analytical properties of w;(-) when treating it as a func-
tion of the parameter g.

This voyage has been one of unwavering determination, persistence, and fruitful collabo-
rations. Once again, I extend my heartfelt gratitude to the supervisor, colleagues, and fellow
researchers who have contributed to this academic odyssey. As this chapter draws to a close, I
express our hope that the insights and revelations contained within these pages will serve as
guiding lights for those who follow in our mathematical footsteps. The pursuit of knowledge
is a continuum, and we are but one chapter in its enduring narrative.
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KPATAK ITPKA3 JOKTOPCKE
NUCEPTALIMJE HA CPIICKOM JE3UKY






ATICTpaKT

OBa moOKTOpCKa Aucepranyja IpUMapHO MCTPaKyje KOMIUIEKCAaH JOMeH CyOHOpMal-
HIX OIIepaTopa, pacBeT/baBajyhy mIX0oBe pa3nmuuTe aclieKTe 1 OTKpuBajyhy HoBa ca3Ha-
1A Y OKBUPY BUILIEAVMEH3MOHAJIHE Teoplje oIeparopa.

Hajmpe, nuceprarija uctpaxyje ogaoc nsmehy cybHopManHOCTI 1 KBa3MHOPMAJIHO-
CTM OTpaHNYEHNX JIMHeapHUX orepaTopa. Vcnuryjy ce ycioBu moja Kojuma cyOHOpMaI-
HOCT OIlepaTopa I KBa3MHOPMAaJIHOCT leTrOBOT KBaJpaTa MUMILIMILIPA]y KBa3MTHOPMATHOCT
camor oneparopa. [logaTHo, qoKasyje ce fa KBa3THOPMAJIHY 1-TU KOPEHY CYOHOPMAaJIHOT
oreparopa Takohe Mopajy 6uty kBasmHOpManHu. VcTpakuBarme [aje TOBOJbHE YCIOBe
IIpY KOjIIMa je MaTpu4Ha I chepruHa KBa3MHOPMAJIHOCT ITapOBa OIlepaTopa eKBUBAJICHT-
Ha MaTpUYHOj U chepUIHOj KBa3SMHOPMAIHOCTH BIXOBUX cTeneHa. Takohe ce pasmatpa
obpat Pyineose Teopeme, yrBphyjyhu xama cybHOpManHM onepatopu Mopajy 6utu HOp-
MaJIHU, YKOJIMKO je HJMXOB IIPOM3BOJ HOpMAaJaH.

Hucepranyja Takohe yBogu KOHIENT chepuuHe cpeqibe TpaHcpopMaLuje 3a mapoBe
olepaTopa, IpolInpyjyhu mojam cpenme TpaHchopMaluje ca jeJHOAMMEH3VOHAIHOT
clydaja Ha BUIIeOMMeH3MoHanHN. McTpaxyjy ce pasamymra CIEKTpaJHa CBOjCTBA OBe
TpaHchopmanmje, yKbyuyjyhu ouysame TejopoBor cmekrpa, Kao ¥ HeKa aHAIUTUUKA
cBojcTBa. McrpakuBarbe Takohe yTBphyje ycinoBe monx kojuma TpaHchopmanmja ouyBasa
P-XUTIOHOPMAJIHOCT JBOAMMEH3MOHAIHIX TeXMHCKIX OIlepaTopa IoMepaja.

Takobhe, y KOHTeKCTYy CyOHOpMAJIHIX OIlepaTopa U CYOHOPMAaJTHUX qyajla, JUcepTaija
ce 6aBM NOIIyHOM TOPHETPOYTaoHe OIlepaTOpCKe MaTpUIle JO HOPMAJIHOCTU. YBOAM Ce
KOHIIeNIT HOpPMAaJHNIX KOMILJIeMeHaTa M Jajy ce KapaKTepm3aluje U pelpe3eHTallllOHe
TeopeMe 3a OBe mapoBe. McTpakyjy ce 3ajemHMYKa CIIEKTpaJiHA CBOjCTBA HOPMAaIHUX
KOMILIeMeHaTa, MCTUUyhn 3ajefHIYKA CBOjCTBa M3Mehy KOOpAMHATHIX OIlepaTopa y Ia-
py HOpMasHUX KoMIlIeMeHara. Takobhe ce yrBphyje Be3a usmehy reopuje cybnopmanaux
nyana u Amytreose u [lyrasose Tpancdopmaiiuje.

ITopen Tora, qucepTanuja NCTpa)kyje pasHe Kjace oleparopa II0Be3aHUX ca HOpMaJl-
HUM ¥ CyOHOpPMAJHIM ollepaTopuMa, yBoaehu HoBe KoHIenTe M pasmarpajyhm pemra-
Bambe CrlelMpUUHNX OIIepaTOPCKUX jeTHAUNHA U CUCTeMa jeqHaumHa. Takohe ce ucnury-
jy HeKke HejeJHAKOCTU Be3aHe 3a ¢-HyMepUUKM paAljyc OTpaHNYeHIX OIlepaTopa I ollepa-
TOPCKUX MaTpuua, npoumpyjyhmu qo6po mosHare jeqHaKOCTI Koje ce OGHOCe Ha HyMe-
PUYKM pagujyc.






3axXBaIITHOCT

IIpe Hero MITO HACTABMMO Jabe, KeIUM U3PasUTU HajayOiby 3aXBaIHOCT CBOM MEHTO-
py, npodecopku [Iparanu l{BeTkoBrth-Mnuh, 3a reHo Hermokoae6p1BO BohcTBO 1 HGesrpa-
HIUHO CTPIUbEhEe TOKOM MOjUX JOKTOPCKMX CTyaMja. FbeHO MeHTOpCTBO Huje caMo obora-
TIJIO MOje MaTeMaTM4KO pa3yMeBambe, Beh Me je Takohe 006mKoBaIo y 60Jper MCTpasku-
Baua 1 Mucinona. Iherna nmocsehenocr pasBojy Mor nHTeIeKTyaIHOT pacTa 6uiia je Herpo-
I[EFbUB Aap.

Taxobe sxeuM n3pasmuTy NCKpeHy 3aXBaTHOCT CBOjOj IOPOAUIIM Ha HIXOBOj HeIpe-
CTaHOj ITOAPIIIN, OXpaOperby U Bepu y MOje CIIOCOGHOCTH, Koje Cy Omie rilaBHa IIOKpe-
TauKa CHara Mojux JOocTUrHyha.

Beoma cam 3axBasiaH CBOjUM JparuM IpujatebuMa, Yuje MpnjaTebcTBO je 61110 N3BOp
yTexe, pafoCTi 1 MOTHBAI[Mje TOKOM M3a30BHUX (a3a OBOT IIyTOBama. Ibuxosa mpucyr-
HOCT Y MOM JXMBOTY Ta je YUMHIIA OOTaTUjUM 1 TyOIBIM.

3axBajaH caM CBUM CBOjUM Ipodecoprma, KojleramMa 1 CTyJeHTIMa KOju Cy JeJIUIn
CBOje 3HaIbe I YBUeE ca MHOM. Ib1X0BU 3aje JHMUKY JOIIPMHOCY 3HAUAJHO Cy 000TaTIIN
Moje aKkaJeMCKe JICKYCTBO.

Takobe xenum uspasurtu 3axsaiaHoct npodecopy Kaucy Pekujy Ha 1eroBoj BeJInKo-
OYILIHOCTI Y JeJbeiby CBOje NOKTOpPCKe HUCepTaliyije O BUIIeAMMEH3MOHAIHO] TeOpUjn
onepatopa. Iberos gparoreHnn QOpuHOC 3HaUajHO je yOp3ao MpoIlec Mcama OBe AICep-
Tauuje.

Ha xpajy, >xenmM ce 3axBaJMTH 32 IOAPILIKY U pecypce Koje je IPyKIO0 YHUBEP3UTET
y Hurry Tokom mMor gokTopckor mporpama. AkageMcKa atmocdepa 1 pecypei Cy Urpajin
KJBYUHY yJIOTY y OOJIMKOBaIby MOjUX aKaJeMCKIUX M UCTPKMBAUKIX TEXKEBIL.

OBa gucepranuja He 6u Owmra moryha 6e3 moapiike u oxpabpera OBUX M3y3eTHUX
ocoba n macTuTyuuja. Jlyboko cam 3axBajiaH Ha HUXOBOM JOIPUHOCY MOM aKageMCKOM
U JIMYHOM PacCTy.

XBaja cBMMa ILITO CTe OMJIM HeM30CTaBHY A0 OBOT M3y3eTHOT IIyTOBabha.

Ca uckpeHoM 3axBanHouIhy,

Xpanucnas Cmankosuh,

Janyap, 2024.
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YBon

VcnurnBarbe InHeapHUX omeparopa y (PyHKIMOHAIHOj aHATIM3M U TEOPUjU OIlepa-
TOpa uMa 6oraTy UCTOPU]jy Koja Tpaje ayske of jemHor Beka. OBU oIlepaTopu, UeCTO CIIyKe-
hn xao MmaTemaTuuky Mozesn 3a MHOTe (pU3MUKe IT0jaBe, Hajlase IIpYMEHe Y pasiINuUTIM
obJracTiMa Kao IIITO Cy KBaHTHA MeXaHMKa, 00pajja CUrHaja U Teopuja yrpasipama. Mehy
pasHUM KjacaMa JIMHeapHUX ollepaTopa, Kjaca HOPMAIHUX OIlepaTopa ce M3ABaja Kao
jenHa ox HajdbyHIAMEHTATHMjUX 300T CBOje CyIITHHCKe Be3de ca CIIeKTpasTHOM TEOPEMOM.
Y ToM KOHTEKCTy, CyOHOpMAaJIHU OIlepaToOpy, KOjy MPUPOSHO TeHepaInsyjy Kiacy Hop-
MaJIHIX OIlepaTopa, 3ay3uMajy 3HadajHo MecTo. OHI HyJle KOMIIJIEKCHe 113a30Be I yjeJHO
obehasajyhe yBune y ocHoBHe MareMaTnuke CTpyKType.

OBa mokTopcka mucepraija, mon HaciaoBoM ~CyOHopMmanHu omeparopu: Ilpmcryn
13 BUIIIeAVIMEH3MOHAJIHE Teoplije ollepaTopa’, MCTPaXKyje Teopjy CyOHOpMAaHUX oIlepa-
TOpa ca BUIIIeAMMeH3MOHAIHOT cTaHoBMIITa. CyOHOpMATHM OIIepaTopu, Kao reHepasnsa-
I[Mja KJIace HOpMaJIHIX ollepatopa, Beh roguuama dacimunpajy matemarnuape. Meby-
TUM, HJIXOBO ITOHAIlIakhe, IT0CeOHO Kafa ce IpoydaBa y OKBUPY BUIIEAVIMEH3JMOHAJIHE
Teoplje oIepaTopa, ocTaje Moapyyje HelpeKMIHOT MICTPaKMBakha ca 3HaUajHIUM ITOTeHL-
jajom.

OsBa mucepTarnuja mpucTyma npobaemMy Ha CBeXX HaumH, yBogehu HoBe MeTone u 1mor-
Jleie Kako Ou ce “OaMpCIIn’ KOMILUIEKCHY ACIIeKTI CyOHOPMAHMX orepatopa. Lnmib Ham
je ma OCBeTJIMMO IUXO0Be 0COOMHE 1 OTKPHUjeMO Be3e I yBI/Ie KOjU CY MOK/Aa IIPETXOTHO
n3Makin. VcTpakuBame je CTpYKTYpUPAHO y ceiaM IJIaBa, ol KOjuX je cBaka rmocBehena
oxpeheHnM acrekTmMma oBe TeMe.

Harrre ncrpakmBame mounmeMo yBohemeM nmojMoBa y I'imaBu 1, 0CHOBHIM IIperjiefoM
Teopuje CyOHOpPMaTHUX OIlepaTopa, Kao M Teopuje orepaTopa yomire. [J1aBHM 1{1Ib je ma
OIIPeMMMO Hallle YNTaolle HEONIXOJHIM 3HamheM IIOTpeOHUM 3a padyMeBaibe pe3yJrara
M3JI0KEHUX y 0BOj qucepraiuju. ToKOM OBOT IIpolleca, TeXMMO Ja OCUTypaMo Ja Hallla
Ipe3eHTal[ja OCTaHe LITO He3aBUCHIja, cMamkyjyhu moTpeldy 3a criosbHIM pedepeHIIama.

I'maBa 2 nocsehena je ncrpaknBarmy Bese usMehy cyOHOPMATHOCTY ¥ KBa3MHOPMAJI-
HOCTH) oIlepaTopa. KOHKpeTHO, MCTpakyjeMo aa i CyOHOPMAaTHOCT OIlepaTopa M KBasMu-
HOPMAJIHOCT HeT'0BOT KBajipaTa MMILINIIMPA]jy KBa3MHOPMAaIHOCT caMor orteparopa. IIlra-
Buiie, y OnespKy 2.2, qoKasyjeMo ga CyOHOPMAJIHY N-TY KOpeHM KBasMHOPMAJIHOT ollepa-
Topa Takohe mMopajy 6urn kBasmHopmaitHu. [JomaTHo, yTBphyjemMo TOBOJbHE yCIOBE IOX
KOjMMa Cy MaTpMuHa ¥ cpepryHa KBa3MHOPMAJIHOCT ITapOBa OIllepaTopa eKBUBAJIEHTHE ca
oarosapajyhum cBojcTBIMa BUXOBUX N-TUX cTeneHa. Y OnesbKy 2.3, pazMaTpaMo yciIoBe
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ITOJT KOjuIMa CyOHOPMAJIHM OIIEPATOPH [TOCTAjy KBA3MHOPMAIIHU YKOJIVKO j€ EbIIXOB IIPOU3-
BOJ KBa3MHOpMasaH. [JogaTtHo, Ipy’KaMo JOBOJbHE YCIOBE O] KOj/Ma KBa3MHOPMAaJIHI
(my cyGHOpMAIHM) OIIEpaTOPU MOPAjy OUTH HOPMAJIHU aKo je IBUXOB IPOM3BOJ HOP-
MaJaH. Y CyLITHHH, JajeMo Kpurtepujyme 3a oopat Pyneose Teopeme, ycuyt orpusajyhn
Be3y ca BUIIEIVMEH3NOHAIHOM TEOPUjOM CYOHOPMAaJIHUX ollepaTopa. Pesynratu oBe
riiaBe objaBibeHU cy y [158, 163].

I'maBa 3 yBoaM KOHIeNT chepuuHe cpefre TpaHchopMalje, Koju je medpmHICaH 3a
mapose oneparopa. [lojam ce 3acHUBa Ha KOHILIENITY Cpefibe TpaHchopMallije orreparopa,
nporinpyjyhu ra Ha foMeH Buille [uM3MOHATHe Teopuje oreparopa. ¥ OnemKy 3.2, aHaiu-
3MpaMo CIIEKTpajiHa CBOjCTBa KoOja Cy ITOBe3aHa ca 0BOM TpaHcdopmalimjoM. JemaH on
KJbYUHUX aclieKaTa Koje CTPaKyjeMo je Heropa CriocOOHOCT 1a ouyBa Tejiopos crekrap,
jemaH o KIbyUHMX KOHI[eIIaTa Y BUIIIeMMeH3MOHATHO]j TeOpUju onepaTopa. PesynraTu
06e30ebyjy ma y HekuM mmoceOHUM ciydajeBuMa oapeheHe crieKTpanHe KapaKTepUCTUKe
0CTajy HeIpOMemeHe 11 HaKOH IpuMeHere cepuune cpentbe tpancopmanuje. Ilopen
TOra, pasMaTpaMo pas3yIMUNTa aHATUTIYKA CBOjCTBA Be3aHa 3a OBy TpaHchopmauujy. One-
Jpak 3.3 6aBU ce IPaKTUYHOM IIpUMeHOM chepnuHe cpeftbe TpaHchopManuje. YTBphyjemo
HEKe JI0BOJbHE YCJIOBE KOjU rapaHTyjy OuyBame p-XUIIOHOPMAJIHOCTHU, KOHLIEINITa KOju je
rmoce6HO BakaH Kaja ce paai ca JBOJMMEH3MOHATHIM TeKMHCKIM OIlepaTopumMa rome-
paja. HamomeHna fa cy mobujeHu pe3yiTaTtu y 0BOj r1aBu Takohe o6jaBmeHu y [162].

I'maBa 4 je mocsehena npo6iieMy KOMILIETHpama TOPHe-TPOYTAaOHNUX OIEPATOPCKUX
MaTpuiia 1o HopMmanHocti. OBaj mmpo6ieM uma GyHAaMEHTAJIHY 3HAUajHOCT Y TeOpUju
CyOHOPMAJIHMX OIIepaTopa, IIoceOHO Y OKBUPY cyOHOpManHNX ayana. C 1mpeM JaBama
OJIrOBOpA Ha IIOMEHYTH IPo0JIeM KOMILIETUpaka, YBOAVMO I10jaM HOPMAaJIHUX KOMILIe-
MeHaTa. ¥ OnespKy 4.1, mpoydyaBaMo KapaKTepMCTIIKe HOpPMaTHIX KOMIIJIeMeHaTa, OTKPU-
Bajyhm muxose 6utHe ocobmue. Opnespak 4.2 je ycMepeH Ha IIpoydaBarbe 3ajeJHUUHIX
CIIEKTpaJHUX CBOjCTaBa HOPMAJIHIX KOMIUIEMEHATa I, Kao IITo heMo BUIeTH, KOOpAWHAT-
HI OIlepaTopM y Iapy HOpMaJIHUX KOMILJIeMeHaTa Jejle MHOra 3ajefHIUKa cBojcTBa. Ha
Kpajy, y OmespKy 4.3, moBe3yjeMo Teopujy CyOHOpMATHIX qyaja ca TeOpujoM AJyTreoBe I
Hyranose Tpancdopmarmje. OBe TpaHchopMaLje Cy CKpeHyJIe 3HauajHy MTaKiby Ha cebe
y IOCJIeqIbMX HEKOJIMKO JAelleHuja, unHehn oBy Be3dy 3HauajHUM JOIPUMHOCOM OOJIACTI.
PesynraTu mpepcraBbeHN Y OBOj IJIaBM 3aCHOBAHM CY Ha 3ajeJHMUYKOM panay [62].

I'maBa 5 ncrpaskyje pasiamunTe Kirace oleparopa IoBe3aHNX ca HOPMAJIHIM U CyOHOP-
MaJIHUM oIlepaTopuMa. Y HeJaBHOM pany, A. Bammp, M. X. Moprag n H. A. Cajad [12]
yBeJINM Cy OINIITe CTelleHe JIMHeapHUX omeparopa. [pyrum peumma, omepaTropu ce He
OAVIKY Ha OpojeBe, Beh Ha gpyre onepaTope. OHU cy HaBeJIM HEKOJIMKO OCHOBHUX CBOjC-
TaBa Be3aHMX 3a 0Baj KoHIenT. Y OnembKy 5.1, mpolnpyjeMo mbUXoBe pedyarare, 1y0ibe
3asiazehn y cBojcTBa OBOT HOBOT OIIEpaTOPCKOT cTelleHa. Takohe, yBoammo mojam omrrer
soraputMa y Onespky 5.1.3. KoHkpeTHO, 3a Ba MO3UTMBHA U MHBEPTUOMIIHA OIIEpaTopa,
Au B, rne 1l ¢ 0(A), nepuuniemo norapuram B y ogrocy Ha 6a3y A, y o3nanu log , B.
Hamre ncrpakuBame oO0yxBaTa 0OOMMHY aHAJIN3y EHETOBUX CBOjCTaBa, JOAATHO oborahy-
jyhm pasymeBame 0OBUX MareMaTHMUKMX KOHCTpyKuuja. Y OpnespKy 5.2, yBOOUMMO HOBY
KJIaCy oIlepaTopa Ha KOMILUIEKCHOM XMJI0epTOBOM IIPOCTOPY H ITOJ MMEHOM IOJIMTHOMHO-
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akpeTuBHU omepatopu. OBa KOHIleMIMja IPOIINpyje mocrojehe KOHIENITe aKpeTUBHUX
U N-peayHO-TIO3UTUBHUX omepaTopa. Haire mcrpaxkuBame oBe HOBe Kjace oIllepaTropa
OTKpMBa HeKa (QyHIaMeHTAJIHA CBOjCTBA M IeHepayn3yje IIO3HATe pe3yJiTaTe Be3aHe 3a
aKpeTUBHe oIlepaTope. 3aHMMIBMBO OTKpuhe IojaBibyje ce yTBphuBameM ga CBaku 2-
Hopmanuu u (2k + 1)-peanHo-nosutusHu omeparop, 3a Hekn k € N, mopa 6utu n-
HOpMaJIaH 3a cBako 1 > 2. [logaTHo, Ipy>KaMoO JOBOJbHE YCJIOBE 32 HOpMalHOCT 1’y
KOHTEKCTY OBe MHKIIy3Mje. 3aBPIIHY OfieJbaK oBe I1aBe, Onmespak 5.3, mocseheH je ucnntu-
Balby PEIIMBOCTYU OIIIITET CUCTeMa ollepaTopckux jeqHaumua: A, XB; = C;3a1 = 1,2.
Y oxBupy oBor mnpobGiema, IIpefcTaBbaMoO IOTpeOHe M TOBOJbHE yCJIOBE 3a IIOCTOjarbe
pelilersa, 00yxBaTajyhm xepMuTcka pelierma 11 MO3UTUBHA pelllema. [J0JaTHO, M3BOAUIMO
omiTe 00JIMKe OBUX pellleha, omoryhasajyhm ucrpaskuBarbe orepaTopcKnx HejeTHAKOCTH
x

x-TiopeTka. KomkperHo, ucnuryjemo pemnsoct C' < AXB u mpencraBbaMo OIIITH
* *

o6nuk pemrersa 3a C < AX n C < XB. Behuna pesynrara Ha kojuma je 6asupaHa
oBa riaBa Beh je mpencrasmena y [159, 160, 161].

Harmocinerky, y I'maBu 6, pasmarpamo ¢-HyMepUUKI PARM]yC w,(-) OepaTopcKux Mar-
puna neuHMCaHNX Ha QUPEKTHOM 301py XmiI0epToBMX IPOCTOpPA M UCTPAKYjeMO pas-
JIMYNTE HejeJHAKOCTY y Be3) ca OBUM BpegHOCTMMa. Takohe mpoimpyjeMo Heke DoOpo
IO3HATe jeJHAKOCTU Be3aHe 3a HyMEPMUKI paaujyc Koje ce jaBbajy Kaja y3MeMo 1a je
¢ = 1. HakoH rora, gajeMo eKCILUIMIUTHe (opMyJle 3a M3pauyHaBambe w,(-) 3a Heke
CIIelVjaJIHe CydajeBe OIepaTOpCKMX MaTpUila U Takohe yTBphyjeMo Heka aHAIUTUUKA
cBojcTBa w,(+) Kao ¢yHkumje y 3aBucHocty of ¢. Y OpmemKy 6.4.2, padMarpamo jegHo-
IVIMEH3VOHAJIHe ollepaTrope Ha X1IOepTOBOM IIPOCTOPY H M IpefcTaBbaMo OMIITY (op-
MyJIy 3a HyMepUUKI pafujyc oneparopa panra 1. Takohe mokasyjemo yomnireme Bysanu-
He HejeJHAKOCTHU Kao mocienuiy. Behmua pesyinrara oBe riase moske ce Hahu y [70] u
[164].

3aBpI1aBaMO IIpe3eHTAlNjy CyMIpambeM HalllX Pe3yJiTaTa M JaBameM HEKMX 3aBpILI-
HUX KOMeHTapa y I'masu 7.

YkpaTko, y 0BOj AucepTauyju peacTaBbaMo pasanduTe HOBe pe3yJsTare, TeopeMe U
MIIyCTpaTUBHE IpUMepe Kako 6ucMo ay0ibe pasyMenn oBy TeMy. Mako je oBaj paj qanexo
0J1 CBe0OYXBaTHOT, 300T 0OMMHe Teopyje HOPMAJIHUX U CyOHOPMATHUX OllepaTopa, UIaK
TeXXN Jja IPYXKU 3HaUajaH HOIPMHOC pasyMeBamy CyOHOPMATHUX olleparopa U CyOHOp-
MajmHUX n-Topkn. Hamamo ce ma he yBuam creueHm u3 oBOT MCTpakKMBamba HaJaXHYTU
Iajbe VICTPaKMBakbe OBe 3aHMMJBMBE 00JIACTI MaTeMaTMKe 1 JOBECTU J0 HOBUX OTKpuha.

Baxua HammomeHa. [tage 5, 6 u 7, Kao u c6u 00Ka3u Koju cy U30CmMaesvbeHu y 060j 6ep3uju
oucepmayuje, Mozy ce nponahu y eep3uju oucepmayuje nUCAHOj HA eHeTIECKOM je3UKY.
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I'maBa 1

OCHOBHU TOjMOBU

OBo moryassbe NOYNMELEMO IIPEICTaBbAbeM OCHOBHOT OKBMpa Teopuje onepaTtopa. O-
Baj ITIOYETHY KOpaK Ciykmhe Kao OCHOBa 3a Haille Oyayhe ucTpaxuBame CyOHOPMaTHUX
omneparopa. Takobe, 11U je ma ompeMMMO UMTAOlle OCHOBHUM 3HalbeM IOTPeOHUM 3a
pasyMeBambe pe3yJsITaTa IpeacTaBbeHIX Y 0BOj IMCEPTAL]jI.

1.1 Omeparopu Ha XMIIOEPTOBUM ITPOCTOPUMA

Y 0BOM OfjelbKy IIpe[CTaBbaMO KJIaCMUHe pe3yJITaTe M3 Teopuje olleparopa, Kao 1
onuc cuMOosa Koju he ce KOPUCTUTH Y OBOj AUCEPTALIVjIA.

Kopucrtumo cranmapauy Hotaunjy C 3a o3HauaBare KOMILIEKCHe paBHH, 0K he R
o3HauaBaTU pealHy ocy. N mpexmcraBmba CKyNI CBUX IPUPOIHUX OpojeBa, Z O3HauaBa
nesne 6pojese, nok he Z, mpencrasmwaru N U {0}. Takohe hemo kopucturu D) ma Gucmo
O3HAUWIIN OTBOPEHMU jeAMHUUHU JUCK OKO Hye, ogHocHo, D = {2z € C: |z| < 1}.

CaH, K, L, ... o03HauaBaMo XuabepToBe IIPOCTOpE, KOjU Ce YBEK CMATPajy KOMILIEK-
cuuM. CxaylapHu IpousBoj ¥ HopMy Ha XuiibeproBoM mpocropy o3HauaBahemo ca (-, -) u
|||, peciexTuBHO. Mognpocrop M ox H yBek moppasyMeBamo Aa je IMHeAPHI IIOAIPOC-
TOp, KOju He Mopa OUTHU 3aTBOPEH y OJHOCY Ha TOIIOJIOTHjY KOjy TeHepuIlle CKalapHU
npoussoy Ha H. 3aTBopeme mommpocTopa M osHagaBaMo ca M, ok ce mompocTop M
cMarpa rycTuM axo je M = . OpTOroOHATHY KOMILIEMEHT ITonpocTopa M o3HauaBa-
hemo ca M+, nox he M & A mpencraBmaTi OpTOroHaNHY CyMy fBa moampocropa M u
N.

Axo cy H u K Xunbeprosu nmpocropu, Taga osHauasamo ca ‘B (7, K) Banaxos mpocrop
CBMX OTPaHMUEHNX JMHeapHuUX omneparopa ca H Ha K. Axo je H = K, oHja jemHOCTaBHO
xopuctumo B(H) ymecro B(H, H). Hopmy oneparopa T' osHauasamo ca ||T’||. 3a matu
oneparop T’ € B(H, K), osnaunhemo ca R(T') cnuxy oneparopa T. N'(T) he oznauasarn
jearpo (mwiu kepuein) onepatopa 1. Kaxkemo na je omeparop 1 € B(H, K) oneparop ca
3aTBOPEHOM CJIVIKOM (M1 MMa 3aTBOpeHu oricer) ako je R(7') saTBopeH MOLIIPOCTOP O

K.
AnjyuroBannu omneparop omneparopa I’ € B(H, K) oznauasamo ca T* € B(K, H). Ca




I'TABA 1. OCHOBHHU IIOJMOBU

o(T) n r(T) osHauaBaMo CHeKTap U CIEKTPAIHU paaujyc omeparopa 7', peCIeKTUBHO.
Hymepuunu panr oneparopa T mepuHMIIIEMO Kao CKYII

W(T) = {{T,z): w € H, [lz] =1},
IOK ce HyMepUYHM paaujyc qepuHNIIe Kao

w(T)= sup |w|.
weW(T)

Kaxxemo na je omeparop 7' € B(H) Hopmanan axo je 71" = T*T, ogHOCHO akKo
omepatop 7' KOMyTMpa ca CBOjUM aajyHroBaHuM omepatopoMm 1. Kiaca HOpMasHUX
omeparopa je BeomMa BakHa (ako He U HajBakHMja!) y Teopuju omeparopa 300r 3Hauaja
CrekTpaiHe TeopeMe Koja BayKI 3a oIlepaTope 13 oBe Kiace. Heky ox OCHOBHMX ITpuMepa
HOPMAaJIHUX OIlepaTopa yKJbYydyjy YHUTapHe olepaTrope, XepMUTCKe oreparope (camo-
KOHjyroBaHe) I IO3UTHBHe ortepaTope. HaBemeHu TepMmUHI Majy yoOudajeHO 3HAUEbe:
T je yHUTapaH aKo je HOpMaJIaH I MTHBePTUOWIIaH; XepMUTCKY aKo je 7' = 1™ u mosuTuBaH
axo je (T'r,z) > 0 3a cBe x € H. Knaca HopmanHux oneparopa Ha onpehenom XunGep-
ToBOM Tipoctopy H Gmhe osnauena ca N (H).

CKyII TOSUTUBHIX OIlepaTopa IpeCTaBba KOHBEKCHU KOoHyC Y B (H), a mapuujanau
IopefakK Ha CKyIly XepMUTCKIX OllepaTopa MHAYKOBaH OBMM KOHYCOM ce 30Be JledHepoBo
ypebeme, y osnarm <. Csaku mosmTuBHU oreparop /' mMMa jeqUHCTBEHM ITO3UTVBHU
KBaJpaTHU KOpeH, OJHOCHO ITOCTOjM jeAVHCTBEHM IIO3UTUBHIU oIleparop S Takas Ja je
T = S? Osnauasamo S ca T'/? . Kopucrehn Hempekuanu QyHKIMOHAIHU pauyH,
Takohe MokeMo nmeduHMCcaT OMIIO KOjU IO3UTUBHU CTelleH 3a /', OQHOCHO 3a CBaKMU
a > 0, omeparop 1™ uma cmucia geuuucarn. Ilomrro je 71 mosmurusaH 3a cBaku 1’ €
B(H, K), onepatop (T*T)'/? je mobpo medummcan u HasuBa ce MOXYN (MM ANCOTyTHA
BpefHOCT) oneparopa ', u o3Hauasa ce ca |T|.

3a ceaku oneparop T' € B(H), ca Comm(T') osnauaBamo KomyTaut omneparopa T, Tj.

Comm(T) ={Se€B(H): TS =95T}.
[To6po je mosHaro aa 3a mosutusHY oneparop 1’ € B(H) Baxnu
Comm(7T) = Comm(T"/?).
[raBuire, umamo cienehe Tpheme:

Teopema 1.1.1. Akojen € N, on0a ce komymanmu no3umueHoz onepamopa u Hezo602 n-moz
KOpeHa nokianajy.

Omnepatop T' € B(H) ce cmaTpa npojekimjom ako je 1% = T, 1j. ako je T MAeMIIOTEHT.
T je oproroHaiHa mpojekunja axo je 172 = T = T*, 1j. ako je T XepMUTCKYU UAEMIIOTEHT.
IIpojekuyja ca cikom M u jesrpom N Guhe o3Hauena ca Py s, 1ok he Py 03HauaBatu
OpPTOTOHAJIHY IMPOjeKInjy ca cnukom M.
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AxojeT : H — K u M C H, pectpukuuja oneparopa 1’ Ha M 6uhe o3nauena ca
T | - Kopectpuxkiuja 7" onepartopa 7' je neduHmMcaHa Kao IpecanKaBambe ca JOMEHOM
H, xomomenom R (A) u TakBo fa Baxu

Ax = Az, x € H.

3arBopenu mognpocrop M y H ce cmarpa uHBapujaHTHUM moamnpocropom 3a T € B(H)
ako Tx € M 3a cBe x € M. 3arBopenu noamnpocrop M je je penykyjyhm mogmpocrop
salT € B(H) (unu penyxyje T' € B(H)) axo je uaBapujanTan 3a 1 u T%, 1j. yxoauko je
T(M) C MuT*(M) C M. Cneneha jenHocTaBHO, any KOPUCHO 3amakarbe, Kopuctuhe
ce y HEKOJIMKO J{0Ka3a.

Jlema 1.1.2. Hexa cy A, P € B(H) makeu da je A camoxonjyzoean a P je opmoeonanna
npojexyuja. Taoa je R(P) uneapujanman 3a A axo u camo ako A u P komymupajy.

[oka3s. Ako je R(P) uuBapujanran 3a A, oupa je ounraeguo PAP = AP. Konjyrosamem
nociee jemuakocre, nooujamo PAP = PA, naje AP = PA.

CympotHo, ako je AP = PA, ouna je PAP = AP, wro noppasymesa aa je R(P)
MHBapujaHTaH 3a A. u

Tpe6a HAIIOMEHYTU Oa IIPETXO0JHAa JIEMa Ma OI'ILLITI/IjI/I 00K Y BUAOy cne,uehe TEeope-
Me.

Teopema 1.1.3. [85, cmp. 62] Hexa je T' onepamop Ha Xunbepmosom npocmopy H, a M
3ameoperu noonpocmop 00 H. Tada cy cmedehu ycrnosu ex6ueaneHmuu:

(1) M peoykyje T
(1) M* pedyxyje T';
(ii) TPy = PuT.

3a marm 3aTBOpeHu mmogrnpocrop S u 3a cBaku 1’ € B(H), nekomMmosumuja onepaTop-
cke MaTpuile I MHAYKOBaHa mogmpocropom S mara je ca

Tll T].2
1.1 T = :
(1) [Tm T22]

rae je Tty = PsTPs |s, Tie = PsT(I — Ps) [s1, Tor = (I — Ps)TPs [suTlyn =
(I—Ps)T(I—Ps) |si. Akoje T1o = 0u Ty = 0, jegrocrasuo hemo nucatu T = T ®Tss.
3a T € B(H) nocroju nuneapuu omeparop 7" : D(T") C H +— H rakas na
R(T)CD(T)n
TT'T =T.
Ormepatop 7" ce 30Be yHyTpallby NHBEP3 oneparTopa 1. Y omiiuTeM ciiyuajy, HalloMube-

Mo ma T’ moxe 6utu HeorpanuueH, ogHocHo 1" ¢ B(H). Homarno, 3a T € B(H)
nocroju yHyTpamsy uasep3 7’ takas ga 1" € B(H) ako u camo ako T’ uMa 3aTBOpeHy

3
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cnuky [135]. ¥V Tom ciyuajy, onmepartop 1’ ce HasuBa perynapauM. [lomatHo, ako 1’ takohe

3a40BOJbABA
TTT =T,

taga ce 1" 30Be peduexcuBHu uHBep3 onepartopa 1. Takobhe, mocroju jenuHcTBeHU ped-
JIeKCUBHU MHBep3 X omepaTtopa 7' Koju 3a0BoJpaBa CUCTEM jeJHAUMHA

XT = PfR(T*) n TX = PW r'R(T)EBR(T)Lv

TakaB oneparop ce 30Be Myp-IleHpoy3oB (reHepanycanu) nHBep3 omepaTtopa 1’ 1 o3Ha-
uaBa ce ca 1. ExsuBanenTHo, oneparop 11 3amoBomasa ciemehu cucrem jemnaunmna:

IT'T =7, T'TT' =T, (TT")*=71T' (T'T)" =T'T,

Koje ce 30By IleHpoy3oBe jeqHaunHe. Myp-IleHpoy30B MHBep3 npeacTaBiba IJIAaBHY ajaT y
pelllaBary MHOTMX MaTPUUYHNX U OIlepaTOpCKuUX jeqHaunHa. CaBpeMeHa Teopuja reHepa-
JIMCaHVX MHBep3a MOJKe ce IToBe3aTu ca pagoM Bjepxamapa y [22] u [23] kana je ucrakao
na je MypoB “peunnpounn exeMeHT [125] 3ampaBo HajMatbe Cpeibe-KBAAPATHO Pellerhe
jemnaunmue AX B = C. Ilocne Tora, [lenpoys je y [139] u [140] mporupuo Bjepxamapos
pe3yiTaT 1 JoKasao cienehy reopemy:

Teopema 1.1.4. [139] Heka cy A € C™*", B € CP*? 4y C' € C™*4. Taoa je mampuuna
JjedHauuHa

AXB=C
KOH3UCMEHMHA aKo U camo axko nocmoje yHympawru unsepsu A, B' makeu da eaxcu
AA'CB'B =C,
U ) MoM CIIyuajy je onumo peuierve
X=ACB'+Y - AAYBB,
3a npouseowHo Y € C"*P,

Hamomena 1.1.5. Cryuaj kada cy A u B onepamopu ca 3ameopeHum ciukama, y CyulmuHu
Jje ucmu kao cryuaj mampuune jeonauune AX B = C, u cmoea, ITenpoy3os aneebapcku 0oka3s
ce MOJce NpUMeHUMU U Ha onepamopcku cayuaj. Takore, ca Hekum Moougpuxayujama, moice
ce ookazamu credehu pesynmam, 3a Koju cy 3acnyxnu Apuac u Ionszanec [9]:

Teopema 1.1.6. [9] Heka cy A € B(H,K), B € B(F,G) uC € B(F,K). Axo je R(A),
R(B) unu R(C') 3ameopen, onda cy credehu ycrnosu ekeusarieHmuu:

(i) Jeonauuna AX B = C' uma pewerve;
(ii)) AA'CB'B = C 3a cse ynympawme ungepse, A', B', 00 A u B, pecnekmuého;
(iii) R(C) C R(A) uR(C*) C R(B*).
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Takxohe msnocumo [larsacoBy jgemy, KOjy cMeMO CI0O0LHO Ha3BaTU He3aMeHJbBUM
aJlaToOM KaJi 'Ol ce paJM O pelllaBamky jefHAuNHA U MHKIy3Jje CIMKe oIleparopa.

Teopema 1.1.7 (darsacosa ema [74]). Heka cy A u B oepanuuenu onepamopu Ha Xunbep-
moeom npocmopy H. Crnedehu ycrnogu cy ek6usameHmnu:

(i) R(A) € R(B);
(ii) AA* < \2BB* 3a nexu \ > 0;
(iii) nocmoju oepanuuenu onepamop C na ‘H maxkas oa je A = BC.

IImasuwe, ako eaxcu 6UI0 Koju 00 nPemx00HUX YCIT068d, OHOA NOCMOju jeOUHCMEeHU onepa-
mop C' makas 0a je

1 ||C||? = inf{u: AA* < uBB*};
2. N(A) = N(C);
3. R(C) C R(B*).

Omneparop U na XunbeproBoM mpocTopy H Has3mpa ce mapi{ijajiHa M30MeTpuja aKko
IIOCTOjM 3aTBOPEHM MOAIpocTop M TakaB maa Baxu

[Tz =[]

3a cako r € M, u Uz = ( 3a cBako * € M™, rae ce M HasMBa MHUIMjATHYI IPOCTOP
oneparopa U, a N' = R(U) ce nasupa ¢unanuu mpocrop onepartopa U. IIpojexuuje Ha
VHILVjTHN ¥ (UHAIHY IIPOCTOP Ce HAa3WBajy, peCIeKTUBHO, MHULMjaIHA ¥ (puHAIHA
npojexnuja onepatopa U.

Teopema 1.1.8. [85, cmp. 53] Hexa je U napyujanna usomempuja Ha Xunbepmosom npocm-
opy H ca nouemnum npocmopom M u konaunum npocmopom N'. Tada eaxcu:

(i) UPy = U uU*U = Py;
(ii) N je sameopenu noonpocmop 00 H;

i11) U* je napyujanna usomempuja ca nouemnum npocmopom N' u KoHauHUM npocmopom
J uy J

M, mj. U*Py =U*ulUU* = Py.

3aT € B(H, K), xaxxemo na je T = U P nonapHa gexommnosuiyja orneparopa 7' ako je
P nosurusan, U je mapumjanua nsomerpuja, u N (T') = N(U) = N(P). V tom cayuajy,
P=|T|.

Teopema 1.1.9. [85, cmp. 59] Ako je I = UP nonapua dexomnoszuyuja onepamopa T’ na
Xunbepmosom npocmopy H, onoa je T* = U*|T*| nonapra dexomnozuyuja onepamopa T*.
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Teopema 1.1.10. [85, cmp. 63] Ako jeT' = U P nonapna dexomnosuyuja onepamopa T’, onda
U u P xomymupajy ca A u A*, 20e A o3nauasa 6uno koju onepamop koju komymupa ca’'l’ u
T.

Ceaxu 1" € B(H) M0o>keMO IIPeACTaBUTH Kao

T =Re(T)+iIm(T),

rie cy Re (T') u Im (T') xepmurckn onepatop. TakBa JeKOMIIO3UIM]ja je jeAMHCTBEHA, U
pant T +T* T T
= , Im(T) = —.
2 21
Omneparopu Re (T') m Im (T') ce 30By peanHu 1 MMaruHapHM 1eo orepaTopa 1', pecrieKTuB-
Ho. OBa leKoMIIo3uIja ce 30Be [lekapToBa JeKOMIIo3uIuja omepaTopa 1.
Ha xpajy, HaBOJUMO HeKe CTaHJapIHe Pe3yJTaTe y Be3) ca HOPMAIHUM U TO3UTUB-

HUIM OII€paTopmMa.

Re (T')

Teopema 1.1.11. [5] Heka je S 3ameopen noonpocmop 00 H unekaT € B(H) uma dekomno-
3uyujy y obrnuky onepamopcke mampuye unoykosany ca S u oamy ca (1.1). Taoa je T
NO3UMU6AaH aKo U Camo aKo 6axu:

(i) T > 0;
(id) Tor = T
(1) R(Ti2) € R(TY);
(iv) Top = ((Tfl/Z)TTu)* (T2 Ty + F, 2de je F > 0.

Teopema 1.1.12 (dyneosa teopema [83]). Hexa cyT u N oepanuuenu onepamopu Ha KoMn-

JekcHoM Xunbepmosom npocmopy makeu da je N nopmanan. Axo T'N = N'T, onoa je
TN*= N*T.

Teopema 1.1.13 (Pyne-IlarnamoBa Teopema [144]). Heka je T € B(H), u neka cy M u N
0ea komymupajyha Hopmanna onepamopa. Taoa eaxu

TN =MT <= TN* = B'T.

Mocmenumna 1.1.14. [83] Axo cy M u N komymupajyhu HopmanHu onepamopu, oHOA je u
onepamop M N HopmanaH.

[okas. Hekacy M, N us B(H) Hopmanuu oneparopu raksu aaje M N = N M. Kopucre-
hu Teopemy 1.1.12, nobujamo faa je
(MN)(MNY* = MN(NM)* = MNM*N*
=MM*NN*= M*MN*N
— M*N*MN = (NM)*MN
= (MN)*(MN).

Haxne, M N je HopManaH oIepaTop. |
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3a Buure napopmanuja o Pyne-IlarnamoBoj Teopuju, yrnyhyjemo unraona Ha [130]

Teopema 1.1.15. [128, ITocneduya 5.1.36] Axo cy A, B € B(H) d6a komymupajyha nosu-

mueHa onepamopa, oHoa je
VAB = VAVB,

3a ceakon € N.

Teopema 1.1.16 (Jlepuep-Xajuuosa Hejennakocr [99, 119]). . Axo cy A, B € B(H) nosu-
mugnu onepamopu maxeu da je B < A up € [0, 1], onoa je B? < AP.

Hamomena 1.1.17. Yonwmero, npemxooHa meopema He 6axcu 3ap > 1 (6udemu, Ha npumep,
[129, cmp. 55]). Merymum, ako A u B komymyjy, up € N, onda B < A nosmauu oa je
BP < AP. Haume, nowmo A u B xomymyjy, Moxemo Hanucamu

AP — BP = (A— B)(AP' + AP2B 4 ...+ B ).

O63upom na mo da A u B komymyjy u da je B < A, umamo dacy A — B u AP~1 + AP2B +
...+ BP~! 96a komymupajyha nosumuena onepamopa, u cmoza je AP — BP nosumusan.
Haxkre, mopa 6umu BP < AP.

1.2 Yommurema HOpMAITHHUX oIlepaTopa

Y Teopuju omeparopa IOCTOjU MHOTO OIIITHjIX KJIaca Of Kjace HOPMAIHUX OIlepa-
Topa. JemHa Off HajBaXXKHIjUX je Kiaca cyOHOpManHux oneparopa. CyOHOpMaTIHM omepa-
TOPU Cy OTpaHNYEHN JIMHeapHN! olepaTopn Ha XmiIOepTOBOM IIPOCTOPY Koju ce nedpumHM-
11y cabiberbeM yCIoBa 3a HopMainHe onepaTope. [lojam cyOHOpMaIHMX oIleparopa yBeo
je ITox P. Xanmoc [92], ncroBpeMeHo ca nepmHMCAEM XUIIOHOPMATHIX OIlEpaTOpa, joI
Imype Kiace ornepatopa. Ha To ra je HaBeJio ucTpakuBame CBOjcTaBa oleparopa IroMepaja,
BepOBaTHO Haj060Jbe cxBaheHOT omepaTopa Koju Huje HOpMasiaH. Y OBOM OJeJbKY IIpeIcTa-
BrtheMo HeKka OCHOBHA CBOjCTBa CyOHOpPMAaTHIX OIlepaTopa U BUAETY KaKO CY Pas3iMumuTe
KJIace YOIIIITeha HOPMAJIHUX ollepaTopa rmose3aHe MelycobHo.

1.2.1 Cy6HOpMaIHU omepaTopu
[Tounmemo ca qedUHUIjOM CyOHOPMATHOCTY OIlepaTopa.

Hedunnnuja 1.2.1. Oneparop 7' Ha XunbeproBoM npocropy H je cybHopmanax ako 1moc-
Toju Xunbepros npoctop K xoju cagpsxku H u Hopmanan oneparop N : K — K takas ga
Baxu N(H) C Hu Nx = Tz 3a cBaku = € H.

Hpyrum peunma, omeparop je cybHOpManaH ako 1Ma HOPMAIHY eKCTeH3M]y (IIpoay-
Xembe), YUIM eKBUBAJIEHTHO, aKO ITocTojy XmoepToB mpoctop £ ¥ HOpMaJlaH OIlepaTop

N € B(H & L) rakas na je
T x| (H H
o (2 (2)
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Y pany [92], oneparopu Koju 3amoBosbaBajy depuuuinjy 1.2.1 Ha3uBajy ce nomnyHo cy6-
HopmanHu. TepMuH cy6HOpMATaH, KaKo ce KOPUCTU OBJe, IIPBM IIyT je yBedeH y pany [93].

Kao mro je panmje HarmoMeHyTO, M3y4yaBare HOPMAIHUX OIlepaTopa MMa M3y3eTaH
ycrex. JemaH ox rilaBHuX passora je CrekTpanHa TeopeMa KOji BaKI 3a OBY KJIacy olle-
paropa. Takobhe, mpmpomHO je moKymaTy pasymMeTy CTPYKTypy LUTO BHILIE OIIEPATOPU
KOjI1 He IIpnIanajy oBoj kiacu. Bynyhu na ce koHIlenT cyOHOpMaTHOCTY MOXKe ITOCMAT-
paTy Kao JOBOJBHO OJM3aK HOPMAIHOCTM, Pa3yMHO je OUeKMBATU Ja Teopuja cyOHOp-
MaJHUX OIlepaTopa MMa IIOTeHIMja] Aa MpaTy ciamyaH myT. HapaBHo, MHOra nurama
U KOHIEIITU KOje ce OHOCe Ha CyOHOpMAaJHe oIleparope, MHCIMPICAHE Cy IMUTABUMa
KOja ce OMHOCe Ha HOpMaJiHe onepaTope 1 Beh cy mo6mia ogrosope. Ha nmpumep, y pany
[27] je mokasaHO fga cBakM CyOHOpPMAaJIHU OIlepaTop MMa HeTPUBMjaJaH MHBAapMjaHTaH
mopnpoctop. Mehytum, nocroje Heke 6uTHe pasnuke u3Mely oBe aBe HaBeleHe Kiace,
IIITO je JOBeJIO [0 Tora Ja Teopuja CyOGHOpMATHUX ollepaTopa IIpaTu corcTBeHu nyt. Ha-
UMe, Y CYLITIHIY, CTyOOBIU TeOpHje HOPMATHUX oIleparopa jiexxe Ha Teopuju Mepa u Criek-
TpaJHOj TeOpeMI, JOK ce Teopyja CyOHOPMaTHUX OllepaTopa 3aCHMBA Ha TEOPU)U aHAIN-
TUYKUX QYHKIYja.

Y nureparypu 1ocToju MHOTO KapakTepuaaluja CyOHOpMaIHIX olleparopa. Bupmern,
Ha mpumep, [92, 25, 78, 28].

Jour jemHa ejeraHTHa KapakTepm3alyja CyOHOPMATHOCTM KOja HArJlalllaBa HeHY
OJIMICKOCT ca KOHLIEIITOM HOPMATHOCTY Y TOIIOJIOUIKOM CMUCIY fosa3u o Burona [21].

Teopema 1.2.1. [21] Ako je T € B(H), onda cy cnedehu ycrnosu ekgueanreHmuu:
(1) T je cybropmarnan;
(73) T je SOT-numum HuU3a HOPMATHUX ONEPAMOPa;
(1ii) T npunada SOT-3ameopery ckyna HOPMATHUX Onepamopa.
Axko je T € B(H) cy6uopmanan omepatop u N € B(K) je nopmanan, oHpma je,
ounraento, S = 1T @ N rakohe cy6Hopmanan. [loHekan je om MHTepeca MCTPaXUTH

camo “He-HOpMaJHU feo” oneparopa S. Taunnje, mmamo cienehe:

Teopema 1.2.2. [45, Cmas 2.1] Axo je T € B(H), onda nocmoju noonpocmop Hy xoju

pedykyje T’ maxae oa je
T 0 [ Ho Ho
r=[5 z) ()~ (i)

2oe je T, nopmanan a'l}, uucm onepamop.

Hepuuurmja 1.2.2. Oneparop 7' € B(H) je uucm ako Hema HeTpuBUjaIaH peayKyjyhu
nopnpoctop M Takas na je T| s HOpManaH.
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Hanomennmo fa je 7' uncr ako je nmogmpocrop Ho us Teopeme 1.2.2 yerBapu {0}. ¥
HACTaBKy, peqyKyjyhu nmpoctop Hy U 1eroB opToroHaJIHM KOMIIJIEMEHT heMo 03HAUUTH
ca H,(T) n HP(T), pecniekTuBHO, MoK 1, n T,, hemo HasBaTu, peceKTMBHO, YUCM U
Hopmanan deo on 1T'. Jexommnosunmja ' = T, @ T, he ce jemHOCTaBHO 3BaTM uUCMO-
HopmarHa dexkomno3zuyuja ox 1.

HopmanHa excTeH3Mja CyOHOpPMAaJIHOT OIlepaTopa HMKada HUje jeNMHCTBeHA. 3arl-
paBo, ako je N HOpmanHa ekcreHsuja ox 1, m M je Gmio Koju HOpMaslaH OIEpPaTop,
oupa je M & N rakohe Hopmanna ekcrensuja ox 1'. Crora uma cMmucia yBectu cienehy
nebrHUII]Y.

Hedunrnnuja 1.2.3. Axo jel' cybHOpManaH onepaTop Koju genyje Ha H, u N je HopmaiaHa
excreHnsuja on 1 koja menyje Ha K O H, kaskemo fa je N MUHUMAanrHa HOpPMATHa eKcmeH3uja
ox ako K Hema HM jefjaH IpaBM IOIIIPOCTOP KOju penykyje N u cagpsxu H.

Cneneha Teopema mokasyje fia je MUHMMAaJHE HOPMAJIHE €KCTE€H3Mje ~jeIMHCTBEHE .
Crora Mo>XeMO JIETUTYIMHO TOBOPUTI O MUHUMATHOj HOPMATTHOj eKCmeH3uju cyOHOpMaJ-
HoTr oneparopa 7.

Teopema 1.2.3. [45, [locneduya 2.7] Ao je T € B(H) cybnopmanan onepamop u N1 u No
cy MuHumamHe HopmasHe excmenauje 00 T, onda cy N1 u No yHumapHo exeugsaienmre.

Kaxxemo ma cy omeparopu A € B(H) u B € B(K) yHUTapHO eKBUBAIEHTHU aKO
nocroju yunrapHa tpancopmauuja U € B(H,K) (U*U = I, UU* = Ix) raksa na
je A = U*BU. Jow jemaH BeoMa KOPUCTaH pe3yJITAT IOBe3yje KOHLIENT MUHUMATHE
HOpMaJIHe eKCTeH3Uje U uncrtohy ormeparopa.

Teopema 1.2.4. [45, Cmag 2.10] Heka je T' € B(H) cybropmanan onepamop u Heka je

(12) N= ﬁ ﬁ*} : (,;ﬂ) ” (’Zﬁ)

HopmarnHa excmensuja 00 T'. Credehu ycrosu cy ekgugareHmuu:
(1) T je uucm;
(1) N* je MuHumanna HopmanHa ekcmensuja 00 B;
(14i) Hajmaru noonpocmop H xoju pedykyje T u cadpmu R(A) je H;
(iv) He nocmoju nenyna npojexyuja P na H makea oa je PT = TP u PA = 0.

[pernocraBumo aa je 1" € B(H) cybropmanan onepartop u Heka je N € B(K) merosa
MIHIMAaJIHa HOpMalHa eKcTeH3uja qata ca (1.2). Axko je 7' umcr cyGHOpMAaIaH omeparop,
oHAa je S jeNMHCTBEH [0 Ha YHUTApHY e€KBUBAJIEHLMjy M HasMBa Ce AyaJTHU OIepaTop
oneparopy 7' (Bunetu [44]). Kaskemo f1a je I’ camoyasaH ako je yHUTapHO €KBUBaJIeHTaH
cBoM ayainy S. [yas cyOHOpMaJIHOT ollepaTopa Takohe je mcrpaxkeH y pagosuma [131] u
[180]. mamo cienehe kapakrepusaiuje camogyarHux omneparopa, koje he 6utu xopm-
hene y I'nmaBu 4.
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Teopema 1.2.5. [131] Heka je'l' uucm onepamop na Xunbepmosom npocmopy H. Taoa je T
camo0yasHu cyGHOPMATTHU onepamop axKo U camo ako nocmoju HopmanHu onepamop A na H
makas 0a 6axu

[T*,T] = AA* u AT =T*A.

Teopema 1.2.6. [152] Heka je T € B(H) uucm onepamop. Taoa je T camodyarnu cybHop-
MATHU onepamop ako u camo axko nocmoju onepamop A € B(H) maxas oa je onepamopcka

mampuya [g ;1*} Ha H © H Hopmanna.

1.2.2 KsazmHOpManHU oIepaTopm

Kitaca kBasMHOpMaJIHIX OIlepaTopa je IpeacTaBbeHa y paxy [26].

HNedunnunuja 1.2.4. Oneparop 1" Ha XunbeproBOoM mpocTopy H je K6azuHopmanian ako
xomytupa ca T*T, 1j. TT*T = T*T>.

Teopema 1.2.7. [45, Cmas 1.6] Ako je T = U|T| nonapra dexomnozuyuja onepamopa T,
onoa je T' keaszunopmanan ako u camo ako U u |T| komymupajy.

OunrnenHo, CBaKy HOpMaJlaH OIlepaTop je KBasyHOpMaJaH, I Kjlaca KBasMHOPMAaTHIX
orepaTopa je TauHo MOACKyYTI cKyta B (H) unju enemenTu nmajy kKomytupajyhe monapue
nexommosunuje. Crora je Ki1aca KBa3aMHOpPMAJHUX oIlepaTopa MHTEpecaHTHA caMa IIO
ce6u. Vcro Tako, oHa MMa MHOTe IpUMEHe Yy TeOpUju CyOHOpPMATHIX OIleparopa, jep
mpejcrasba “Bedy usMely HopmamHOCTM M cyOHOpManHOCTH. [pyrum peumma, MMaMo
cinenehe:

Teopema 1.2.8. Cseaku K6a3UHOPMATTHU onepamop je cyOHOPMATIAH.

Teopema 1.2.9. [131] Ceaxu uucm K6a3uHOpmanax onepamop je camooyanau cy6HOpManaH
onepamop.

Cneneha nema, xoja ce moxxe Hahm y [51], naje HamM moTpeGHe 1 JOBOJBHE YCIIOBE 32
KBa3MHOPMAITHOCT (M HOPMaJTHOCT) CyOHOPMATHOT OIlepaTopa.

Jlema 1.2.10. [51] Heka je T' € B(H) cy6Hopmantu onepamop ca HOPMATTHOM eKCMEH3UjOM

vl A @) )

Taoa je T xeasunopmanan axko u camo axo je A*T" = 0, u Hopmanan axo u camo axo je A = 0.

Cneneha nema, xao mro hemo BumeTn, moxkasaja ce Ka0 MHOTO KOPUCHUja 3a JOKa-
31Babe pa3HIX pe3yJiTaTa y OBOj QUCEPTALVjI KOjI Ce OMHOCE Ha KBa3MMHOpPMAaJIHe oIlepa-
tope. Jlema ce mpBu iyt nojasuia y [30] (mornenarn [47]). OBxe je mpeacraBbaMo y Majo
OpyKuujeM oOnuKy Kopuctehy TexHUKy nokasa 6asupany Ha Jlemn 1.1.2.
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Jlema 1.2.11. [45, Jlema 3.1] Hexa je T' € B(H) cybnopmanan onepamop. Akoje N HopmanHa
excmenauja 3a T, onoa je T' keazuHopmanan ako u camo ako je H uneapujanman 3a N*N.

[loxas. Hexka je N nopmainna ekcrensuja 3a 1 na K = H & H~* nara ca

vl ]G - (),

u Heka je P € B(K) oproronanna npojekuuja Ha H. youumo fa je H uHBapujaHTaH
3a N*N axo n camo ako je PN*N = N*NP (Jlema 1.1.2). [lupextHa pauyHCKa IIpoBepa
IoKasyje faa je

A*T 0

e [TT 0
NNP_[ } 0 b

PN*N = {T rTa } .
Haxire, PN*N = N*NP ako u camo ako je A*T" = 0. HupextHo n3 Jleme 1.2.10 cana
cJIeu 3aKJbyUax. [ |

1.2.3 XunoHopMalaHU omepaTopu

Kako je Beh cmomeHyTO, KOHIIENIT XMIIOHOPMATHOCTH je YBexeH y panxy [92], mok ce
TepMUH ~XUIIOHOpMaJaH IpBU IIYT jaBjba y paxy [19].

Heduannuja 1.2.5. Oneparop 7' Ha XninbepToBoM mpocTopy H je XxunoHopmaiaH axo je
T <T+T.

Kitaca XumoHOpMasHUX oIleparopa je Iupa of Kjiace CyOHOPMAaJIHIX OIlepaTopa, Kao
IIITO IOKasyje cieneha reopema.

Teopema 1.2.12. Csaku cy6HOpMATTHU Onepamop je XUnOHOPMArIaH.

HupextHo n3 nepmHULKje, omlepaTop Ha XuabepTOBOM MpocTopy H je XUImoHopMa-
JIaH aKko ¥ caMo aKo je ||z|| > ||*z|| 3a cBako x € H. Taxobhe, kopucrehu Teopemy 1.1.7,
cnenu ga je R(T) € R(T™) 3a cBaku xunonopmanuu oneparop I’ € B(H). Axo je T*
XUIIOHOpMAJIaH, OHJA KaKeMO [a je KoxunonopmanaH. OIepaTopy KOju Cy XUIIOHOP-
MAaJIHI YTV KOXUIIOHOPMAJIHU Ce 30By CeMUHOpMAnHU. Teopuja ceMIHOPMATHUX Ollepa-
TOpa je 00MMHa U BpJIo pa3BujeHa obnact. Buite mudopmanmja o 0Boj remu ce moxxe Hahm
y pamoBuma [123], [43] u [176].

MHora cBojcTaBa Koja Baske 3a HOpMaJIHe OIlepaTope Bake I y aHAJIOTHO] (opmu 3a
XUIIOHOPMAJIHE OIIepaTOpe, Kao LITO II0Kasyjy ciexehu pesynrarm.

Teopema 1.2.13. [45, Cmag 4.4] Heka je T’ € B(H ) xunonopmanan onepamop.
(a) AxojeT uneepmubusnan, onda je T~' xunonopmanan.

(b) Axoje X € C, onda je T — X\ xunoHopmanaH.

11
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(c) Akocy )\ € 0,(T) ux € H maxeu da je Tx = A\, onda je T*x = \x.

(d) Ako cy x uy concmeenu 6eKmopu Koju 00206apajy pasmiutumum concmeeHuM 6peoHoc-
muma onepamopa 1', onoa jex L y.

Teopema 1.2.14. [155] Ako je A xunonopmanan, onoa je | A" || = ||A||", u nocreduuno,

r(A).

Al =

BakHO je HamoMeHYTM [a je Teopuja XMIIOHOPMAJIHUX ollepaTopa (M crora cyOHOP-
MaJHUX OIlepaTopa) CTpOro Teopuja ca 6eCKOHAUHO qUMeH3MOHATHIM IIpocTopuMa. Tau-
HITje, KJIaca XMIIOHOPMAaJIHIX OIlepaTopa ce ITOKJala ca KIacoM HOPMATHUX OIleparopa,
ako je XmI6epToB IpocTop KOHauHe AuMeH3Mje. Hanme, ako je H KoHaUHO-IMIMeH3IOHA-
san npocrop n 1" € B(H) je xunonopmanas, ouna je T —TT* > 0, 1ok je Tpar marpuie
T*T—TT*je0. Crora, 7T = T'T™*, ogrocuo 1" je nopmanaHn. Cneneha reopema [TarHama
[147] mokasyje ma MMaMo jOIII jaum pesyJITart.

Teopema 1.2.15. [147] Ako je T € B(H) xunonopmanan, onoa 6axcu

|7, 7)) < — Area(o (T)).

1.2.4 p-XUNOHOPMAJIHU OIlepaTOpHU U AJIyTreoBa TpaHc@opmaliija

Y oBoM opmesbKy KpaTKO IIOMUEEMO [pyre reHepalmsalije HOpMaJTHUX oIlepaTopa
” Be3de U3Mehy mux.

Hepuuunmja 1.2.6. Oneparop T Ha XuinbeproBoM mpocTopy H ce Ha3UBa P-XUNOHOPMA-
Jsian onepamop axo Baxku (1T71*)P < (T*T)P 3a mexo p € (0, 1].

P-XUIIOHOPMAJIaH oreparop /' ce Ha3UBa NOJYXUNOHOPMATHU aKO je p = %, a jacHo je
na je T' xunioHopmasa axo je p = 1. Kopucrehn Teopemy 1.1.16, HamoMmmeMo Ja CBaKU
XUIIOHOPMAJIAH OIlepaTop Mopa 6utn p-xunonopmainas 3a cse p € (0, 1]. Omruje, ako je
0<q¢<p<1uT € B(H) je p-xunoHopmaiaH, oHfa je Takohe ¢-xunonopmanan. Crora
je Kiaca p-XMIIOHOPMAJIHUX OllepaTopa AedMHMCAHA Kao IPOIIMperhe XUITOHOPMATHIX
omeparopa y [176], u oHa je McTpa)kuBaHa OJ CTpaHe MHOTHUX ayTopa of Taaa. Bugeru, Ha
mpumep, [1, 2, 175].

O6jequmaBajyhm nmperxomHa pasMaTparsa, qobujamo ciaenehn HU3 UMILIMKaLIja:

HOpMaJaH = KBasMHOpMaJlaH = CyOHOpMalaH

=> XUIIOHOPMAJIaH = pP-XMIIOHOpMAaJIaH.

Y TecHOj Be3u ca p-XUIIOHOPMAJIHIM OIlepaTopuMa cy Amymeeosa mpanchopmayuja
u [[yeanosea mpancgopmayuja. Amyrreosa tpanchopmauuja 1" oneparopa T' € B(H) ca
nonapuom gexommosuiujom I = U|T| nebunucana je xao T = |T|'/2U|T|*/?, mox je

12
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Tyranosa tpaucdopmaruja T o T nara ca T = |T'|U. 3a Buiue gerama o AlyTreoBoj u
HyranoBoj Tpancdopmalmju, BuaeTn, Ha apumep, [1, 7, 39, 81, 105].

Anytreosa tpascdopmamuja T oneparopa T € B(H) ce mokasana kao Beoma HHTepe-
CaHTHA U KOPUCHA Uieja y U3ydyaBamwy JUHeapHNX omeparopa. Ha npumep, umamo na je
o(T) = o(T). OBo npousunasu us uumennue aa je o(AB)\ {0} = o(BA) \ {0} 3a 6un0
koje A, B € B(H). Moxna jour sanuMibnBuja 1 usHeHabhyjyha unmenuna je cnepeha:

Teopema 1.2.16. [1] Heka je T' = U|T| p-xunonopmanan 3a neku 0 < p < 1 u nexa je U
yHumapan. Taoa

(i) T je (p+ 3)-xunonopmanan axo je ) < p < 3.
(17) T je XUNOHOPMATIAH aKo je % <p<l.

HMaxite, AnyrreoBa Tparcpopmaruja “Iabe” p-XUIOHOPMAaJIaH OIIEepaTop y Kiacy Ma-
by O] ITI0YeTHe KJIace p-XMIIOHOpMaJIHuUX oneparopa. OBo je jemaH of IJIaBHMX pasjora
MIPUMEHJBMBOCTY AslyTreoBe TpaHcopManje y pasinunTiIM 00J1acTIIMa Teopije orepa-
TOpA.

1.3 CyOHopmaiHe U KBa3HHOPMATHE N-TOPKe

Hekajen € N. Akocy T; € B(H),i = 1,n,ouma T = (Ty,...,T,) € B(H)" oznaua-
Ba N-TOPKy olleparopa Koju meinyjy Ha H. Ilog T* mompasymeBaMo n-TOpKy omeparopa
T = (17,...,T)) € B(H)". n-topka oneparopa T = (11,...,T,) € B(H)" ce cmatpa
xomymupajyhom axo je T,1; = T;T;, 3a cBe i, j € {1,...,n}.

MHoru KoHUENTHN 1 UJ€Eje U3 Teopuje oleparopa jefHe IMPOMEHJbMBE IIPEHETU Cy Y
IIOCTaBKy Te€OpUje OIlepaTopa ca BUIlle IpoMeHbUBUX. Ha nmpuMep, kracuyuna orepatopcka
HOpMa MMa CBOj BUIIEOVMEH3VOHAJIHM aHAJOl y OOJUKY 3djedHuUuKe onepamopcke
HopMme VI eyKIudcke onepamopcke Hopme. 3ajeqHNMUKA OIlepaTOpCKa HOpMa 3a N-TOPKY
T=(T\,...,T,) yBenena je y [42] u nepunncana je xao

n 1/2
IT]| = sup <Z||kav|l2> cw e, flzlf=1p,
k=1

IIOK Ce eyKIM/ICKa OllepaTopcKa HopMa IPBU MyT IojaBibyje y [138] u nedurnncana je xao

" 1/2
T = (z|m||2) |
k=1

[TojMOBM HYMepMUKOT paHTa ¥ HYMEpPMUKOr pajaujyca ciefge cimyaH myt. Hamme,
3ajednuuxu Hymepuuku paue 3a n-topky T = (11, ...,T,) nepunucas je xao

W(T) = {((Thz,z),...,(Thx,z)) : x € H,||z|| =1},

13
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a 3ajeOHUUKU HyMepuuKku paoujyc (Takohe O3HAT 1 KaO eyKIUICKU ONepamopcKu paoujyc)
3a T gedpmuncas je xao

N 1/2
w(T) = sup <Z|(Tkx,x)|2) cx €H, x| =1
k=1

ITojam 3ajeJHMUKOT HYMEepUUYKOT paHra IPBOOUTHO je ucTpakuBao Xanmoc [94, [Ipobiem
166], mox je w(T) usyuasan y [138]. 3a Buiie uadopmanmja o OBUM KOHLIEIITIMA, CABETY-
jemo umrTaoiy ma ce KOHCyaTyje ca [42, 65, 75, 107, 133, 134, 142, 157].

3a pasnmky oj Teopuje orepaTopa ca jefHOM IIPOMEHIBUBOM, CIIEKTAp N-TOPKe oIepa-
Topa uma Buute nepununuja. Bugeru, Ha mpumep, [8], [66] u [165]. ¥ oBoj nuceprauujmn,
orpannunhemo ce Ha TejIopoBY MHBepTHOMIHOCT caMo 3a map oreparopa. OHa ce nedu-
Huute Ha cinefehu Haunn: Heka je T = (77, T5) xomytupajyhu nap. I[Tocmarpajmo Korry-
noB komruteke (T, H) npunpysxen oneparopy T u mpoctopy H:

—Ty Ty

KITH) : 0—H SHoH 2y o

. T .
rae je T = ( 1). Tanma ce T cmatpa uneepmubunnum y Tejimopogom cMucy aKko je Hberon

T
npunpyskeau Kourynos komrutexe (T, H) ersakran. [lepunuinemo Tejnopos cnekmap
or(T) Ha cnepehu HaumH:

or(T) = {(A\,A2) € C*: K((Th — M, Tz — X2), H) uuje Tauan } .

3a Buire nadpopmanuja o TejaopoBoj mHBepTHOMIHOCTY ¥ KOIITYyIOBUM KOMILIEKCUMA,
caBeTyjeMO UmMTaoIly [1a ce KOHCyaTyje ca [97, 98, 110, 132, 165, 166].

3a 5, T € B(H), wexa je [S,T] = ST — T'S. Oueparop [S, T] ce HazuBa komymamop
omeparopa S u 1. Ako je S = T*, oupna ce [T, T'| nasuBa camoxkomymamop oneparopa 1.
Amnanorno, ako je T = (T4,...,T,) € B(H)" n-ropka oneparopa, ca [T*, T| o3nauaBamo
camokomyTarop n-topke T u nepuHmMILIEMO ra Kao

T, 1),y = [T, T;] = T; T, — T,T;,

3a cee i,j € {l,...,n}. Kaxemo ma je n-ropka T = (1},...,7,) omeparopa Ha H
(3ajeIHMUKI) XUNOHOPMATTHA AKO je OTIEPATOPCKA MaTpULa

T 35T - (10T
[Tl*vTQ] [T2*>T2] [T;>T2]

[T, T] := : : :
T T [T T - [T5T)

ITO3UTUBHA Ha OUPEKTHOj cymu n konuja H (yropenn ca [10, 48, 52]). n-topka T ce Ha3uBa
HopmanHom ako je T komyTupajyha n cBaku 7; je HopmainaH, u cy6HOPMATHOM aKO IIOCTOjU
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Xun6epros npocrop K xoju cappsku H n nopmanua n-topka N = (Ny, ..., N,) € B(K)"
takBa na je N;(H) C H u N;x = T,z 3a cBako ¢ € H u cBako i € {1,...,n}. 3a
i,5,k € {1,2,...,n}, T ce Ha3MBa MAMPUUHO-KEAZUHOPMATTHOM aKO cBaKu T; KoMyTHpa ca
ceakuM 17T}, T je (3ajenHnukm) k6asunopmana ako csaku 1; komyrupa ca ceakum 17},
U chepuuHO-K6A3UHOPMATTHA aKO CBaKM 1; KOMyTHpa ca 2?21 T7T}. Kao wro je mokasaHo
y [11] n [87], nmamo fa Baxu

HOpMaJIHa = MaTPUYHO KBasMHOpPMaJIHA = (3ajeHMYKM) KBa3MHOpMaIHA
= cepMUHO KBa3WHOpPMATHA = CyOHOpMaJIHA

= (3ajeXHNUKNU) XUIIOHOpMAaJIHA

C mpyre crpane, pesynratu u3 [55] u [87] mokasyjy ma CympoTHe MMILTMKAIje
HE BaKE Yy OILITEM CIIY4ajy.

3aTy, Ty € B(H), nocmarpajmoap T = (?) Kao omneparop us H y H®H, oqrHocHoO,
2

H
Tz(?):%% @D .
2 H

Hedbnuuiemo (kanoHcky) cpepuuny nomapHy dekomnosuyujy 3a T (mormemarm [54],

[55], [109]) xao
T Vi ViP

rae je P = (T*T)Y2 = \/T; T} + T;T, nosutusau oneparop Ha H, u

H
Vz(&l):?{% ® ,
2 H

je chepruna mapunjanza nsomerpuja us Hy H & H. Tapa, V'V = V'V + V5V, npen-
cTaBJba (OPTOTOHAIHY) IIPOjeKIMjy Ha IIOUEeTHY IIPOCTOp MapuujaiHe nsoMmerpuje V Koju
je mart ca

N(T)*" = (N (Ty) NN (Tp) " = N(P)" = (N(VI) NN (Va)) ™.

Y ogHOCY Ha IoJIapHy AeKOMIIO3UIIN]Y, CpepMUHO-KBa3sMTHOPMAJIHY IIapOBY Ce MOTY
OKapakTepucary Ha cienehy HaumH:

Teopema 1.3.1. [56] Heka je T = (V1 P, V5 P) nonapha dexkomnoszuyuja n-mopke T. Tada je
T cpepuuno-keasunopmanawn ako u camo axo je V;P = PV;, 1 =1,2.
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Ha xpajy, mogceTnMo ce Kiace ABOAMMEH3MOHAIHIX TEKMHCKIIX OllepaTopa IloMepaja.
ITocMartpajMo KBOCTPYKO MHAEKCUpPaHe HeHeTaTUBHE OTpaHIueHe HU30Be ay, [ € [©(Z2),
rae je k = (ki, ko) € Z2, u Hexa je [?(Z%) XunGepToB IpOCTOp KBaAPATHO-CYyMaOIIIHIX
KOMIUIEKCHUX HI30Ba UHAEKCUpPaHUX ca Z7 . JebuHniieMo 0600UMEH3UOHATTHUX MEXCUH-
cku onepamop nomepaja W, gy = (11, T5) na cregehu Haumm:

Tle(kl,kQ) = Q(ky,k2)C(k1+1,k2)

TQQ(kl,kg) == 5(k1,k2)e(k1,k2+1)7
rie je {e(k,) } 53— KaHOHCKa opToHOpMupaHa Gasa y [*(Z3 ). 3a cse (ky, ky) € 72, nmako je
BUJIETH Jla
Ty = ToTy <= Bk +1,k2) Xk kn) = Qker ko +1) Bk o) -
3a OCHOBHa CBOjCTBA NBONMMEH3MOHAIHNIX TEXMHCKIX ollepaTopa rmomepaja W, 3), BU-
netu [49] m [53].
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I'maBa 2

CybHopMmanHu akTopu
KBa3MHOPMAJTHUX OIlepaTopa

Y 0BOM IOIIaBJbY pa3MaTpaMo HMUTarbE A JIU je CyOHOPMAaTHOCT OoIlepaTopa U KBa3u-
HOPMAJIHOCT HeT'OBOT KBaJpaTa JOBOJPHA 32 KBAa3MHOPMAJIHOCT caMor omneparopa. Illra-
Buie, y Omespky 2.2 6uhe mokasaHo ma CyOHOpPMAaJTHUM 71-TM KOPEHM KBa3MHOPMAJHOT
oreparopa Takohe Mopajy 6utu kBasuHOpManHu. [JogaTHO, JajeMo HeKe JOBOJbHE YCIOBe
II0J KOj/IMa CYy MAaTPUYHO U chepUUHO KBa3MTHOPMATHI IaPOBY OIIepaTOpPa eKBUBAIEHTHU
MaTPpUYHOj U cheprUHOj KBAa3MHOPMAIHOCTI IUXOBUX N-TUX cTereHa. Y Omeipky 2.3
0aBUMO ce MUTareM Hajlakekba yCJIOBAa IOJ KOjuMa CyOHOPMAIIHU OIIEpaTOpPU MOpajy
OUTY KBa3MHOPMAJHN YKOJIMKO je HBUXOB IIPOM3BOJ KBasMHOpMaiaH. [[omaTHO, gajemMo
TOBOJbHE YCJIOBE IIOJ KOjuMa KBa3WMHOpPMAaTIHU (CyOHOpMAJIHM) OllepaTopy Mopajy 6urtu
HOpPMAJIHY YKOJIMKO je IbMIXOB IIPOM3BOJ HOpMaJaH. [[pyrum peunma, HajJla3yMo JOBOJbHE
ycnoBe 3a obpatr PyrneoBe Teopeme, mpaBehm mpu Tome Be3y ca BUIIEAVMEH3MOHATHOM
TEOPUjoM CyOHOPMATHIX OIepaTopa.

2.1 Ilpob6iemM KopeHa KBa3MHOPMAJIHUX OII€paTopa

Y memaBuoMm pany [51], P. E. Kypro, C. X. JInt u II. JyH, nqe1MMuuHO IOACTaKHYTU
pe3yJITaTuMa CBOjUX IPeTXOqHMX paxoBa [49] un [50], mocraBuiu cy cienehe nurarse:

IMpo6nem 2.1.1. Heka je T cyb6ropmanan onepamop maxas da je T? keasunopmanan. [la nu
u3 moea cnedu oa je T’ keasunopmanau?

C moaTHOM IIPeTIIOCTaBKOM JIeBe MHBEPTUOVTHOCTI, ITOKA3aJIV Cy Ha JIeBO MHBEPTHU-
OwraH cyOHOpMajaH omeparop 7' umju je KBagpaT KBasMHOpMaJlaH Mopa OMTU KBasu-
HopMauaH (Bumetu Teopemy 2.1.5 ucnox). OcTasio je OTBOPEHO IMUTabE [ JIN je OBO BaXKI
6e3 ImpeTIIoCTaBKe O JIEBOj MHBEPTUOMIIHOCTH CBe 10 objaBibuBatba pana [141]. llrasuire,
ayTOpU Cy JOKa3ajM oIl jauM pe3yJTar:

Teopema 2.1.2. [141] Hexka je T' € B(H) cy6rnopmanar onepamop makas da je T™ keasurnop-
manan 3a Heko n. € N. Taoa je T' keazuHopmanan.
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Jloka3s ce 3acHUBA Ha TEOPUjI OIIEPATOPCKO-MOHOTOHMX PYHKIMja 11 XaHCEHOBO] He-
jemuakoctn. Konkperno, Teopema 1.1.1, Teopema 1.1.16, u ciemehe Teopeme 6uie cy
KJbyUHe 3a J0Kas.

Teopema 2.1.3. [78] Heka je'l' oepanuuenu onepamop na H. Tada cy credehu ycnosu eksuga-
JIeHMHU:

(i) T' je keasuHopmanam;
(ii) (T*)"T" = (T*T)",n € N;

(iii) nocmoju (jeduncmeena) cnekmpanna boperosa mepa F na R, maxea oa

VASKYAS :/ 2" E(dx), ne€Z,.
Ry

Teopema 2.1.4 (XanceHoBa Hejequakoct [96, 168]). Heka je A € B(H) nosumusan onepa-
mop, T' € B(H) konmparyuja u f : [0,00) — R Henpexudna onepamopcko-moHomona
pynxyuja maxkea oa je f(0) > 0. Tada sasxu

T* f(A)T < f(T*AT).

IImasuwe, ako [ Huje aguna pynxyuja ul’ je opmozonanna npojekyuja maxea oa 'l # I3,
oHda jednakocm eaxcu ako u camo ako TA = AT u f(0) = 0.

Y nutepaTypu cy mosHare CIMUHe KapaKTepUCTUKe Koje ce jaBipajy y [Ipobiemy 2.1.1
3a Apyre Kjace omneparopa. Ha mpumep, XMIMoHOpMaJIHI KOpPeHM HOPMAJIHIX OIlepaTopa
cy Hopmanuu (Bumetu [155, Teopema 5]). AyTop je KOpMCTMO TeXHMKY 3aCHOBAaHY Ha
CrexktpanHoj Teopemu. JemaH jeqHOCTaBHUjU [0Ka3 Moke ce Hahu y [3]. KomkperHo,
ayTopu Cy IOKasaun Ja 3a 6o Koju p-xunonopmainas oneparop ' € B(H) u 6uo Koje
n € N Baxu:

()T > (T°T) = (TP > (T"(T") )

Axko ce momaTHO mpeTIiocTaBu fa je 1™ HopManaH 3a Heko n € N, oHa nMaMmo:

(T TP = (T ) = (TT*)" = (T"(T")")""",

u crora [ mopa 6uty HopmasnaH. Joiu jegHo npoinpese [155, Teopema 5] moxe ce Hahu y
[6]. MehyTuMm, ako 3aMeHMMO HOPMATHOCT OIlepaTopa HEKOM CJIabMjoM IPETIIOCTABKOM,
aHasorHy 3axpyuny Hehe Baxxutu yBek. Iloctoju omeparop 7' Koju je XMIIOHOpMAaJIaH 1
T™ je cybnopmaiaH, anu 1’ Huje cyoHOpMaaH (Bugetn [156]).

MortnBucaHy 0OBaKBUM BpcTaMa IpobiieMa, y 0BOM OJeJbKy Takolhe paamarpamo mpo6-
JleMe Kajia MaTpuIujanHa (chepuuna) kpasuropmanuoct T = (T, T§) mompasymesa
marpunujaisy (cpepuuny) kBasunopmanuoct T = (17, T3).
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Bpatumo ce HakpaTko Ha [Ipo6iem 2.1.1. [la 611 0groBOPIIN Ha ITOCTABbEHO NMUTAHE,
aytopu y paay [51] npBo cy mokasanu Jlemy 1.2.10.

Maxo Moxxpa m3rieqa Kao IpakTU4aH ajaT 3a ofpehuBame ma JIM je HEKM OIlepaTop
KBasMHOpPMAJIaH MJIN He, OBaj IIPUCTYII He qaje onrosop Ha [Ipo6iem 2.1.1 6e3 mogaTHUX
MIPETIIOCTAaBKM O 7' ¥ IOCTaje jOII HEeIPaKTUMYHM)U aKo 3aMEHNMO KBajpaT OIleparopa
HeT'OBYM IIPOM3BOJBHUM CTEIIEHOM.

Wnak, kopucrehu momenyTy 1emy, IoOMeHYTI ayTOpH JOKasaum cy cienehm pesymnrat:

Teopema 2.1.5. [51] Heka je T' € B(H) cybHopmanar onepamop u npemnocmasumo 0a je
T? keasunopmanan. Axo je T ozparnuuer 000300, onda je T’ kéazuropmana.

Teopema 2.1.5 n Jlema 1.2.10 mpeacTaBibajy OCHOBY 3a JOKa3MBame BUILIEAUMEH3NO-
HAJIHUX aHAJIOTa OBUX pedyirata. Haume, 3a cy6nopmanan nap T = (77, T3) ca Hopmat-
HoM excrensujom N = (N, Ny), rae je

N._TiAi.’HH’H
0 By \Ht HE )

ayTopu Cy JoKasanu ciaenehe pesyirate:

INocnenuita 2.1.6. [51] Heka je T cy6Hopmanan u npemnocmasumo oa je l; oeparnuuer 000320
uT? xeasunopmanan, i = 1,2. Tada je T cepuuno-k6asunopmanan.

Teopema 2.1.7. [51] Hexa je T cybnopmanan, ca Hopmaniom ekcmeH3ujom N. Taoa je T
cpepuuno-keazuHopmanan axko u camo ako je A7T + AT, = 0.

Teopema 2.1.8. [51] Hexa je T cybnopmanan, ca Hopmannom excmensujom N. Taoa je T
(3ajednuuxu) keazunopmanan axko u camo ako je AYT; = 0,4,7 = 1, 2.

INocnemuua 2.1.9. [51] Heka je T cy6Hopmanan nap ca Hopmaniom ekcmensujom N. Taoa je
T mampuuno-keasunopmanan axo u camo ako je A; ATy = 0,4, 5,k = 1,2.

OBpe KopucTUMO NPUINKY Oa HariacuMo aa je Teopema 2.1.8 ycrBapm HertauHa. Ha-
Me, aKo je A;Tk =0,7,k =1, 2, oHga OUNTIIEHO BaXKU AZ-A;?Tk =0,7,75,k =1,2. Ako 6u
Teopema 2.1.8 6miia TauHa, OHAA OBO MMILIMIIVIPA 1a CBAKM (3aje JHIUKIN) KBa3MHOpMaHa
n-TopKa Mopa 6MTI MaTpUYHO-KBasMHOpManHa. MehyTum, Kao 11170 je TOMEHYTO paHuje,
pesyiraru y [55] u [87] nokasyjy ma To Huje ciyuaj. Mcrpaska u gpyre “HeoueKuBaHe"
MMILTUKAIje OBe rpeliike 6uhe mpencTaBbeHe KacHUje y OeJbKy 2.2.2.

2.2 Cy6HOpMAIHU N-TH KOPEHU KBa3MHOPMATHUX
oreparopa

Y oBoM oxespky nahemo ogrosop Ha IIpo6iem 2.1.1 kopucrehn erleMeHTapHY TEXHUKY.
Usmehy ocranor, Takohe mokasyjemo ma MoeMO OCJIaOUTM YCIOB Y AeUMHUIUjI MaT-
PUYHO-KBa3MHOPMAJIHNX N-TOPKU U JajeMo MCIIpaBKy 3a Teopemy 2.1.8.

19
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2.2.1 JegHOOMMEH3HWOHAIIHU CIIy4aj

[okas Teopeme 2.1.2. Hexa je N € B(K) nopmanna excrensuja 3a T, rae je K = H O HL,
u Heka je P € B(K) oproronanna npojexunja Ha H. Tamga, N” je HOpMasiHa eKCTeH3Uja
3a T", u xako je H uuBapujanra 3a (N")*N" = (N*N)" (Jlema 1.2.11), npousmnasu
na P xomyrtupa ca (N*N)" (Jlema 1.1.2). [dakine, P takohe xomyrtupa ca N*N, npema
Teopemu 1.1.1. Crora, ‘H je maBapujanrtan 3a N*N, u npumewyjyhu oner Jlemy 1.2.11,
3aKJbyuyjemo aa je 1’ KBasuHOpMAJIaH. [

Cneneha nema je omirnja Bepsuja meme [51, Tepheme 2.4].

IMocnenuma 2.2.1. Heka je T € B(H) cy6nopmanan onepamop makag oa je T" uucm
keasunopmanan 3a Hekon € N. Taoa je T' uucm keazuHopmana.

[okas. Ksasunopmanuocr cienu us Teopeme 2.1.2. Axo 7' Huje yucT, OHAA IOCTOjI He-
HyJa penykyjyhu nmogmpocrop M ox ‘H Takas ma je P T [r HopMmaman. O63upom Ha
1o na je PyT™ [m= (PUT [m)" rakohe Hopmanan, 1™ He MOKe OUTM YICT, IUTO je Y
CYIIPOTHOCTH ca TpeTroctaBkama. [lakie, 7' Mmopa OUTI UMCT. [

2.2.2 BuimmeguMeH3MOHAITHU CIIy4aj

Caga moxeMmo npebanutut GoKyc Ha BUIIeAMMEH3MOHATHY ciIyuaj. Mako npemacras-
JpaMo Hallle pe3yJiTaTe 3a KoMyTupajyhe mapose oneparopa, unranai he jsako yountn ga
ucra (M1 canuHa) TBpherba Baxke 11 3a KOMyTHpajyhe n-Topke omeparopa, Kafga je n > 2.

Teopema 2.1.2 Ham omoryhaBa Jja YKJIOHUMO IIPETIIOCTaBKY JieBe MHBEPTUOVIIHOCTI
n3 [locaenuue 2.1.6. OcuM TOra, MOKEMO TOKA3aTy jOII jauy pe3yJITar:

Mocnenura 2.2.2. HekajeT = (T1,Ty) cy6nopmanar nap u nexa je TF uT, keasunopmanan
3a Heke k,| € N. Taoa je T cpepuuro k6asuHopmanan.

[okas. Tlomro cy T, i = 1,2 cybropmanun, a TF u Ty xsasuropmanuy, Teopema 2.1.2
nmIuiimpa aa cy 71;, ¢« = 1,2 kBasunopmanau. Crora je T cdepuuno-kBasumHOpMAaIaH
(Bumern [51, Hamomena 2.6]). [ |

Cneneha nema ce moxe rmocMaTpaTy Kao BUIIeOMMeH3MOoHaIHy aHanor Jleme 1.2.11
(Bumern Hanmomeny 2.2.4 ucmop).

Jema 2.2.3. Heka je T = (1',15) cybnopmanan nap, ca Hopmannum npowupervem N =
(N1, No). Iap T cgepuuno-k6a3uHOPMANan axko u camo axo je uugapujanmar 3a N{Nj +
N3 Ns.

HamomeHna 2.2.4. Ako nocmampamo N = (N1, N2) kao 6ekmop KoroHe, MOAIEMO KOPUCMU-
mu Homayujy N*N = Ny Ny + N No, wumo Ham Oaje cnedehu ananoe Jleme 1.2.11:

Jlema 2.2.5. Heka je T cyb6ropmanan nap, ca Hopmannum npouuperwem N. Taoa je T cpepro-
K6A3UHOPMATAH ako u camo ako je H uneapujanman 3a N*N.
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Kaxo je mokasano y [51, [Ipumep 3.6], mocroju chepuyHo-KBasMHOpPMATIaH JBOAVMEH-
3MOHAJTHY TEeXMHCKY omepaTop nomepaja W, g) Takas aa W((j’;)) HUje chepUYHO-KBa3U-
HopMmanaH. [pyrum peuuma, ako je T = (71,73) cepuuno-kBasmHOpMaIaH map,

onma T™") = (T™ TJ) He Mopa 6uTH cepIIHO-KBA3MHOPMAJIAH.

Cnemeha Teopema maje [OBOBAH YCIOB 32 €KBUBAIEHTHOCT CepuUdHe
kBasuHOpMaHocTy T = (TP T1) u chepuune kpasunopmanuoctu T = (17, Ty).

Teopema 2.2.6. Heka je T = (13,Ts) cy6Hopmanar nap ca HopmanHum npodyxcerem N =
(N1, Ny) makas da je N\N; = 0. Tada je T™™) = (T7,T}) chepuuno-keasunopmanan 3a
nekon € N ako u camo axo je T cpepuuno-keasunopmanarn.

Capa majeMo jolll jeqHY KapaKTepM3aLujy MaTpUUYHO-KBa3MHOPMAJIHIUX N-TOPKI U MIC-
[paBJhbaMo rperky n3 [51]:

Jlema 2.2.7. Hexa je T = (13,1%) cybnopmanan nap, ca HopmanHum npooyxerwem N =
(N1, N3). Taoa je T mampuuHo-keazunopmanat axo u camo axo je A;T; = 0,7,5 =1, 2.

Kao mocequia mpeTxogHOTr pesyiTara, youaBaMo Ja MOXeMO OCIabUTH yCJIOB Y fe-
GUMHNLIMjI MaTPUYHO-KBAa3MHOPMATIHIX IIapoBa:

ITocmenuia2.2.8. T = (Tl, Tz) Jje MampuuHo-K6a3UHOPMAIaH ako u camo ako l; komymupa
cal;Tj, 1,7 =1,2.

EBo ucnpaske 3a Teopemy 2.1.8:

Mocnepuuna 2.2.9. Heka je T = (T,13) cybHopmanan nap, ca HOpMarHUM npooyrcerem
N = (Ny, Ny). Tada je T (3ajednuuxu) keasunopmanar axo u camo axo je A;A5T; = 0,
1,7 =1,2.

ITopcrakuyTu Jlemom 1.2.11, gajeMo joll jegaH aHAJIOTaH pe3yJTaT y CIydajy BUILe
IIPOMEHJbMBUX.

Jlema 2.2.10. Heka je T = (T4,T3) cy6Hopmanan nap, ca HopmanHum npodyxcervem N =

(N1, N2). Taoda je T mampuuHo-K6a3uHOPMATIAH AKO U camo ako je H uHneapujanman 3a
N/Nj,i,7 =1,2.

Crneneha Teopema aje oBOJBHE yCIIOBe 33 eKBUBAJIEHTHOCT MaTpIUHe KBa3MHOPMAJI-
woctu T = (T, T3') u marpuune ksasuuopmansoctu T = (17, Th):

Teopema 2.2.11. Heka je T = (T},Ts) cy6Hopmanan nap ca HopmamHum npodyxcerwem N =
(N1, Ny), makas da je Ny Ny > 0. Tada je T™™) = (T, T3') mampuuno-keasuHopmanar 3a
nexon € N ako u camo axo je T mampuuno-keasunopmanan.

Hanmowmena 2.2.12. Haenacumo oa je Teopema 2.2.11 onwumuja eep3uja Teopeme 2.1.2. Konk-
pemuo, dobujamo Teopemy 2.1.2 kao nocreduyy, ysumajyhu oajelty =T, =T u Ny = Ny y
Teopemu 2.2.11.
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2.3 Cy6HOpMaTHU (AaKTOPU HOPMAITHHUX OIlepaTopa

Y oBoM ofiesbKy oKycupaMo ce Ha onmtyju npucryn [Ipo6iaemy 2.1.1. IIpennsuunje,
IIocMaTpaMo KBaJpaT Kao IIPOU3BOJ U IPEMEIITaMO IpobiIeM U3 je JTHOAMMEH3MIOHATHOT
Ciylllaja y BUIIEAMMEH3VOHAIHM KOHTEKCT. TpeTmpamo HOBHU (OMUITH) IpobaeM Kao
obpar Pyneose Teopeme, mocebHo ITocnenuite 1.1.14. Kako hemo Bumeru, nobujese Bep-
31je, y CHelMjaJIHUM cJIydajeBMMa, JOBOJAE A0 paHMje IMOo3HaTUX pesyirara. KibyuHu
Kopaxk je cienehe omakame:

Moskemo pedopmynucatu IIpoGiem 2.1.1 Ha cnenehn nauun: Heka je T = (1,7
cybHopmanan nap u npemnocmasumo da je T - T xeazunopmanan. [a nu cmedu oa je T
K6A3UHOPMANaH?

OBo Hac TaKObe MOTUBUIIE Ja IIOCTAaBVIMO cne,ueha IITama:

ITpo6nem 2.3.1. Heka je T = (11,T3) cybnopmanan nap makag oa je T T> keasunopmainaH.
Koje ycnose mpeba da ucnyrwasajy onepamopu 11 ulh da 6u oHu 6unu K6a3UHOPMATHU?

ITpo6nem 2.3.2. Heka je T = (T}, Ts) (3ajednuuku) kéazunopmanar nap maxae da je 11Ts
HopmanaH. Koje ycnoee mpeba oa ucnyrwasajy onepamopu'ly u'l 0a 6u onu 6unu HopmanHu?

ITpo6iiem 2.3.3. Heka je T = (T},15) cy6nopmanan nap makas oa je T1Ty nopmanan. Koje
ycnose mpeba 0a ucnywagajy onepamopu Iy u'ly 0a 6u onu 6unu HopmarHu?

Kao mrro Bupumo, [Ipo6iem 2.3.3 moske ce Tpetuparu kao oopar [locienurte 1.1.14.

2.3.1 KsasuHopMmaJHU (aKTOpPHU HOPMAITHUX oIlepaTopa

[ToueTHa Tauka y HallleM pasMarpamy O6uhe cieneha nema:

Jlema 2.3.4. Heka je T = (T,T3) cybnopmanan nap ca nHopmanHum npodyxcerwem N =
(N1, No) makas 0a je Ty keazunopmanan u Ty Ty nopmanan. Axko je T neso uneepmubuaH,
oHOa je Ty HopmanaH.

Jlema 2.3.5. Heka je T = (T1,T,) cy6Hopmanan nap ca HOpManHum npodyxcerem N =
(N1, Ny) makas 0a je Ty keasunopmanan uT) Ty nopmanan. Axkoje R(Ty) = R(T1) C R(T5)
uN(Ty) = N(T3), onoa je Ty Hopmanan.

IMocnenuua 2.3.6. Hekaje T = (T4, 15) (3ajednuuku) keasunopmanar nap makag oa je 11Ty

Hopmanan. Axoje R(T1) = R(Ty) = R(Ty) u N (T1) = N(T3), onoa je T Hopmanan.
Kom6unyjyhu mperxonne pesynrare, nobujamo cienehy reopemy:

Teopema 2.3.7. Heka je T = (11,7T3) (3ajednuuxu) keasunopmanan nap maxag oa je 11T,
HopmanaH. Tada je T Hopmanan ako eaxcu 6ap jedawn 00 credehux ycmosa:

(1) Ty unu Ty je decho uneepmubunaH;

(13) Ty uTy cy ne6o uneepmMuUOUITHY;
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(i) R(T)) = R(T) € R(T}) sai # j, uN(T1) = N'(Ty);

() R(T) = R(Ty) = R(T3) uN(T}) = N'(Tb).

Hanowmena 2.3.8. Y Iocneouyu 2.3.6 u Teopemu 2.3.7 0060wHO je npemnocmagumu 0a cy
Ty u Ty xkeasunopmantu, ymecmo (3ajednuuke) kgazunopmantocmu napa T = (T1,T3). ¥V
Hacmasky hemo nokasamu 0a MOXemo YKIOHUMU YCII06 K6A3UHOPMATHOCMU ca jeOHo? (Unu
06a) 00 KoopouHamHux onepamopa.

Hamomena 2.3.9. Hako ycnog (iv) Teopeme 2.3.7 umniuyupa ycnog (iii) ucme meopeme (kaxko
Jje noxkasawo y dokasy Ilocrneduye 2.3.6), HagedeH je 300z c6oje enecanmme gopme.

2.3.2 Cy6HOopManHU (PaKTOpU KBa3MHOPMAITHHUX OIlepaTopa U obpat
dyneoBe Teopeme
[IperxoqHu ofesbak 3aBpliIaBa Hallle pazMarpame [Ipobiema 2.3.3. Canma mpenasumo

Ha “Ipo6iieM MMILIMIIpaHe KBa3MHOPMATHOCTH 1 o6par PyireoBe TeopeMe, OJHOCHO
6aBumo ce IIpo6remom 2.3.1 n IIpoGiaemom 2.3.3.

Jlema 2.3.10. Heka je T = (T1,T3) cybnopmanan nap ca Hopmamhum npodyscervem N =
(N1, N2) maxkag oa je 11T keéazunopmanan. Taoa je Ty Kéasunopmanan axko éaxcu 6ap jedar
00 credehux ycnosa:

(1) Comm(|N1Ns|) € Comm(| N

);
(17) Ty je keazuHopmanan u 0ecHO UHBEPMUOUTIAH;
(131) Ty je keasunopmanan u Ny je unjekmuegan.
Teopema 2.1.2 cafa cieu Kao jeIHOCTaBHA TIOCIIEIMIIA:

[loxas meopeme 2.1.2. Hexka je N HOpMaiHo mpofysxete 3a T, mHekaje T} = T" 1 uTy =
T. Oupaje T = (T3, T,) cybHOpManaH nap ca HopManHuM npopyskemeM N = (N1, No) =
(N"~1N). pumerumo na je (N;No)*(NyNo) = (N*N)™ u crora je mpBa craBka us Jleme
2.3.10 ncnymeHa, npema Teopemu 1.1.1. [laxie, 75 = 7' je KBasuHOpMaJIaH. |

Kopnmrthemwewm Jleme 2.3.10 u ncte TexHMKe Kao y qokasy Jleme 2.3.5, MoxeMO qoKasaTu
HapeaHy JIeMy:
Jlema 2.3.11. Heka je T = (11,73) cybnopmanan nap ca HopmarmHum npodyxcerem N =
(N1, N3) maxas da cy Ty uT\ T keasunopmannu. AxojeR(T) = R(T5) uN (Ty) C N (Th),
oHOa je Ty K6azuHopmanaH.

Kaxko 6mcmo qokasanu Ha cienehu pesysrar, cninuan Jlemu 2.3.10, anu Takohe m ox
HEe3aBUCHOT MHTepeca, MoTpebHa HaM je cienehe Teopema:
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Teopema 2.3.12. [77] Heka cy A u B onepamopu cac(A)No(B) = 0. Tada ceaxu onepamop
koju komymupa ca A + B u ca AB makote komymupa ca A u B.

Teopema 2.3.13. Hexa jeT = (1, T5) cepuuno-k6azunopmanan nap ca HOPMAarHuUM npooy-
scerwem N = (N7, Ny) makas oa je o (|N1|)No (| Na|) = 0. Ako je T1 Ty kéasunopmanau, onda
je T (3ajeonHuuku) keazuHopmana.

KOH&‘IHO, CTVKEMO OO INIaBHOT pe3yJiTaTa OBOT OA€JbKa:

Teopema 2.3.14 (O6par Pyneose teopeme). Heka je T = (1,15) cybnopmanan nap ca
Hopmantum npodyxcerwem N = (N1, Ny) makas da je Ty T» nopmanan. Tada je T Hopmanan
ako eaxcu jedar 00 credehux ycrnosa:

(1) Ty unu'Ty je decno uneepmubUIaH KEA3UHOPMATIAH ONEPATHOP;

(13) T} je xeasunopmarnan u Ny u'Ty cy 11e60 uHGepMUOUITHY, UTU
T, je keazunopmanarn u'ly u Ny cy me6o uneepmubuIHU;

(#i) Ty wmu Ty je xeasunopmanan, R(T;) = R(T}) sai # j, u N(Ty) = N(T3).

(1v) Comm(|NyN3|) € Comm(|N;|) N Comm(|Nz|) u axu 6uno koju 00 ycrosa (i) — (iv)
u3 Teopeme 2.3.7;

(v) T je cpepuuno-keasunopmanan, o(|N1|) N o(|Na|) = O u saxu 6uno koju 00 ycnosa
(1) — (iv) us Teopeme 2.3.7.
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I'masa 3

Cdepuuna cpeama TpaHcpopMauja
ImapoBa oriepaTopa

Y 0BOM IIOIVIaBIbY, YBOAMMO KOHIIEIIT chepudHe Cpeibe TpaHchopMalje 3a KOMYTH-
pajyhe mapose omeparopa. OBo Ham omoryhaBa ma npommpumo gepUHNLN]Y Cpentbe
TpaHcopmanuje, Koja je IpBOOUTHO HedMHMCAHA Y jeJHOAMMEH3VIOHAIHIM OKBIPIMA,
Ha IOMeH BUIIIe{MMeH3OHAJIHe Teopuje orepaTopa. Harllr riraBHI 1B je ga MCTPaKIMO
pasInunTe CrieKTpajHe 0coOMHe oBe TpaHchopMalje, yKibyuyjyhu meHy ciocoOHOCT ga
ouyBa TejiopoB criekTap, Kao U HeKe aHAINTUUKe KapakTrepuctuke. OcuM Tora, gajemMo
KOHKpETHe YCJIOBe ITof KojuMa TpaHcopMaliyija 3aapiKaBa CBOjCTBO P-XUIIOHOPMAIIHO-
CTU 3a JBOAMMEH3MOHAJIHE TEKIHCKE OIlepaTope IoMepaja.

3.1 MoruBanuja u IpeTXoqHU pe3yITaTU

Heka je T' = U|T| nonapua nekommnosunuja omneparopa 7' € B(H). Y omemky 1.2.4,
manu cmo neduunmje Anyrreose u yranose tpancdopmariyje oneparopa 1. Hemasao
cy ayropu y pany [114] mpencrasuian jour jeqHy tpaHchopmariiujy omeparopa. Cpedwa
mpancgpopmayuja oneparopa T, y osuauu M(T'), nedpunniue ce xao:

M(T) = %(U|T| T = %(T + 7).

Y mocnensmux HEKOIMKO rogmHa, ocuM AjyrreoBe u [lyramoBe TpaHcdopmanuje,
cpenma TpaHchopManyja je Takohe MpUBYKIa 3HAUajHy MKy (BUOETH, HA IpUMep,
[14,31,32,33,104, 137,179, 181]). Ca craHoBUIIITA IPAaKTUUHE YIIOTpeOe, jeAHa O IIIaBHUX
[peTHOCT! cpefdrbe TpaHchopManuje je ciaemeha: monekam mMoske 6UTU BeoMa 3aXTEBHO
nporahu AnryTreoBy TpaHchopMaiujy JaTor OepaTopa, jep OHayKJbyuyje u3pauyHaBarbe
KOpeHa ITO3UTUBHOT OIlepaTopa, AOK Cpeftba TpaHchopMalija ce 3aCHIUBA Ha cabupamy
I[Ba OIIEpATOpa, I1a je CaMIM TUM JIaKIlle JOOUTH Cpetby TpaHChOpMaLyjy aKo je Io3HarTa
IoJIapHa eKOMIIO3UIINja OIlepaTopa.
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Heka je T = (V} P, V,P) (kaHoHCKa) cepuuHa IojapHa AeKOMIIO3ULMja OIlepaTop-
ckor mapa T (Bumetu Onempak 1.3). Ha ananoran HAUMH Kao 'y jeIHOOMMEH3MOHOM CIIyUajy,
noGujamo cgepuuny Amymeeosy mpancopmayujy T xao T = (v/PViv/P,v/PVy/P) u
cpepuuny [yeanosy mpancgopmayujy Txao T = (PVy, PV,) (mornemaru [16, 54, 55, 79,
109]). IIpuponHo, mpoiimpyjemo 1nojam cpentbe TpaHchopmanmje Ha BUIIeAVMEH3OHAI -
HIU CJIy4aj.

Nepuuunmja 3.1.1. Heka je T = (71,T3) = (Vi P, V,P) xanoHcka chepuuHa mojapHa
nexommnosunuja n-ropke T. Chepuuny cpedrwy mpancgopmayujy on T nedurmuimemMmo kao

M(T) = (Mu(T), MoT)) = S(GP + PVL, Vo + V),

I[Tojam ce MO>Ke JIaKO OIIITHUTY Ha OMJIO KOjy N-TOPKY OoIleparopa.

Hanomena 3.1.1. O6pamumo naxcrvy 0a M1 (T) u Mz (T) y npemxodHoj degpunuyuju Hucy
cpedrwe mparncpopmayuje 3a 1y u'Ts, pecnekmusho, jep T; = V;P,i = 1,2, Hucy cmanoapoHe
nomapHe dexomnosuyuje onepamopa Ha H.

Y HemaBHOM pany (Buau [108]), ayTopu cy yBesu IojaM cepuure p-XunoHOpMaTHoCmu
Ha cienehu HaumH: Kakemo nma je xomyrtupajyhu map T = (77,75) oneparopa Ha H
cgpepuuno p-xunonopmanar (0 < p < 1), ako Baxkn

(T + T3T)" = (LT + I3
Takobhe cy nmokasanu cienehy reopemy:

Teopema 3.1.2. [108] Heka je W (o 3y = (11, T2) 0600uMeH3UOHATHY MEXUHCKU ONEPAMOp
nomepaja. Taoa, 3a 0 < p < 1, eaxcu 0a je W, gy ceputno p-XxunoHopmanan yKomnuxo je

3.1) ) T Bl k) = Wi ipe) + Blkrjo—r)s 3@ e ki, kg >0,

Zaeje d(-1,0) = 5(07_1) =0.

Y oBom normnasmky, pagu kpaher sanuca, kopuctuhemo cregehy Horaumjy: sa map
omeparopa T = (11,T,), m A, B € B(H), ca ATB o3nauaBamo

Hcro Taxo, 3a gBa napa oneparopa A = (A1, Ay) u B = (By, By), nuiemo
AB = (AlBl, AQBQ).

Konauno, 0 u I osnauasajy napose oneparopa (0,0) u (I, I), peciekTusHO.

I'maBa je opraHmsoBaHa Ha ciaefehu HaunH. ¥V onmespKy 3.2, qajeMo Heke ocobumHe cde-
pUUHe cpeqme TpaHcpopMaluje, Koje IpefcTaBbajy OCHOBY 3a Jajbe VMICIIMTUBAHE OBE
TeMe. Y oJeJbKy 3.3, OIMCYyjeMO KaKo ce JBOAMMEH3VOHAJIHY Te>KIHCKY OIlepaTopu IToMe-
paja moHarajy mog oBoM tpaHcpopmanujom. KorkperHo, pokxycupamo ce Ha p-xXumo-
HOPMAJIHOCT JBOAVIMEH3MOHAIHIX TEKMHCKIUX OIlepaTopa IIoMepaja i lbIXOBUX cepud-
HIX CpeNIbUX TpaHcpopManmja.
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3.2 Omnmira cBojcTBa

[TounmeMo 0Baj ofesbak ciieqehuM jeJHOCTAaBHUM 3ara’kKarbeM.

Teopema 3.2.1. Heka je T = (11, T,) komymupajyhu nap onepamopa na H. Credehu ycnosu
Cy eK6UBAIEHMHU:

(i) T je cpepuuno-keazuropmanam;
(ii) M(T) =T.
Cieneha teopema TBpam naa je jesrpo mapa omeparopa T cauyBaHO Iox chepmyHOM
CpenmoM TpaHCHOpMAIIjOM.
Teopema 3.2.2. Heka je T = (T}, T3) nap onepamopa na H. Tada eaxcu:
ker(M(T)) = ker(T).

IMocnenuua 3.2.3. Heka je T = (T31,T,) nap onepamopa Ha H. Crnedehu ycnosu cy exéu-
6aTeHMHU:

(i) T=0;
(ii) M(T) =o.

Y nyxy nmperxomHe mocienule, ciaefeha reopema ce 6aBu aHAJIOTHUM IIPOOJIEMOM 3a
oneparopcknu map L.

Teopema 3.2.4. Heka je T = (11,T,) nap onepamopa na H ca ceprHuunom nomapHum
dexomnoszuyujom T = (V1 P, V4o P). Cnedehu ycnosu cy exgueanenmuu:

(i) T=1L
(ii) M(T) = L uRe (ViV3) — %1.

Teopema 3.2.5. Heka je T = (11, T3) nap onepamopa na H u nexa je U € B(H) ynumaphu
onepamop. Taoa eaxu

M(UTU*) = UM(T)U*.

Ha ocHOBy mpeTxonHe TeopeMe BUAMMO fa ce cepruHa cpemrba TpaHcdopMaluja
”Jlerno moHama“ y OHOCY Ha YHUTAPHY eKBUBAIEHII]Y.

Y omrem ciyuajy, He mopa 6utn or(T) # or(M(T)) (Bumeru pumep 3.3.8 ucnoxn).
Mebytum, ako je T chepnuna maprujanrna nsomerpuja, 1o6mjamMmo moTBpaaH ogrosop. [la
O1ucMo JoKasanm Haury TBpAmY, Kopuctuhemo cinenehy neduuuimjy u reopemy.

Hepuunimja 3.2.1. [15] Heka cy A = (Ay,...,A,) uB = (By,..., B,) 1Be n-Topke
omepaTopa Ha H. Kakemo ma A u B ykpumeno komymupajy (win ga A ykpuimeHo Komy-
mupa ca B) aKo AlBJAk = AkBin n BlA]B]C = BkAjBi, 3a CBE i,j, k= 1, o, n.
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Teopema 3.2.6. (cf. [17, 18]) Heka A ykpwmerno komymupa ca B na H, u npemnocmagumo
oa je nap AB komymupajyhu. Taoa éaxcu

or(BA) \ {0} = or(AB) \ {0}.

Teopema 3.2.7. Heka jeV = (V1,Vs) ciepuuna napyujanna usomempuja. Tada éaxcu

M(V) =S (I + P)V1, (I + P)V2),

N | —

eoeje P = \/Vi'Vi + V'V
IIpu mowme,

or(V) = opr(M(V)).

YcmepaBamo cafja Hallly Kby Ha TOIIOJIOIIKe 0coOMHe cepuuHe cpefbe TpaHcdop-
manuje. Kako 6ucmo mokasanm Hall HapegHM pesyinrtar, uckopuctuhemo cienehy teo-
pemy.

—_—

Teopema 3.2.8. [55] Cgepuuna Anymeeosa mpancgopmayuja (11,15) +— (11,13) je
(I[[, [|]|) -Henpexuoro npecnuxasarwe na B(H).

Teopema 3.2.9. Heka je T = (11,13) komymupajyhu nap onepamopa ca ker(T) = {0}.
Cgepuuna cpeorwa mpancpopmayuja (11, T5) — (My(T), Ma(T)) je (||-]|, SOT)-nenpexuo-
HO npecruxasare.

3.3 Cdepuuna cpeamwma TpaHcopmailiuja
ABOOMME3NOHAITHUX TEXKMHCKUX OTIepaTopa ImoMepaja

[TounweMo OBy ceKiujy uaBohemweM omiure GopMmysie 3a chepuuHy Cpedrpy TpaHC-
¢dbopmarujy 3a Mpou3BobaH ABOAMMEH3MOHATH TEKIHCKY OIlepaTop IIoMepaja.

Teopema 3.3.1. Heka je W(a 3 = (11,12) 0600uMeH3UOHATHU MENUHCKU Onepamop
nomepaja. Taoa je M(W(q,5)) = (M1 (W(a,)), M2(Waps))) 0ama ca

Oél% + 5]% + \/ al%+£1 + 513—5—51

Ml(“’(a,ﬁ))ek = % 9 €k+e15
2 2 /2 2
Oék‘i‘ﬁk + ak+82 +6k+82
M2<W(a,ﬂ))€k = 5k 9 €k+eo)

sa ceek € 72, 20e jee, = (1,0), g5 = (0,1),

Ok 2 2
———, akoqy + ¢ #0,
(3.2) Neo= 4 Vi + 5
0, axo ai + ¢ =0,
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u
5k 2 2
———— akoq; + B¢ # 0,
(3.3) S = 21 3 it B #
0, axo af + B = 0.
Hanomena 3.3.2. Heka je W3 = (11,7>) 0600uMeH3UOHATHU MENKUHCKU ONepamop

nomepaja. 13 npemxoone meopeme 6uoumo oajeu M(Wq 5)) = (M1(W(ap)), M2(Wa )
0600UMEH3UOHATHY MENCUHCKYU ONepamop nomepaja.

IMocmemuua 3.3.3. Heka je W, 5 = (T1,T5) 0600UMEH3UOHATIHU MENUHCKU Onepamop
nomepaja maxas da je o + 32 # 0 3a ceaxuk € Zi.
Taoda je M(W (a,8)) = (M1(W(a,p)), M2(W())) 0ama ca

2 2
ak ak+€1 + ﬁk+€1
M (W, =— 11 \— 2T ,
1( ( ”3))61( 9 + 0512< +5§ Ck+eq
Pr a12(+£ + 5§+5
Mo(Wy, =—11 —rez 2 ,
2( ( ﬁ))ek 9 + 0‘12< +61% Cktey

sa ceek € 72, 20e jeey = (1,0), g5 = (0,1).

V HacraBky hemo, 360T jelHOCTABHOCTH, yBeK IPETIOCTABbATH Aa je af + B2 # 0 3a
ceek € Z2.
Hajnpe, Hamomumemo na n3 Teopeme 3.1.2 qupeKkTHO MMamo ciaefehm pesyirar.

Iocnenuua 3.3.4. Heka je W, 3 = (T1,15) 0600uMeH3UOHATIHU MENCUHCKU ONepamop
nomepaja. Taoa je M(W (o) = (M1(W(ag)), M2(W(ap))) chepuuno p-xunonopmanan
(3a 0 < p < 1) axo u camo ako éaxu

(3.4) m(a)y +m(B)i = m(a)i_., +m(B)i_.,,

sa ceek € 72, 20e jeey = (1,0),e5 = (0,1),

2 2
ak+s1 + ﬁk+€1
m(Oé)k =ox | 1+ — 5 |
a2+
2 2
X tey + /Bk+€2
mBh =0 |1+ ——— 2|,
oy + B
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Y omtrem ciyuajy, chepuuna (Amyrreosa, [yranosa, cpeama) Tpanchopmanuja He
O0YyBaBajy XMIIOHOPMAJIHOCT OIIEPATOPCKUX napOBa y cnenehoj TeopeMI HajeMo HeKe
JI0BOJbHE yCJIOBe 10/ Kojuma Tpanchopmarmja W, ) — M (W, 5)) ouyBaBa XUIIOHOD-
MAJIHOCT.

Teopema 3.3.5. Heka je W, 5) = (11, T2) 0600uMeH3UOHATHY MEeNUHCKL ONePamop nome-
paja. IIpemnocmasumo oa eaxce credehu ycnosu:

(i) W(a ) je xunonopmanarn;
(i) Qi +1k) = Qher hat1) U Blky+1,k) = By ka+1)  3a c6e ky, ko > 0;

(iii) 3a cee ki, ko > 0,

2 2
Q(ky ko) + ﬁ(k’lv’@) < \/(a?’fl—l,lﬁ) + ﬁ(2k1—1,l€2)) (a?k1+1,k2) + B(le—l-l,kz))'

Taoa je M(W (o,3)) Xunornopmanan.

Hamomena 3.3.6. Ananoe npemxooHe meopeme 6axu U Kada ce XUnoHOPMATHOCM 3aMeHU
ca p-xunovopmanHowhy, 3a ma koje ) < p < 1.

Cerumo ce cienehe nebnunmmje:

HNedpunrunuja 3.3.1. Hus {ak}keer peanHux 6pojeBa ce 30Be Crmusmjecos HU3 MomeHama
aKo mocroju no3utrBHa Bopenosa Mepa [ Ha 3aTBOpeHOj moaynpasoj [0, +00) TakBa ga
BaXXU

+00
op = / t*du(t), keZ,.
0
Mepa p ce 30Be penpesenmayuora mepa 3a {ak}kE@.

IMocmepuna 3.3.7. Hexa je W(a 5y = (11,7%) 0600umen3UOHATHY MeXUHCKU Onepamop
nomepaja. ITpemnocmagumo oa easxce crnedehu ycnogu:

(i) W(a ) je xunonopmanarn;
(i) Qg +1,k) = Qher hat1) U Bky+1,k0) = Ber kot1) 3a c6€ ki, ky > 0;
(iii) 3a cse ky > 0, Hu3 {Ul(gﬁ)}kez+ oam ca

k
UIE: 2) = Oé%h]@) —+ B(Zk‘,k‘zﬁ ke Z+,

Jje Cmumnmjecos HU3 momeHama.

Taoa je M(W (o,3)) Xunornopmanan.
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3aBpiaBaMo 0BO IIOTJIaBJbEe JaBareM IpuMepa mmapa oneparopa T taksor ga o (T) #
or(M(T)). HlraBuie, mokasahemo na je M(T) nuBeprubuian y TejimopoBom cMuciy,
nako T To Huje.

Ipumep 3.3.8. Heka je {€(k, ky) } (k1 ko)ez2 KaHOHCKa 6asza npocmopa [*(Z?) u 3an € 7 neka
je

0 1,  akojen napan,
n — .
ako je n Henapam.

Hexa je W o5y = (T1,15) 0600uMeH3UOHATHU MENUHCKU Onepamop nomepaja Oeurucan
Ha crnedehu HaAUUH:

Th€(ky ko) = ks ko) € (K +1,k2) 5

T2€(ky ky) = QU(ky k) €k o +1)

20€ je Oy ky) = Okytky 3a (k1 ko) € Z2. Tada W5 = (T1,T») nuje unsepmubunan y
Tejnoposom cmucry, 0ok M(W (4 g)) jecme unsepmubunan (y Tejroposom cmucry).
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I'masa 4

CyO6HOpMAaTHU Ayalid U KOMIUJIETUPaHh€e
10 HOPMAJITHOCTH

MornBucanu nedmHUIMjaMa CyOHOPMAJIHNX Ayasa (BUAeT! ofesbak 1.2.1) 1 ca OCHOB-
HIJIM IJbeM J1a pa3MaTpaMo KOMILIETHpae TOpe-TPOyTaoHe 2 X 2 ollepaTopcke MaTpu-
1e (ca IMo3HATUM AMjaroHATHUM OJIOKOBMMA) JO HOPMATHOT OIIepaTopa, yBOJUMO ClIefe-
hy mebmaNLMjY:

Hepununmja 4.0.1. Heka je A € B(H) u B € B(K). Kaxkemo na cy onepatopu A u B
HopmanHu kKomniemenmu axo nocroju C' € B(KC, H) Tako ma je omepaTopcka MaTpuua

) ve=[q 5
HOpMaJIHa.
Takobe, Heka je
N(A,B) ={C € B(K,H) : Mc nara ca () je HopmanHa}.

JacHo je ma cy oneparopu A u B HOpMaTHIM KOMILUIEMEHTH aKo U caMo ako nocroju C' €

B(IC, H) rako ma Baxe cinenehn jeqHakoctu:

(4.1) A*A — AA* = CC*
(4.2) B*B — BB* = C*C
(4.3) A*C = CB.

BakHo je npumerutn pa3nuky nsmel)y qyana u HOpMaJIHUX KOMILIEMEHATA, jep aKo Cy
A un B HOopMasrau komiuteMeHTH nipema Jebmanuujn 4.0.1, ouna He creqn na je B myan
on A, nmpema nedunHuUIIMjU yBeeHOj y [44], jep A He mopa ga 6yme Hu yuct. Kao mro
je Beh momenyro, mepmuunmja 4.0.1 yBemeHa je ca HMJbeM [a Ce OATOBOPU Ha MUTAIbE O
KOMILIETHPAby OIIepaTOPCKUX MAaTpMIla O HOPMAJIHOCTU U 3aTO He HaMeheMo HUKaKBa
InoJaTHaA orpaHmMuera oneparopnma A u B.

33



I'IABA 4. CYBHOPMAIJIHHM OYAJIM 1 KOMIUIETHUPAIGE 1O HOPMAJIIHOCTHA

4.1 PasnnuyuTe KapaKTepu3anuje HOpMATHUX
KOMIIJIEMEHATA
Y cnenehe nBe Teopeme, mpencraBuhemMo Heke Kapakrepmsanuje omneparopa A u B
Kao HOpMAJIHNIX KOMILIEMeHAaTa y OJHOCY Ha JAeKOMIIo3uIMje oBuX omneparopa. Hajmpe,
nozceTnMo fa je oneparop 1 € B(H) HazuBa NO3UHOPMATHUM KO IIOCTOjU MO3UTUBAH
omeparop () € B(H) rakas ga Baku 77" = T*QT. CBaku XUIIOHOPMAJIAH OIIEPATOP j€

[O3MHOpMAJIaH, IITO JVPEKTHO ciaenu u3 Tephema 1.1.7 u unmbenure na je 7' mosmsop-
MasaH ako u camo ako je R(7") C R(T*) (Bumern [150, Tepheme 2.1]).

Teopema 4.1.1. Hexa cy A € B(H), B € B(K). Hexa cy jow Ay = P 1y Alyay: u
By = PX;(B)LBL/\[(B)L. Crnedehu ycmosu cy ekuGareHmHu:

(i) Onepamopu A u B cy HOpMaTHU KOMNIIEMEHMU;
(i) Onepamopu A u B cy nosunopmannu, u Ay u By cy Hopmannu Komniemenmu.

HTmaesuuwe,

‘ﬁ(A,B) = {Cl D 0: Cl c ‘J‘((Al, Bl)}

Teopema 4.1.2. Heka cy A € B(H) u B € B(K) onepamopu ca uucmum dernosuma A, u
B,, pecnexmuero. Ciedehu ycniosu cy ekeusamieHmuu:

(i) Onepamopu A u B cy HOpMATHU KOMIIIEMEHMU;
(1) Onepamopu A, u B, cy HopmaTHu KoMnIeMeHMU.

ITmasuwe,

‘)I(A, B) = {Cl @0: Ol S ‘ﬁ(Ap, Bp)}

Cnenehe tBpherbe usnmaxe motpebHe 1 JOBOJbHE YCIOBE 32 KOMILIETUPAIbE OIIEPATOP-
cke marpuue Me, nate uspasom (x), 40 HOPMAJIHOT OIIEPATOPA, Y OMHOCY Ha IIOCTOjarbe
mapiyjanate M30MeTpuje ¢ IPONNCAHNM NUHUIMjaTHUM 11 prHaIHUM IpocTopuma. Harro-
MUBEMO Jia je npermoctaBka ga cy A € B(H) u B € B(K) xunonopmanum omneparopu
MIPUPOMHA, jep je To HeomxonaH ycyioB aa 6u A u B 6uim HOpMaJIHU KOMIUIEMEHTIL.

Teopema 4.1.3. Heka cy A € B(H) u B € B(K) xunonopmannu onepamopu. Credehu
YCII06U CY eKEUBATIEHMHU:

(1) Onepamopu A u B cy HopmanHu KomniemeHmu;

(13) ITocmoju napyujanna usomempuja U € B(IC, H) ca unuyujannum npocmopom M 2D
R([B*, B]) u gunannum npocmopom N O R([A*, A]) makea da saxu

(4.4) (A%, A)U = U[B", B],
(4.5) A*[A*, A]Y?U = U|B*, B]'*B.
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lImasuuwe,
N(A, B) = {U[B*, B]'?: U je napyujanna usomempuja us dena (ii)}.

Pasmotpumo cana cnemehy o3Haky yBemeny y [101]: 3a gBa mosmTuBHA omeparopa
AeB(H)u B e B(K), repunninemo

C(A, B) = {AY?UBY?: U e B(K,H), |U| <1}.

Y mapenHoj Teopemu, mmokasyjemMo ma 3a HopManHe Komiuiemenre A u B us B(H),
omepatop C' € B(K,H) 3a koju Baxku fa je Mo HOpMasaH MoKe GUTU TIPeICTaBIbeH 3a

cBako A € [0,1] y o6muxy C' = [A*, A]2U,[B*, B]%, rae je Uy € B(K, H) xonTpakimja.

Teopema 4.1.4. Heka cy A, B € B(H) nopmantu xomniemenmu. Tada saxcu:

(4.6) N(A,B)C (] €A, AP}, [B*, B]'™).

A€[0,1]

Y cayuajy xapma cy A € B(H) u B € B(K) HOpManHM KOMIUIEMEHTU U jelaH O BbUX
je KBasMHOpMaJIaH, OHJa cy oba KBasmHOpManHa. Takobe, y TOM ciy4ajy, UMCTU AeJI0BU
on A u B cy yHuTtapHO eKBMBaJeHTHU. VcTiueMo ma u oOpHyTa TBPOba BaXKU, IITO je
[I0Ka3aHO Y HAapeJHO] TEOPEMIL.

Teopema 4.1.5. Hexacy A € B(H) u B € B(K) maksu da je jedar 00 wux K6a3uHOPMAIaH.
Taoa eaxcu:

(1) A u B cy HopmaTHu KomniieMeHmu;
(17) Yucmu denosu 00 A u B cy ynumapHo ekeusaieHmHu.

HpeTxonHa T€OpEMaA MOJKE CE€ TYMAUNTH Kao YOIIIIITEIHE CJIeIIChel‘jeIIHOCTaBHOI‘ pe3yi-
TaTa.

IMocnenuua 4.1.6. Heka je A € B(H) nHopmanan onepamop u B € B(K) cybropmanan
onepamop. Tada eaxcu:

(1) A u B cy HopmanHu KomniemeHmu;

(17) B je HopmanaH.

4.2 3ajeqHHUYKA CIIEKTPaIHA CBOjCTBA HOPMAJITHUX
KOMILIIEM€eHaTa

Y cnyuajy kamacy A € B(H) u B € *B(K) matu oneparopu, npobieM KOMILIETAPaba
omeparopcke marpute Mc no PpenxonmMoBor omepatopa uMa jelHy BeoMa MHTEPECAHTHY
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ocobuny. Hamme, nocrojame oneparopa C' € B(K,H) raksor na je Mo Ppenxonmos
OIepaTop eKBMBAJIEHTHO je MocTojary mHBepTubmiHor taksor C' € B(K, H) (Bumetn
[61]). OBa ocobuHa Baku U 3a HeKa apyra KomiuretTupama (Bumetu [58, 59, 184]). Kao
mto hemo Bupetu y cienehem pesyirary, oBo Huje ciyuaj Kog Komrutetupamwa Mo 1o
HOpMAJHOT omeparopa. [pyrum peunma, ako cy A € B(H) u B € B(K) Hopmanuu
xomriemenTH, oupa C' € M(A, B) He Moke OUTU MHBEPTUOUIIAH.

Teopema 4.2.1. Heka cy A, B € B(H) nopmannu komniemenmu. Tada 0 € o(C') 3a ceaxo
C € N(A,B).

HomatHo, y cnenehoj reopemu, nmoxasahemo na 3a 6mio xoju cyGHOpMaIHY OIIEepaTop
A € B(H) cnexrap meroBor caMOKOMYTaTOpa Cafp:KIL HyJy, OQHOCHO, CAMOKOMYTATOP
HIje MHBePTUOWIaH.

Teopema 4.2.2. Heka je A € B(H) cybHopmanan (unu xunonopmanat) onepamop. Tada
0 € o([A*, A]).

U3 rope HaBefieHe TeopeMe MokeMo 3akpyuntu ga 3a C' € (A, B) umamo na 0 €
0(C) N o, (C), 1j. Basku cneneha nmocienuua:

IMocnenuua 4.2.3. Heka cy A, B € B(H) nopmannu komnremenmu. Tada 0 € o([A*, A])N
o([B*, B]) uo([A*, A]) = o([B", B]).

YomiureHo, kafa pasmarpamo pasanunte ocobure Mo, MOXKXEMO yOUNTH CIUYHOCT
usmehy A n B y normeny Hekux cBojctaBa. Vmajyhu Ha ymy ompehene pesyirare o
IOIIyHaMa Topie-TpOyTraoHe OIlepaTopcKe MaTpuile 40 MHBepTUOMIHOCTY 1 Ppenxonm-
HOCTH, MOkeMo pohnm 1o crnenehnx 3akpyuaxa:

Teopema 4.2.4. Hexa cy A € B(H) u B € B(K) oamu onepamopu. Tada easxce credehe
meporve:

(1) Ako je onepamopcka mampuya Mo dama ca (x) uneepmubunna 3a neko C € N(A, B),
oHoa cy u A u B neso uneepmubunuu. Illmasuwe, axo je Mo uneepmubunna, oHoa
uHsepmubuIHocm jeOHoe 00 onepamopa A u B nodpaszymesa uneepmubumrHocm opyeoe.

(i) Ako je onepamopcka mampuya Mq dama ca (x) @pedxonmosa 3a neko C' € N(A, B),
oHoa cy A u B neso nony-®pedxonmosu. IlImasuwe, ako je Mo Ppedxonmosa, oHoa
dpedxomnocm jeOHoe 00 onepamopa A u B nodpasymesa PpedxonmHocm opyeoe.

YV cnenehum teopemama, pasmarpahemo crienuuune cayuajese xama cy A € B(H)
u B € B(K) nopmanun xomruiementy, niu Kaga cy A € B(H) u B € B(K) nopmanun
KOMIUIEMEHTH TaKBU Jia je jeJaH Of IUX KBasuHopManaH. Hajmpe, Bugehemo ma ako
cy A € B(H) u B € B(K) nopmanuu xomruieMeHT! 1 ako 3a Heku C' € N(A, B)
umMamo 1a je M¢ uHjekTuBaH, oHja ¢y 1 A u B UHjeKTUBHM (IITO y OIIITEM CIIydajy He
Baxn). Takobe, mokazahemo a hemo ymecro umMIunkanuja Koje mMamo y craBkama (i) —
(1) Teopeme 4.2.4, nobutn exsusanernuuje kaga cy A € B(H) u B € B(K) nopmanuu
KOMIUIEMEHTH U Kafia je jedaH Off BMX KBa3MHOpMAaJIaH.

36



I'IABA 4. CYBHOPMAIJIHHU OVAJIM 1 KOMIUIETHUPAIBE 1O HOPMAJIIHOCTHA

Teopema 4.2.5. Hexa cy A € B(H) u B € B(K) nopmannu xomniemenmu. Ako je
onepamopcka mampuya Mc unjekmusna 3a veko C' € N(A, B), onda cy u A u B unjekmugHu.

Ciyuaj kana je jeman ox omeparopa A € B(H) u B € B(K), koju cy HOpmanHU
KOMILIEMEHTH, KBa3MHOPMaJlaH, Pa3MaTpaMo y HapeIHOj TeOpeMIL:

Teopema 4.2.6. Hexka cy A € B(H) u B € B(K) nHopmannu komniemenmu maxeu oa je
jedan 00 wux keasunopmarna, u Heka je C € N(A, B). Tada saxu:

(1) Mc je uneepmubumnan ako u camo ako cy A u B yie6o unsepmubunu onepamopu;
(1) Mc je ®pedxonmos ako u camo ako cy A u B neso nomy-Ppedxonmosu onepamopu;
(1i1) Mc je peeynapan axo u camo ako cy A u B pezynapnu onepamopu.

Ha ocuoBy Teopeme 4.2.6, MO>keMO 3aKpyunty aa, ako cy A € B(H) u B € B(K)
HOpPMaJIHM KOMILJIEMEHTH U aKo je jeJaH Of IJX KBasMHOpMAaJIaH, OHMA je OllepaTopcKa
matpuua Mo nueprubuina (Ppenxonmona miu perynapsa) 3a Heko C' € N(A, B) ako
U caMo aKo je nHBepTubiiHa (PpenxonmoBa miu perynapaa) sa ceako C' € MN(A, B).

IIITo ce Tiue perynapHoctu Mmarpuue Moy cnyuajy kaga C' € (A, B), umamo ciepehu
pesyJITar:

Teopema 4.2.7. Heka cy A € B(H) u B € B(K) nHopmannu komniemenmu maxeu oa je
jedar 00 wux keazunopmanan u Heka je C' € N(A, B). Axo cy A, B u C pezynapnu, onda cy
(A*)" u (B*)" nopmannu xomnremenmu u (C*) € M((A*)T, (B*)T).

Hepuunimja 4.2.1. Oneparop A € B(H) ce 30Be camokomniemenmapan CyOHOpMaIaH
omepatop ako je (A, A) HenpasaH cKyIL

Y nacraBky hemo nmcatu 91(A, A) = M(A). Uz (4.1)—(4.3), umamo fa je A caMOKOMII-
JleMeHTapaH CyOGHOpMaJIaH OIlepaTop aKo M CaMo ako II0CTOju HopMaiaH omeparop C' €
B(H) TakaB fa BaKU

(4.7) [A*,A]=CC* u A*C =CA.

Y Tom ciyuajy, 91(A) ce cacroju camo 0O HOpMAJIHNX OIlEPaTOpa.

OumnrienHo je fa je cBaky KBasyHOpMasaH olrepaTop A camokoMIureMeHTapaH Cy6-
HopManaH (Moxemo ysetn C = (A*A — AA*)Y/2) u A je camokoMILIEMeHTapaH aKo 1
caMo aKo je YnCcTH Jeo oneparopa A camomyasiaH.

Cueneha Teopema kaxke 1a HujeqHa JTuHeapHa KoMOnHanuja oneparopa C' € (A) n
IHETOBOT aJ[jYHIOBAHOT OIlepaTopa Hilje MHBePTUOMIaH OIIepaTop.

Teopema 4.2.8. Heka je A € B(H) camokomniemenmapan cy6ropmanan onepamop. Tada
0 € a(AC + uC™)

3a céarxo C' € N(A) u céako \, jn € C.
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Kao mocienniy, mmamo fa peaqHu u MMaruHapHu geinosu omeparopa C' € 91(A)
HIICY MHBEPTUOVITHIL

IMocnenuna 4.2.9. Heka je A € B(H) camokomniemenmapar cy6HOpMasan onepamop u
neka je C' € M(A). TadaRe (C) ulm (C) Hucy uneepmubunru.

Axo je A camokoMIuieMeHTapaH cy6HopManaH omeparop u C' € DN(A), Teopema 4.2.1
HaM Kaxe 1a 0 € o(C). Cinenehu pesynratu najy Heke qososbHe yenose aaje o(C) = {0},
IIITO je YCTBapy eKBUBAJEHTHO HOPMAJHOCTH omeparopa A.

Teopema 4.2.10. Heka je A € B(H) camoxomniemenmapar cy6Hopmanan onepamop. Axo
nocmoju C' € N(A) makas da A u C" komymupajy 3a Hekon € N, onda je A Hopmanan.

Teopema 4.2.11. Heka je A € B(H) camoxomniemenmapar cy6Hopmaan onepamop. Axo
C' € M(A) 3adosomasa 6ap jedar 00 crnedehux ycnosa:

(1) AC = CA,

R(C) L R(Im (A)),

)
(11) A*C = AC,
(vi1)

) R

(iv) Re (C) uRe (C?) komymupajy ca A,

0HOa je A HOpMmanaH.

IMocnenuua 4.2.12. Heka je A € B(H) camodyanan cybrnopmanarn onepamop. Tada A He
komymupa Hu ca jeonum C' € MN(A).

4.3 CamopyamHocT AnyTtreose u [lyranose
TpaHcgopMaIlyje

Ha nouerky oBe cekiije, najeMo aBa roceOHa pe3yirara Koja o6e36elyjy moBosbHe
ycioBe na Anytreosa u J[yragoBa TpaHcdopmaliija YnCTUX XUITOHOPMATHMX (TI0JTYXUIIO-
HOpMaHUX) orieparopa A € B(H) 6yny camogyanHu CyGHOPMATIHY OIIEPATOPIL.

Hajmpe, axo je A € B(H) uucr XumoHopMaiaH OIEPaToOp ca TyCTOM CIMKOM, OHAA
je A uHjeKkTMBaH 1 y moJapHOj mqekommosmuuju A = , Mamo 1a je U yHurapaH
oneparop. Haume, us A*A > AA* cnemu naje N'(A) C N(A*) = R(A)+ = {0}. Taxobe,
xopucrehu U*|A|?U > |AJ? j , 3aKJbyUyjeMo 11a je
XUIIOHOpMaJIHOCT orepartopa A ekBuBaneHTHa ciiefneheM yciaoBy:

U*|APU > AP

CnpemMHM cMo 1a 1aMo IIpBU pe3yJITarT:
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Teopema 4.3.1. Hexa je A € B(H) uucm xunoHopmanan onepamop ca zycmom CIUKOM U
, u neka je P = (U*|A]PU — |A|*)Y/2. Axo je PA
camoKomnjyzo6an onepamop, onda je A camodyanan cybropmanan onepamop.

nonaprom dexomnosuyujom A = U|A

Ha 6rcmo noxasanu cinenehn pe3ysraT Koju pasmarpa cyuaj Kajaa je AJyTreoBa TpaHC-
dbopMarja YMCTOT Oy XUIIOHOPMATIHOT OIlepaTopa caMoAyalaH CyOHOpMasaH oIleparop,
norpebaH HaM je cnenehu momohuu pesynrar:

Teopema 4.3.2. [38, Lemma 4] Heka je ' = U|T| uucm p-xunonopmarnan onepamop ca
eycmom cmukom. Taoda je Anmymeeoéa mparncpopmayuja T uucm (p + 1)-xunonopmanan
onepamop.

Teopema 4.3.3. Heka je A € B(H) uucm nowyxunonopmana onepamop ca 2ycmom CiuKom
u nonaprom dexomnosuyujom A = U|A|, u nexa je P := (U*|A|U — U|A|U*)Y/2. Ako
cy [AF, j] u PA|A|V? camoxonjyeosanu onepamopu, onda je A camodyanan cyGropmanan
onepamop.

Nepuuunmja 4.3.1 ([114]). Hexka je T = U|T| nonapua nekommnosuuuja oneparopa T’ €
B(H). Oneparop T je oneparop d-kiace axo je U?|T| = |T|U>.

Morusucaunu pepuaunujom n Teopemom 4.3.3, umamo cienehu 3axpyuak:

IMocnenuma 4.3.4. Heka je A € B(H) uucm nowyxunonopmanan onepamop S-kuace ca

2yCmom ciiukom, u ca noiaprom oekomnosuyujom A = U|A|. Tada je A camodyanar cy6Hop-
Manaw onepamop.

Teopema 4.3.5. Hexa je A € B(H). Axo je nonapna dekomnosuyuja onepamopa A dama
kao A = U|A|, 20e je U ynumapan onepamop, onoa cy credehu ycro6u eKeusareHmuu:

(1) A je Hopmanan;

(i) A je onepamop S-xnace u N'(H) N N(A, A) # 0.

Jlema 4.3.6. Heka je A € B(H). Tada je ceaxu pedykyjyhu noonpocmop 3a A pedykyjyhu
noonpocmop u 3a A u A.

Heka je A € B(H) camonyanaH omepatop ca nojgapHoM pekommnosunujom A = U|A|,
u Heka je C' € M(A). Axo npernocraBumo ga A nma rycry ciuky, oupa je U yHurapan
omepatop. Oneparop C' € D(A) je HopmanaH 11a ce Moske ce npexncrasutu kao C' = V'|C],
3a HeKu yHUTapaH oreparop V' (Bunern 85, p. 66]). Nnaxk, cieneha reopema nmokasyje na
y HEKIM CJIyuajeBUMa, 32 CBaKM HeTPMBUjaJIaH 3ajeJHNUKM penyKyjyhu moxmpocrop 3a
Au C, pecrpukunje U n V mopajy 6utu pasianunre.

Teopema 4.3.7. Heka je A € B(H) camodyanan onepamop d-knace ca ycmom CJIUKoM u
nonaprom dexomnosuyujom A = U|A|, u neka je C' € M(A). Ako je C = V|C| dexomnosu-
yuja 3a C ede je V. ynumapan onepamop, u M je Hempusujanan 3ajednuuxu pedyxkyjyhu
noonpocmop 3a A u C, onoa je U|p # V|-

Hamromena 4.3.8. HanomeHnumo 0a npemxooHa meopema éaxcu u 'y cnyuajy kadajeC' = V' |C|
“o6uuna” nonapra dexomnozuyuja onepamopa C.

39



buorpadguja

XpanncnaB CraunkoBuh je pohen 10. aBrycra 1994. roauue y Ilpokymmy. OcHoB-
Hy 1kony ~Tormmuku xepoju” y Kuropahu je 3aBpiumo xao Hocwmtan auriome “Byk
Kapaymh® u turyne haka rermepaumje. T'mmuasujy y IIpokyruby je takohe saBpimo xao
Hocutan guiuiome “Byxk Kapanumh®

AKTIBHO je yuecTBOBAO Ha TAKMIUEHIIMA 13 MaTeMaTIKe, CPIICKOT je3VKa 11 OM10JI0T -
je, pemoBHO ocBajajyhm mpBa MecTa Ha perMOHAJIHIM TakMuuemuma. Takobe je mobuo
OpojHe moxBaJe, MpU3Haba I Harpajie Ha PpasiINuUTIM JIUTEPAPHUIM U MY3UUKIUM TaKMMU-
uyerbuMa. Kao yueHUK mrector paspena, o6jaBuo je 30upky moesuje 2007. ronuHe.

XpaHucas je 3anoueo cryanje maremaruke 2013. rogune Ha [IpupogHo-MaTemary-
KoM (pakynreTy YHuBep3urera y Hurry, u 3aBpimo nx je 2016. roguse ca mpocekom 10,00.
Vcre roguHe ymmcao ce Ha MacTep CTyAMje MaTeMaTuKe, crenujanusyjyhm ce y obiaactu
TEOpUjCKe MaTeMarTlKe, Koje je ycmelrHo 3aBpiumo 2018. roguHe. Ycreurso je ogdpaHmo
Macrep Tesy, roj HacioBoM “Kapakrepusanmja omeparopa panra 1%, qoousiin oueny 10.

Toxom akagemMmcke roguHe 2018/2019, 3amoueo je JOKTOPCKE CTyAMje MaTeMaTKe Ha
[IpnponHO-MareMarnukoM axynrery YHuBepsurera y Hurry. Ilosoxno je cBe mpensu-
hene ucnnre, ocTBapMBIIN ITpOCEUHY OLieHY 10.

Toxom crynuja, 6uo je KopucHuUK crunenguje “ocureja“ y qBa HaBpara.

Y 2019. roguHM je mMocTao MCTpaKMBa4-IpUIIpaBHUK Ha IIpupomHo-MareMaTmykom
dakynrery YuuBepsurera y Hurry. Op taja je akTMBHO yKbY4YeH Y HayUHO-MCTPasKU-
BAUKM ITpojekat ~IIpobieMu HennHeapHe aHANN3e, TEOPHje OIlepaTopa, TOIOJIOTHje I IIPH-
mena“ (Ol 174025), koju puHaHCUpa MMUHUCTAPCTBO MPOCBETE, HAYKE M TEXHOJIOLIKOT
pasBoja Penybnnke Cpouje.

Ha IIpupogHo-maTeMaTiukoM ¢akyiTeTy, IpegaBao je pasindnuTe Kypcese, yKbydy-
jyhu MaremaTtuuxy JIOTMKY U Teopujy cKynoBa, JluneapHy anre6py, Enemenrapny mare-
MaTuKy 1, YBon y Tomosiorujy u Maremaruuky aHanmusy 3 Ha OCHOBHUM cTyaujama. [lo-
JaTHO, IIpeJiaBao je Kypcese Kao IITO cy Teopuja onepaTtopa, Teopuja ckymnosa, Teopuja
¢mKcHe Tauke 1 npuMeHe 1 AnrebapcKa TOIIOJIOTMja HA MacTep CTyAMjaMa.

[ToueBmm ox 2021. roguHe, paay Kao acUCTeHT Ha EjexTpoHcKoM dakynrery YHUBep-
sureta y Humy, roe npepaje kypcese Kao 1ro cy MaremaTtuka 1, Maremarnka 2, Mare-
Marnka 3, Marematnuknu Meronu, Teopmja BepoBaTHOhe M crarmctuka n Hymepuuxn
AJITOPUTMIL.

Ho canma je 06jaBMo IleT HaAyYHMX pafoBa, a jOII TPU CY TPEHYTHO HA peleH3Vju Y
MehyHapogHuM yaconmcuma ca MMIAKT GaKTOPOM.

41



BHOI'PADPUIA

INyonukaruje

D. S. Cvetkovi¢-Ili¢, H. Stankovi¢. On normal complements, Journal of Mathematical
Analysis and Applications, (in review).

D. Denci¢, H. Stankovi¢, I. Damnjanovi¢, M. Krsti¢. g-numerical radius of rank one
operators, (preprint).

H. Stankovi¢. Converse of Fuglede Theorem, Operators and Matrices, 17(3) (2023),
705-714.

H. Stankovi¢. Generalized powers and generalized logarithms of operators, Rendiconti
del Circolo Matematico di Palermo Series 2, 72 (2023), 3829-3840.

H. Stankovi¢. Polynomially accretive operators, Mathematical Inequalities and Appli-
cations, (in review).

H. Stankovi¢. Solvability of A;XB; = C;, i = 1,2, with applications to inequal-

ity C < AX B, Advances in Operator Theory, 8(35) (2023), https://doi.org/10.
1007/s43036-023-00265-x.

H. Stankovi¢. Spherical Mean Transform of Operator Pairs , J. Math. Anal. Appl,
530(2) (2024), 127743, https://doi.org/10.1016/3. jmaa.2023.127743.

H. Stankovi¢. Subnormal n-th roots of matricially and spherically quasinormal pairs,
Filomat, 37(16) (2023), 5325-5331.

H. Stankovi¢. Conditions implying self-adjointness and normality of operators, Mathe-
matische Annalen, (submitted).

H. Stankovi¢, M. Krsti¢, I. Damnjanovi¢. Some properties of the q-numerical radius,
Linear and Multilinear Algebra, (in review).

42



H3JABA O AYTOPCTBY

HM3jasmyjem 21a je JOKTopcka AUcepTalnja, moji HacIOBOM

SUBNORMAL OPERATORS: A MULTIVARIABLE OPERATOR THEORY
PERSPECTIVE

Koja je onGpamsena ua IMpupoano-matematnukom dakyntery Ynusepsutera y Humry:

®  PE3YyATaT CONCTBCHOr MCTPAXKNBAYKOI paja;

* JIa OBY JMCCPTAUM]Y, HH Y UCHIHNW, HUTH Y JCIOBHMA, HHCaM TMpHjas/bUBao/na na
ApYTHM akyITeTUMa, HUTH YIHUBEP3UTETHMA;

* Jla HUCAM MOBPCAMO/NA ayTopcKa Mpasa, HHUTIE 310yNnoTpedHo/na MHTCACKTYyammny
CBOJHHY JIPYTHX L.

Jlossosbasam aa ce objaBe MOjM JTHUHM MOJALUM, KOJH CY Y BE3H Ca ayTOPCTBOM M
aobujaiLeM akaJeMcKor 3Baiba JOKTOpa HayKa, KAo 1ITO CYy MME H MPe3nMe, FoAWHa i MecTo
poheiba n gatym oabpane paja, i 7o y katanory bubmnoreke, Jnrurtainom pernosutopijymy
Yuusepsurera y Humy, kao n y nybnnkaunjama Yunsepsnrera y Hiouy.

Y Huury, 0 9.04.20c2Y.

[Tormic ayropa ancepraumnje:

K (gt

Xpauucnas M. Crankosuh




N3JABA O UCTOBETHOCTHU IHITAMITAHOI" U EJIEKTPOHCKOT OBJINKA
JOKTOPCKE JIMCEPTAIIUIE

Hacnos ancepraunje:

SUBNORMAL OPERATORS: A MULTIVARIABLE OPERATOR THEORY
PERSPECTIVE

M3jasmyjem na je cncktporckn o6aik Moje JOKTOPCKC AHCCPTALIM)C, KOjy CaM
npenao/na 3a ynouweise y Jururasnn penosutopujym Yuuncpsurera y Huury, ncroscrai
wTaMnaHoM obTHKYy.

Y Huwy, U_j 0{.202 g

[Tornuc ayropa ancepraumje:

L%»W

Xpainicnas M. Crankosith




MU3JABA O KOPUWREHY

Ospnauwhyjem Yuusepsutercky 6ubnnoreky ,Hukona Tecnma® ma y Jurutamum
peno3utopujym Yuusepintera y Hutuy yiiece Mojy 0KTOpCKy AHCEPTALH]Y, MO HACTOBOM:

SUBNORMAL OPERATORS: A MULTIVARIABLE OPERATOR THEORY
PERSPECTIVE

Hucepraunjy ca cBUM NpHIO3MMA NPEiao/sia caM y elCKTPOHCKOM 00HKY, MOFOAHOM
32 TPajHO apXIBHpaLE,

Mojy noxropeky mmuceprawnjy, ynery y Jlurntannn penosiutopujym YHUBEp3UTCTa Yy
Huury, Mory kopreriit eait kojir nowtyjy oapende cajpikanc y ofabpaHoM THITY JTHUEHLC
Kpeatusne 3ajennunuc (Creative Commons), 3a Kojy cam ce ojuryumo/sa.

1. Aytopctso (CC BY)

2. Aytopctio — ekomepunjanio (CC BY-NC)

] 3. AytopcTBo — nekomepunjanuo — 6e3 npepane (CC BY-NC-ND)

4. AyTOpCcTBO — HEeKOMEpUNjanio — aesimTi 1noa uetum yeiaornma (CC BY-NC-SA)
5. AytopctBo — Ge3 npepanc (CC BY-ND)
6. AytopcTBo — zennti noa Herim yenosima (CC BY-SA)

Y Huwy, 0 9.0{. 2 ¢ l:[ :

[Tormie ayropa aucepraumje:

X bz~

Xpanucnas M. Crankosuh




	Abstract
	Acknowledgements
	Introduction
	Preliminaries
	Operators on Hilbert spaces
	Generalizations of normal operators
	Subnormal operators
	Quasinormal operators
	Hyponormal operators
	p-hyponormal operators and Aluthge transform

	Subnormal and quasinormal tuples

	Subnormal factors of quasinormal operators
	Square root problem for quasinormal operators
	Subnormal n-th roots of quasinormal operators
	One-dimensional case
	Multivariable case

	Subnormal factors of normal operators
	Quasinormal factors of normal operators
	Subnormal factors of quasinormal operators and converse of Fuglede theorem


	Spherical mean transform of operator pairs
	Motivation and preliminaries
	General properties
	Spherical mean transform of 2-variable weighted shifts

	Subnormal duals and completion to normality
	Different characterizations of normal complements
	Joint spectral properties of normal complements
	Self-duality of Aluthge and Duggal Transforms

	A note on some related classes of linear operators
	Positive operators and generalized  powers
	Previous results
	Generalized powers of operators
	Generalized logarithms of operators

	Polynomially accretive operators
	Motivation
	General properties
	The structure of p-accretive operators

	Positive and self-adjoint solutions to the system of operator equations
	Solvability of AiXBi=Ci, i=1,2
	Solvability of C*AXB


	A note on q-numerical radius of linear operators
	Motivation
	Preliminaries

	Norm properties
	Analytical properties
	q-numerical radius inequalities
	Inequalities involving operator matrices
	q-numerical radius of rank 1 operators


	Conclusion
	Bibliography
	Biography
	List of Symbols
	Index

